Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (84)

Search Parameters:
Keywords = transcription-translation coupling

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 7296 KiB  
Article
The Expression Pattern of the Splice Variants of Coxsackievirus and Adenovirus Receptor Impacts CV-B3-Induced Encephalitis and Myocarditis in Neonatal Mice
by Xinglong Zhang, Xin Zhang, Yifan Zhang, Heng Li, Huiwen Zheng, Jingjing Wang, Yun Liao, Li Yu, Dandan Li, Heng Zhao, Jiali Li, Zihan Zhang, Haijing Shi and Longding Liu
Int. J. Mol. Sci. 2025, 26(15), 7163; https://doi.org/10.3390/ijms26157163 - 24 Jul 2025
Viewed by 169
Abstract
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, [...] Read more.
Coxsackievirus B3 (CV-B3) infection causes inflammatory conditions such as viral myocarditis and meningitis, and incidence rates are rising annually. While children are more likely to be affected by severe manifestations, the molecular basis of this age-dependent susceptibility is poorly understood. In this study, we used young Balb/c mice at three developmental stages (7-, 14-, and 30-day-old mice) to investigate CV-B3 pathogenesis. Our findings revealed that 7-day-old mice exhibited substantial infection susceptibility and pathological severity compared to older mice. Critically, an age-dependent analysis showed a progressive decline in the expression of CV-B3-binding Coxsackievirus and Adenovirus Receptor (CAR) splice variants (CAR1 and CAR2) at both the transcriptional and translational levels as the mice matured from 7 to 30 days. These receptor isoforms demonstrated a direct correlation with viral replication efficiency in younger hosts. Concurrently, aging was associated with a rise in non-binding CAR variants (CAR3 and CAR4). During CV-B3 infection, the abundance of CAR1/CAR2 in young mice facilitated accelerated viral proliferation, coupled with the hyperactivation of the NLRP3 inflammasome and the expansion of IL-17-producing γδT cells (γδT17 cells). This cascade triggered excessive production of proinflammatory cytokines (IL-1β, IL-18, and IL-17), culminating in pronounced inflammatory infiltrates within cardiac and cerebral tissues. These findings establish NLRP3 inflammasome dysregulation as a critical determinant of CV-B3-induced tissue damage and provide novel insights into the heightened susceptibility to CV-B infection during early life and its associated severe disease rates. Full article
Show Figures

Figure 1

22 pages, 1438 KiB  
Article
The Transcription Machinery and the Driving Force of the Transcriptional Molecular Condensate: The Role of Phosphates
by Raúl Riera Aroche, Esli C. Sánchez Moreno, Yveth M. Ortiz García, Andrea C. Machado Sulbarán, Lizbeth Riera Leal, Luis R. Olivas Román and Annie Riera Leal
Curr. Issues Mol. Biol. 2025, 47(7), 571; https://doi.org/10.3390/cimb47070571 - 20 Jul 2025
Viewed by 341
Abstract
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can [...] Read more.
The dynamic phosphorylation of the human RNA Pol II CTD establishes a code applicable to all eukaryotic transcription processes. However, the ability of these specific post-translational modifications to convey molecular signals through structural changes remains unclear. We previously explained that each gene can be modeled as a combination of n circuits connected in parallel. RNA Pol II accesses these circuits and, through a series of pulses, matches the resonance frequency of the DNA qubits, enabling it to extract genetic information and quantum teleport it. Negatively charged phosphates react under RNA Pol II catalysis, which increases the electron density on the deoxyribose acceptor carbon (2’C in the DNA sugar backbone). The phosphorylation effect on the stability of a carbon radical connects tyrosine to the nitrogenous base, while the subsequent pulses link the protein to molecular water through hydrogen bonds. The selective activation of inert C(sp3)–H bonds begins by reading the quantum information stored in the nitrogenous bases. The coupling of hydrogen proton transfer with electron transfer in water generates a supercurrent, which is explained by the correlation of pairs of the same type of fermions exchanging a boson. All these changes lead to the formation of a molecular protein–DNA–water transcriptional condensate. Full article
Show Figures

Figure 1

20 pages, 2548 KiB  
Article
In Vitro Metabolism of Doping Agents (Stanozolol, LGD-4033, Anastrozole, GW1516, Trimetazidine) by Human Seminal Vesicle and Liver Fractions
by Johanna Sternberg, Insa Peters, Nana Naumann, Andreas Thomas and Mario Thevis
Metabolites 2025, 15(7), 452; https://doi.org/10.3390/metabo15070452 - 4 Jul 2025
Viewed by 475
Abstract
Background: In order to address complex scenarios in anti-doping science, especially in cases where an unintentional exposure of athletes to prohibited substances and a corresponding contamination of doping control samples at the collection event are argued, an understanding of tissue-specific drug metabolism is [...] Read more.
Background: In order to address complex scenarios in anti-doping science, especially in cases where an unintentional exposure of athletes to prohibited substances and a corresponding contamination of doping control samples at the collection event are argued, an understanding of tissue-specific drug metabolism is essential. Hence, in this study, the metabolic capacity of the seminal vesicle using in vitro assays was investigated. Methods: The aim was to assess whether selected doping-relevant substances—stanozolol, LGD-4033, GW1516, trimetazidine, and anastrozole—are metabolised in seminal vesicle cellular fractions (SV-S9) and how that metabolism compares to biotransformations induced by human liver S9 fractions (HL-S9). Liquid chromatography coupled to high-resolution/accurate mass spectrometry (LC HRAM MS) enabled the sensitive detection and identification of metabolites, revealing a limited metabolic activity of SV-S9. Results: For LGD-4033, GW1516, and trimetazidine, minor metabolic transformations were observed, whereas no metabolites of stanozolol or anastrozole were detected. Gene expression analysis using digital polymerase chain reaction (dPCR) confirmed transcripts of CYP2D6, CYP2E1, and CYP2C9 in SV-S9, though no enzymatic activity was detected. Gene expression and enzymatic activity in CYP3A4 and CYP1A2—major hepatic enzymes—were absent in SV-S9. Conclusions: Overall, these pilot study results suggest that the seminal vesicle has only a low capacity for xenobiotic metabolism, which translates into a limited role in the biotransformation of drugs and, hence, the metabolic pattern. Full article
(This article belongs to the Section Pharmacology and Drug Metabolism)
Show Figures

Graphical abstract

24 pages, 1610 KiB  
Review
Lactylation: From Molecular Insights to Disease Relevance
by Yao Xu, Lu Zhang, Dong Shang and Hong Xiang
Biomolecules 2025, 15(6), 810; https://doi.org/10.3390/biom15060810 - 3 Jun 2025
Viewed by 1072
Abstract
Lactylation, referring to the covalent coupling of the lactyl group with lysine residues, is a recently defined post-translational modification. It has been demonstrated that lactylation can alter protein transcription, thereby affecting the transmission of genetic information and ultimately exerting diverse effects on health [...] Read more.
Lactylation, referring to the covalent coupling of the lactyl group with lysine residues, is a recently defined post-translational modification. It has been demonstrated that lactylation can alter protein transcription, thereby affecting the transmission of genetic information and ultimately exerting diverse effects on health and diseases. Here, we review the existing literature and summarize the characteristics and mechanisms of lactylation on both histone and non-histone proteins. We hope to explore lactylation targets for different diseases, thus providing potential clues for new therapeutic strategies. Full article
Show Figures

Graphical abstract

34 pages, 3038 KiB  
Review
Not Just an Alternative Energy Source: Diverse Biological Functions of Ketone Bodies and Relevance of HMGCS2 to Health and Disease
by Varshini V. Suresh, Sathish Sivaprakasam, Yangzom D. Bhutia, Puttur D. Prasad, Muthusamy Thangaraju and Vadivel Ganapathy
Biomolecules 2025, 15(4), 580; https://doi.org/10.3390/biom15040580 - 14 Apr 2025
Viewed by 2389
Abstract
Ketogenesis, a mitochondrial metabolic pathway, occurs primarily in liver, but kidney, colon and retina are also capable of this pathway. It is activated during fasting and exercise, by “keto” diets, and in diabetes as well as during therapy with SGLT2 inhibitors. The principal [...] Read more.
Ketogenesis, a mitochondrial metabolic pathway, occurs primarily in liver, but kidney, colon and retina are also capable of this pathway. It is activated during fasting and exercise, by “keto” diets, and in diabetes as well as during therapy with SGLT2 inhibitors. The principal ketone body is β-hydroxybutyrate, a widely recognized alternative energy source for extrahepatic tissues (brain, heart, muscle, and kidney) when blood glucose is sparse or when glucose transport/metabolism is impaired. Recent studies have identified new functions for β-hydroxybutyrate: it serves as an agonist for the G-protein-coupled receptor GPR109A and also works as an epigenetic modifier. Ketone bodies protect against inflammation, cancer, and neurodegeneration. HMGCS2, as the rate-limiting enzyme, controls ketogenesis. Its expression and activity are regulated by transcriptional and post-translational mechanisms with glucagon, insulin, and glucocorticoids as the principal participants. Loss-of-function mutations occur in HMGCS2 in humans, resulting in a severe metabolic disease. These patients typically present within a year after birth with metabolic acidosis, hypoketotic hypoglycemia, hepatomegaly, steatotic liver damage, hyperammonemia, and neurological complications. Nothing is known about the long-term consequences of this disease. This review provides an up-to-date summary of the biological functions of ketone bodies with a special focus on HMGCS2 in health and disease. Full article
(This article belongs to the Special Issue Research on Fatty Acid Oxidation and Fatty Acid Oxidation Disorders)
Show Figures

Figure 1

20 pages, 1227 KiB  
Review
Mechanisms for Regulatory Effects of Exercise on Metabolic Diseases from the Lactate–Lactylation Perspective
by Guannan Chen, Jinchao Liu, Yilan Guo and Peng Sun
Int. J. Mol. Sci. 2025, 26(8), 3469; https://doi.org/10.3390/ijms26083469 - 8 Apr 2025
Viewed by 2524
Abstract
Metabolic diseases, including cardiovascular diseases, type 2 diabetes mellitus (T2DM), osteoporosis, and non-alcoholic fatty liver disease (NAFLD), constitute a major global health burden associated with chronic morbidity and mortality. Lactate, once considered as a metabolic byproduct, has emerged as a key regulator of [...] Read more.
Metabolic diseases, including cardiovascular diseases, type 2 diabetes mellitus (T2DM), osteoporosis, and non-alcoholic fatty liver disease (NAFLD), constitute a major global health burden associated with chronic morbidity and mortality. Lactate, once considered as a metabolic byproduct, has emerged as a key regulator of cellular reprogramming through lactylation, a novel post-translational modification (PTM) that dynamically couples metabolic flux to chromatin remodeling. Lactylation exerts dual regulatory roles as a signaling molecule via GPR81/GPR4-mediated pathways and as a substrate for the covalent modification of histones and metabolic enzymes. Pathologically, chronic hyperlactatemia suppresses mitochondrial biogenesis, driving metabolic cardiomyopathy through the epigenetic silencing of oxidative metabolism genes. Conversely, exercise-induced lactate surges transiently enhance insulin sensitivity via AMPK/PGC-1α/GLUT4 signaling, resolve inflammation through GPR81-mediated M2 macrophage polarization, and restore mitochondrial function via lactylation-dependent pathways. This review delineates lactylation as a spatiotemporal rheostat: chronic dysregulation perpetuates metabolic disorders, whereas acute exercise-mediated lactylation remodels transcriptional networks to restore metabolic homeostasis. Future research should integrate multiomics to clarify lactylation’s spatiotemporal dynamics, tissue-specific thresholds, metabolism–immunity interactions, and metabolic–epigenetic crosstalk for the precision management of metabolic diseases. Full article
Show Figures

Figure 1

46 pages, 5352 KiB  
Article
Selective Modulation of PAR-2-Driven Inflammatory Pathways by Oleocanthal: Attenuation of TNF-α and Calcium Dysregulation in Colorectal Cancer Models
by Rajashree Patnaik, Riah Lee Varghese and Yajnavalka Banerjee
Int. J. Mol. Sci. 2025, 26(7), 2934; https://doi.org/10.3390/ijms26072934 - 24 Mar 2025
Cited by 3 | Viewed by 1094
Abstract
Colorectal cancer (CRC) remains a principal contributor to oncological mortality worldwide, with chronic inflammation serving as a fundamental driver of its pathogenesis. Protease-activated receptor-2 (PAR-2), a G-protein-coupled receptor, orchestrates inflammation-driven tumorigenesis by potentiating NF-κB and Wnt/β-catenin signaling, thereby fostering epithelial–mesenchymal transition (EMT), immune [...] Read more.
Colorectal cancer (CRC) remains a principal contributor to oncological mortality worldwide, with chronic inflammation serving as a fundamental driver of its pathogenesis. Protease-activated receptor-2 (PAR-2), a G-protein-coupled receptor, orchestrates inflammation-driven tumorigenesis by potentiating NF-κB and Wnt/β-catenin signaling, thereby fostering epithelial–mesenchymal transition (EMT), immune evasion, and therapeutic resistance. Despite its pathological significance, targeted modulation of PAR-2 remains an underexplored avenue in CRC therapeutics. Oleocanthal (OC), a phenolic constituent of extra virgin olive oil, is recognized for its potent anti-inflammatory and anti-cancer properties; however, its regulatory influence on PAR-2 signaling in CRC is yet to be elucidated. This study interrogates the impact of OC on PAR-2-mediated inflammatory cascades using HT-29 and Caco-2 CRC cell lines subjected to lipopolysaccharide (LPS)-induced activation of PAR-2. Expression levels of PAR-2 and TNF-α were quantified through Western blotting and RT-PCR, while ELISA assessed TNF-α secretion. Intracellular calcium flux, a pivotal modulator of PAR-2-driven oncogenic inflammation, was evaluated via Fluo-4 calcium assays. LPS markedly elevated PAR-2 expression at both mRNA and protein levels in CRC cells (p < 0.01, one-way ANOVA). OC administration (20–150 μg/mL) elicited a dose-dependent suppression of PAR-2, with maximal inhibition at 100–150 μg/mL (p < 0.001, Tukey’s post hoc test). Concomitant reductions in TNF-α transcription (p < 0.01) and secretion (p < 0.001) were observed, corroborating the anti-inflammatory efficacy of OC. Additionally, OC ameliorated LPS-induced calcium dysregulation, restoring intracellular calcium homeostasis in a concentration-dependent manner (p < 0.01). Crucially, OC exhibited selectivity for PAR-2, leaving PAR-1 expression unaltered (p > 0.05), underscoring its precision as a therapeutic agent. These findings position OC as a selective modulator of PAR-2-driven inflammation in CRC, disrupting the pro-tumorigenic microenvironment through attenuation of TNF-α secretion, calcium dysregulation, and oncogenic signaling pathways. This study furnishes mechanistic insights into OC’s potential as a nutraceutical intervention in inflammation-associated CRC. Given the variability in OC bioavailability and content in commercial olive oil, future investigations should delineate optimal dosing strategies and in vivo efficacy to advance its translational potential in CRC therapy. Full article
(This article belongs to the Special Issue Molecular Research of Gastrointestinal Disease 2.0)
Show Figures

Figure 1

22 pages, 1928 KiB  
Review
Revolutionizing CAR T-Cell Therapies: Innovations in Genetic Engineering and Manufacturing to Enhance Efficacy and Accessibility
by Lorenzo Giorgioni, Alessandra Ambrosone, Maria Francesca Cometa, Anna Laura Salvati, Robert Nisticò and Armando Magrelli
Int. J. Mol. Sci. 2024, 25(19), 10365; https://doi.org/10.3390/ijms251910365 - 26 Sep 2024
Cited by 4 | Viewed by 5180
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, [...] Read more.
Chimeric antigen receptor (CAR) T-cell therapy has achieved notable success in treating hematological cancers but faces significant challenges in solid-tumor treatment and overall efficacy. Key limitations include T-cell exhaustion, tumor relapse, immunosuppressive tumor microenvironments (TME), immunogenicity, and antigen heterogeneity. To address these issues, various genetic engineering strategies have been proposed. Approaches such as overexpression of transcription factors or metabolic armoring and dynamic CAR regulation are being explored to improve CAR T-cell function and safety. Other efforts to improve CAR T-cell efficacy in solid tumors include targeting novel antigens or developing alternative strategies to address antigen diversity. Despite the promising preclinical results of these solutions, challenges remain in translating CAR T-cell therapies to the clinic to enable economically viable access to these transformative medicines. The efficiency and scalability of autologous CAR T-cell therapy production are hindered by traditional, manual processes which are costly, time-consuming, and prone to variability and contamination. These high-cost, time-intensive processes have complex quality-control requirements. Recent advancements suggest that smaller, decentralized solutions such as microbioreactors and automated point-of-care systems could improve production efficiency, reduce costs, and shorten manufacturing timelines, especially when coupled with innovative manufacturing methods such as transposons and lipid nanoparticles. Future advancements may include harmonized consumables and AI-enabled technologies, which promise to streamline manufacturing, reduce costs, and enhance production quality. Full article
(This article belongs to the Special Issue State-of-the-Art Cancer Immunotherapies—2nd Edition)
Show Figures

Graphical abstract

32 pages, 6010 KiB  
Article
Mutations and Differential Transcription of Mating-Type and Pheromone Receptor Genes in Hirsutella sinensis and the Natural Cordyceps sinensis Insect-Fungi Complex
by Xiu-Zhang Li, Meng-Jun Xiao, Yu-Ling Li, Ling Gao and Jia-Shi Zhu
Biology 2024, 13(8), 632; https://doi.org/10.3390/biology13080632 - 18 Aug 2024
Cited by 2 | Viewed by 1752
Abstract
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the [...] Read more.
Sexual reproduction in ascomycetes is controlled by the mating-type (MAT) locus. (Pseudo)homothallic reproduction has been hypothesized on the basis of genetic data from Hirsutella sinensis (Genotype #1 of Ophiocordyceps sinensis). However, the differential occurrence and differential transcription of mating-type genes in the MAT1-1 and MAT1-2 idiomorphs were found in the genome and transcriptome assemblies of H. sinensis, and the introns of the MAT1-2-1 transcript were alternatively spliced with an unspliced intron I that contains stop codons. These findings reveal that O. sinensis reproduction is controlled at the genetic, transcriptional, and coupled transcriptional-translational levels. This study revealed that mutant mating proteins could potentially have various secondary structures. Differential occurrence and transcription of the a-/α-pheromone receptor genes were also found in H. sinensis. The data were inconsistent with self-fertilization under (pseudo)homothallism but suggest the self-sterility of H. sinensis and the requirement of mating partners to achieve O. sinensis sexual outcrossing under heterothallism or hybridization. Although consistent occurrence and transcription of the mating-type genes of both the MAT1-1 and MAT1-2 idiomorphs have been reported in natural and cultivated Cordyceps sinensis insect-fungi complexes, the mutant MAT1-1-1 and α-pheromone receptor transcripts in natural C. sinensis result in N-terminal or middle-truncated proteins with significantly altered overall hydrophobicity and secondary structures of the proteins, suggesting heterogeneous fungal source(s) of the proteins and hybridization reproduction because of the co-occurrence of multiple genomically independent genotypes of O. sinensis and >90 fungal species in natural C. sinensis. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

16 pages, 1577 KiB  
Article
The RNA Demethylases ALKBH5 and FTO Regulate the Translation of ATF4 mRNA in Sorafenib-Treated Hepatocarcinoma Cells
by Pauline Adjibade, Sergio Di-Marco, Imed-Eddine Gallouzi and Rachid Mazroui
Biomolecules 2024, 14(8), 932; https://doi.org/10.3390/biom14080932 - 1 Aug 2024
Cited by 2 | Viewed by 2059
Abstract
Translation is one of the main gene expression steps targeted by cellular stress, commonly referred to as translational stress, which includes treatment with anticancer drugs. While translational stress blocks the translation initiation of bulk mRNAs, it nonetheless activates the translation of specific mRNAs [...] Read more.
Translation is one of the main gene expression steps targeted by cellular stress, commonly referred to as translational stress, which includes treatment with anticancer drugs. While translational stress blocks the translation initiation of bulk mRNAs, it nonetheless activates the translation of specific mRNAs known as short upstream open reading frames (uORFs)-mRNAs. Among these, the ATF4 mRNA encodes a transcription factor that reprograms gene expression in cells responding to various stresses. Although the stress-induced translation of the ATF4 mRNA relies on the presence of uORFs (upstream to the main ATF4 ORF), the mechanisms mediating this effect, particularly during chemoresistance, remain elusive. Here, we report that ALKBH5 (AlkB Homolog 5) and FTO (FTO: Fat mass and obesity-associated protein), the two RNA demethylating enzymes, promote the translation of ATF4 mRNA in a transformed liver cell line (Hep3B) treated with the chemotherapeutic drug sorafenib. Using the in vitro luciferase reporter translational assay, we found that depletion of both enzymes reduced the translation of the reporter ATF4 mRNA upon drug treatment. Consistently, depletion of either protein abrogates the loading of the ATF3 mRNA into translating ribosomes as assessed by polyribosome assays coupled to RT-qPCR. Collectively, these results indicate that the ALKBH5 and FTO-mediated translation of the ATF4 mRNA is regulated at its initiation step. Using in vitro methylation assays, we found that ALKBH5 is required for the inhibition of the methylation of a reporter ATF4 mRNA at a conserved adenosine (A235) site located at its uORF2, suggesting that ALKBH5-mediated translation of ATF4 mRNA involves demethylation of its A235. Preventing methylation of A235 by introducing an A/G mutation into an ATF4 mRNA reporter renders its translation insensitive to ALKBH5 depletion, supporting the role of ALKBH5 demethylation activity in translation. Finally, targeting either ALKBH5 or FTO sensitizes Hep3B to sorafenib-induced cell death, contributing to their resistance. In summary, our data show that ALKBH5 and FTO are novel factors that promote resistance to sorafenib treatment, in part by mediating the translation of ATF4 mRNA. Full article
(This article belongs to the Special Issue The Structure and Function of Proteins, Lipids and Nucleic Acids)
Show Figures

Figure 1

18 pages, 2966 KiB  
Article
Autonomous Oscillatory Mitochondrial Respiratory Activity: Results of a Systematic Analysis Show Heterogeneity in Different In Vitro-Synchronized Cancer Cells
by Olga Cela, Rosella Scrima, Consiglia Pacelli, Michela Rosiello, Claudia Piccoli and Nazzareno Capitanio
Int. J. Mol. Sci. 2024, 25(14), 7797; https://doi.org/10.3390/ijms25147797 - 16 Jul 2024
Viewed by 1467
Abstract
Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The [...] Read more.
Circadian oscillations of several physiological and behavioral processes are an established process in all the organisms anticipating the geophysical changes recurring during the day. The time-keeping mechanism is controlled by a transcription translation feedback loop involving a set of well-characterized transcription factors. The synchronization of cells, controlled at the organismal level by a brain central clock, can be mimicked in vitro, pointing to the notion that all the cells are endowed with an autonomous time-keeping system. Metabolism undergoes circadian control, including the mitochondrial terminal catabolic pathways, culminating under aerobic conditions in the electron transfer to oxygen through the respiratory chain coupled to the ATP synthesis according to the oxidative phosphorylation chemiosmotic mechanism. In this study, we expanded upon previous isolated observations by utilizing multiple cell types, employing various synchronization protocols and different methodologies to measure mitochondrial oxygen consumption rates under conditions simulating various metabolic stressors. The results obtained clearly demonstrate that mitochondrial respiratory activity undergoes rhythmic oscillations in all tested cell types, regardless of their individual respiratory proficiency, indicating a phenomenon that can be generalized. However, notably, while primary cell types exhibited similar rhythmic respiratory profiles, cancer-derived cell lines displayed highly heterogeneous rhythmic changes. This observation confirms on the one hand the dysregulation of the circadian control of the oxidative metabolism observed in cancer, likely contributing to its development, and on the other hand underscores the necessity of personalized chronotherapy, which necessitates a detailed characterization of the cancer chronotype. Full article
(This article belongs to the Special Issue Molecular Advances in Circadian Rhythm and Metabolism)
Show Figures

Figure 1

12 pages, 295 KiB  
Article
H2BFWT Variations in Sperm DNA and Its Correlation to Pregnancy
by Houda Amor, Ingolf Juhasz-Böss, Riffat Bibi, Mohamad Eid Hammadeh and Peter Michael Jankowski
Int. J. Mol. Sci. 2024, 25(11), 6048; https://doi.org/10.3390/ijms25116048 - 31 May 2024
Cited by 2 | Viewed by 1242
Abstract
Abnormalities in sperm nuclei and chromatin can interfere with normal fertilization, embryonic development, implantation, and pregnancy. We aimed to study the impact of H2BFWT gene variants in sperm DNA on ICSI outcomes in couples undergoing ART treatment. One hundred and nineteen partners were [...] Read more.
Abnormalities in sperm nuclei and chromatin can interfere with normal fertilization, embryonic development, implantation, and pregnancy. We aimed to study the impact of H2BFWT gene variants in sperm DNA on ICSI outcomes in couples undergoing ART treatment. One hundred and nineteen partners were divided into pregnant (G1) and non-pregnant (G2) groups. After semen analysis, complete DNA was extracted from purified sperm samples. The sequence of the H2BFWT gene was amplified by PCR and then subjected to Sanger sequencing. The results showed that there are three mutations in this gene: rs7885967, rs553509, and rs578953. Significant differences were shown in the distribution of alternative and reference alleles between G1 and G2 (p = 0.0004 and p = 0.0020, respectively) for rs553509 and rs578953. However, there was no association between these SNPs and the studied parameters. This study is the first to shed light on the connection between H2BFWT gene variants in sperm DNA and pregnancy after ICSI therapy. This is a pilot study, so further investigations about these gene variants at the transcriptional and translational levels will help to determine its functional consequences and to clarify the mechanism of how pregnancy can be affected by sperm DNA. Full article
19 pages, 3346 KiB  
Article
TGF-β2 Induces Ribosome Activity, Alters Ribosome Composition and Inhibits IRES-Mediated Translation in Chondrocytes
by Guus G. H. van den Akker, Alzbeta Chabronova, Bas A. C. Housmans, Laura van der Vloet, Don A. M. Surtel, Andy Cremers, Virginie Marchand, Yuri Motorin, Marjolein M. J. Caron, Mandy J. Peffers and Tim J. M. Welting
Int. J. Mol. Sci. 2024, 25(9), 5031; https://doi.org/10.3390/ijms25095031 - 5 May 2024
Cited by 2 | Viewed by 2084
Abstract
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line [...] Read more.
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-β2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-β2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-β2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-β2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-β2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-β2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome. Full article
(This article belongs to the Special Issue The Evolving Ribosome Concept)
Show Figures

Figure 1

25 pages, 1701 KiB  
Review
Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development
by Nikolet Pavlova, Martina Traykovska and Robert Penchovsky
Antibiotics 2023, 12(11), 1607; https://doi.org/10.3390/antibiotics12111607 - 8 Nov 2023
Cited by 6 | Viewed by 3387
Abstract
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial [...] Read more.
Antimicrobial drug resistance has emerged as a significant challenge in contemporary medicine due to the proliferation of numerous bacterial strains resistant to all existing antibiotics. Meanwhile, riboswitches have emerged as promising targets for discovering antibacterial drugs. Riboswitches are regulatory elements in certain bacterial mRNAs that can bind to specific molecules and control gene expression via transcriptional termination, prevention of translation, or mRNA destabilization. By targeting riboswitches, we aim to develop innovative strategies to combat antibiotic-resistant bacteria and enhance the efficacy of antibacterial treatments. This convergence of challenges and opportunities underscores the ongoing quest to revolutionize medical approaches against evolving bacterial threats. For the first time, this innovative review describes the rational design and applications of chimeric antisense oligonucleotides as antibacterial agents targeting four riboswitches selected based on genome-wide bioinformatic analyses. The antisense oligonucleotides are coupled with the cell-penetrating oligopeptide pVEC, which penetrates Gram-positive and Gram-negative bacteria and specifically targets glmS, FMN, TPP, and SAM-I riboswitches in Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. The average antibiotic dosage of antisense oligonucleotides that inhibits 80% of bacterial growth is around 700 nM (4.5 μg/mL). Antisense oligonucleotides do not exhibit toxicity in human cell lines at this concentration. The results demonstrate that these riboswitches are suitable targets for antibacterial drug development using antisense oligonucleotide technology. The approach is fully rational because selecting suitable riboswitch targets and designing ASOs that target them are based on predefined criteria. The approach can be used to develop narrow or broad-spectrum antibiotics against multidrug-resistant bacterial strains for a short time. The approach is easily adaptive to new resistance using targeting NGS technology. Full article
(This article belongs to the Special Issue New Approaches in Antimicrobial Drug Discovery and Design)
Show Figures

Figure 1

16 pages, 2866 KiB  
Article
MicroRNA Expression Patterns Reveal a Role of the TGF-β Family Signaling in AML Chemo-Resistance
by Paula Reichelt, Stephan Bernhart, Franziska Wilke, Sebastian Schwind, Michael Cross, Uwe Platzbecker and Gerhard Behre
Cancers 2023, 15(20), 5086; https://doi.org/10.3390/cancers15205086 - 21 Oct 2023
Cited by 3 | Viewed by 2019
Abstract
Resistance to chemotherapy is ultimately responsible for the majority of AML-related deaths, making the identification of resistance pathways a high priority. Transcriptomics approaches can be used to identify genes regulated at the level of transcription or mRNA stability but miss microRNA-mediated changes in [...] Read more.
Resistance to chemotherapy is ultimately responsible for the majority of AML-related deaths, making the identification of resistance pathways a high priority. Transcriptomics approaches can be used to identify genes regulated at the level of transcription or mRNA stability but miss microRNA-mediated changes in translation, which are known to play a role in chemo-resistance. To address this, we compared miRNA profiles in paired chemo-sensitive and chemo-resistant subclones of HL60 cells and used a bioinformatics approach to predict affected pathways. From a total of 38 KEGG pathways implicated, TGF-β/activin family signaling was selected for further study. Chemo-resistant HL60 cells showed an increased TGF-β response but were not rendered chemo-sensitive by specific inhibitors. Differential pathway expression in primary AML samples was then investigated at the RNA level using publically available gene expression data in the TGCA database and by longitudinal analysis of pre- and post-resistance samples available from a limited number of patients. This confirmed differential expression and activity of the TGF-β family signaling pathway upon relapse and revealed that the expression of TGF-β and activin signaling genes at diagnosis was associated with overall survival. Our focus on a matched pair of cytarabine sensitive and resistant sublines to identify miRNAs that are associated specifically with resistance, coupled with the use of pathway analysis to rank predicted targets, has thus identified the activin/TGF-β signaling cascade as a potential target for overcoming resistance in AML. Full article
(This article belongs to the Special Issue New Approaches to Biology and Treatment of Acute Leukemia)
Show Figures

Graphical abstract

Back to TopTop