Nutritional Metabolism in Model Organisms: Phytochemicals and Genetic Responses

A special issue of Metabolites (ISSN 2218-1989). This special issue belongs to the section "Nutrition and Metabolism".

Deadline for manuscript submissions: closed (30 April 2025) | Viewed by 4419

Special Issue Editor


E-Mail
Guest Editor
Department of Biology, West Virginia State University, Institute, WV 25112, USA
Interests: genetics; plant metabolism; nutrition; phytochemicals; physiological effects and mechanisms of phytochemicals
Special Issues, Collections and Topics in MDPI journals

Special Issue Information

Dear Colleagues,

We invite researchers to contribute to our upcoming special issue on Nutritional Metabolism in Model Organisms, focusing on phytochemicals and their role in genetic responses. This issue will explore the interactions between diet-derived phytochemicals and the molecular mechanisms that regulate metabolism, providing new insights into how these compounds influence health and disease. We welcome original research articles, reviews, and short communications that investigate the impact of phytochemicals on genetic pathways using model organisms such as plants, insects, or rodents.

We aim to cover a broad range of topics, including but not limited to:

  • Mechanisms by which phytochemicals modulate gene expression and metabolic pathways
  • The role of dietary phytochemicals in health, disease prevention, and treatment
  • Comparative studies in various model organisms (e.g., Drosophila, mice, yeast, C. elegans) that help uncover conserved and species-specific responses
  • Interactions between phytochemicals and microbiota in influencing metabolic outcomes
  • Phytochemical-driven epigenetic modifications and their impact on metabolic processes

We invite submissions of original research articles and reviews, related to this theme.

Dr. Carlos Lopez-Ortiz
Guest Editor

Manuscript Submission Information

Manuscripts should be submitted online at www.mdpi.com by registering and logging in to this website. Once you are registered, click here to go to the submission form. Manuscripts can be submitted until the deadline. All submissions that pass pre-check are peer-reviewed. Accepted papers will be published continuously in the journal (as soon as accepted) and will be listed together on the special issue website. Research articles, review articles as well as short communications are invited. For planned papers, a title and short abstract (about 100 words) can be sent to the Editorial Office for announcement on this website.

Submitted manuscripts should not have been published previously, nor be under consideration for publication elsewhere (except conference proceedings papers). All manuscripts are thoroughly refereed through a single-blind peer-review process. A guide for authors and other relevant information for submission of manuscripts is available on the Instructions for Authors page. Metabolites is an international peer-reviewed open access monthly journal published by MDPI.

Please visit the Instructions for Authors page before submitting a manuscript. The Article Processing Charge (APC) for publication in this open access journal is 2700 CHF (Swiss Francs). Submitted papers should be well formatted and use good English. Authors may use MDPI's English editing service prior to publication or during author revisions.

Keywords

  • phytochemicals
  • nutritional metabolism
  • gene expression
  • model organisms
  • genetic response
  • epigenetics

Benefits of Publishing in a Special Issue

  • Ease of navigation: Grouping papers by topic helps scholars navigate broad scope journals more efficiently.
  • Greater discoverability: Special Issues support the reach and impact of scientific research. Articles in Special Issues are more discoverable and cited more frequently.
  • Expansion of research network: Special Issues facilitate connections among authors, fostering scientific collaborations.
  • External promotion: Articles in Special Issues are often promoted through the journal's social media, increasing their visibility.
  • Reprint: MDPI Books provides the opportunity to republish successful Special Issues in book format, both online and in print.

Further information on MDPI's Special Issue policies can be found here.

Published Papers (1 paper)

Order results
Result details
Select all
Export citation of selected articles as:

Review

29 pages, 1977 KB  
Review
Capsaicin as a Microbiome Modulator: Metabolic Interactions and Implications for Host Health
by Iván Artemio Corral-Guerrero, Angela Elena Martínez-Medina, Litzy Yazmin Alvarado-Mata, Ana Cristina Figueroa Chávez, Roberto Muñoz-García, Miriam Paulina Luévanos-Escareño, Jazel Doménica Sosa-Martínez, María José Castro-Alonso, Padma Nimmakayala, Umesh K. Reddy and Nagamani Balagurusamy
Metabolites 2025, 15(6), 372; https://doi.org/10.3390/metabo15060372 - 5 Jun 2025
Viewed by 3971
Abstract
Background/Objectives: Capsaicin is the principal pungent compound in chili peppers and is increasingly recognized as a multifunctional phytochemical with systemic effects beyond its sensory properties. It has been linked to metabolic regulation, neuroprotection, inflammation control, and cancer modulation. This review aims to provide [...] Read more.
Background/Objectives: Capsaicin is the principal pungent compound in chili peppers and is increasingly recognized as a multifunctional phytochemical with systemic effects beyond its sensory properties. It has been linked to metabolic regulation, neuroprotection, inflammation control, and cancer modulation. This review aims to provide an integrative synthesis of capsaicin’s metabolism, its interaction with the gut microbiome, and its physiological implications across organ systems. Methods: We conducted a critical literature review of recent in vivo and in vitro studies exploring capsaicin’s metabolic fate, biotransformation by host enzymes and gut microbes, tissue distribution, and molecular pathways. The literature was analyzed thematically to cover gastrointestinal absorption, hepatic metabolism, microbiota interactions, and systemic cellular responses. Results: Capsaicin undergoes extensive hepatic metabolism, producing hydroxylated and dehydrogenated metabolites that differ in transient receptor potential vanilloid type 1 (TRPV1) receptor affinity and tissue-specific bioactivity. It crosses the blood–brain barrier, alters neurotransmitter levels, and accumulates in brain regions involved in cognition. In addition to its systemic effects, capsaicin appears to undergo microbial transformation and influences gut microbial composition, favoring short-chain fatty acid producers and suppressing pro-inflammatory taxa. These changes contribute to anti-obesity, anti-inflammatory, and potentially anticancer effects. Dose-dependent adverse outcomes, such as epithelial damage or tumor promotion, have also been observed. Conclusions: Capsaicin represents a diet-derived bioactive molecule whose systemic impact is shaped by dynamic interactions between host metabolism and the gut microbiota. Clarifying its biotransformation pathways and context-specific effects is essential for its safe and effective use in metabolic and neurological health strategies. Full article
Show Figures

Figure 1

Back to TopTop