Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development
Abstract
:1. Introduction
2. Bacterial Riboswitches
2.1. Structure and Function of Riboswitches
2.2. Distribution of Four of the Most Widespread Riboswitches in Bacterial Pathogens
3. In Silico Analyses of Riboswitches as Antibacterial Drug Targets
4. Designing Principles of ASO as Antibacterial Agents
- The target RNA domain must be strictly single-stranded and accessible for hybridization with the ASO. The formed ASO/RNA hybrid must be stable.
- There are no significant similarities with the expressed coding of human RNAs.
- ASO does not form a stable secondary structure and is accessible to complementary hybridize with the target (single-stranded RNA part.
- ASO does not create stable double-stranded hybrids.
- The PS-modified nucleotides of ASOs are not recommended to be above 10 nt due to the increased risk of non-specific binding to SH-group-containing peptides.
- ASOs are not recommended to be above 22 nt due to the reduced cellular uptake.
5. Targeting Bacterial Riboswitches with ASO for Antibacterial Development
5.1. glmS Riboswitch
5.2. FMN Riboswitch
5.3. TPP Riboswitch
5.4. SAM-I Riboswitch
6. Materials and Methods
6.1. Bioinformatics and Genomics Analysis
6.2. Bacterial Strains and Culture Conditions
6.3. Toxicity of ASO
7. Discussion
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Yuan, X.; Lv, Z.; Zhang, Z.; Han, Y.; Liu, Z.; Zhang, H. A Review of Antibiotics, Antibiotic Resistant Bacteria, and Resistance Genes in Aquaculture: Occurrence, Contamination, and Transmission. Toxics 2023, 11, 420. [Google Scholar] [CrossRef] [PubMed]
- Qamar, M.U.; Aatika; Chughtai, M.I.; Ejaz, H.; Mazhari, B.B.Z.; Maqbool, U.; Alanazi, A.; Alruwaili, Y.; Junaid, K. Antibiotic-Resistant Bacteria, Antimicrobial Resistance Genes, and Antibiotic Residue in Food from Animal Sources: One Health Food Safety Concern. Microorganisms 2023, 11, 161. [Google Scholar] [CrossRef]
- Niyomyart, A.; Chow, S.K.Y.; Bualoy, W.; Butsing, N.; Tao, X.; Zhu, X. Antibiotic Knowledge, Antibiotic Resistance Knowledge, and Antibiotic Use: A Cross-Sectional Study among Community Members of Bangkok in Thailand. Antibiotics 2023, 12, 1312. [Google Scholar] [CrossRef] [PubMed]
- Sheck, E.; Romanov, A.; Shapovalova, V.; Shaidullina, E.; Martinovich, A.; Ivanchik, N.; Mikotina, A.; Skleenova, E.; Oloviannikov, V.; Azizov, I.; et al. Acinetobacter Non-baumannii Species: Occurrence in Infections in Hospitalized Patients, Identification, and Antibiotic Resistance. Antibiotics 2023, 12, 1301. [Google Scholar] [CrossRef]
- Correia, J.; Borges, A.; Simoes, M.; Simoes, L.C. Beyond Penicillin: The Potential of Filamentous Fungi for Drug Discovery in the Age of Antibiotic Resistance. Antibiotics 2023, 12, 1250. [Google Scholar] [CrossRef]
- Antimicrobial Resistance Collaborators. Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. Lancet 2022, 399, 629–655. [Google Scholar] [CrossRef]
- Penchovsky, R.; Traykovska, M. Designing drugs that overcome antibacterial resistance: Where do we stand and what should we do? Expert Opin. Drug Discov. 2015, 10, 631–650. [Google Scholar] [CrossRef] [PubMed]
- Blount, K.F.; Breaker, R.R. Riboswitches as antibacterial drug targets. Nat. Biotechnol. 2006, 24, 1558–1564. [Google Scholar] [CrossRef] [PubMed]
- Panchal, V.; Brenk, R. Riboswitches as Drug Targets for Antibiotics. Antibiotics 2021, 10, 45. [Google Scholar] [CrossRef]
- Lennon, S.R.; Wierzba, A.J.; Siwik, S.H.; Gryko, D.; Palmer, A.E.; Batey, R.T. Targeting Riboswitches with Beta-Axial-Substituted Cobalamins. ACS Chem. Biol. 2023, 18, 1136–1147. [Google Scholar] [CrossRef] [PubMed]
- Kavita, K.; Breaker, R.R. Discovering riboswitches: The past and the future. Trends Biochem. Sci. 2023, 48, 119–141. [Google Scholar] [CrossRef]
- Pavlova, N.; Kaloudas, D.; Penchovsky, R. Riboswitch distribution, structure, and function in bacteria. Gene 2019, 708, 38–48. [Google Scholar] [CrossRef]
- Pavlova, N.; Penchovsky, R. Genome-wide bioinformatics analysis of FMN, SAM-I, glmS, TPP, lysine, purine, cobalamin, and SAH riboswitches for their applications as allosteric antibacterial drug targets in human pathogenic bacteria. Expert Opin. Ther. Targets 2019, 23, 631–643. [Google Scholar] [CrossRef]
- Traykovska, M.; Otcheva, L.A.; Penchovsky, R. Targeting TPP Riboswitches Using Chimeric Antisense Oligonucleotide Technology for Antibacterial Drug Development. ACS Appl. Bio Mater. 2022, 5, 4896–4902. [Google Scholar] [CrossRef] [PubMed]
- Pavlova, N.; Miloshev, G.Y.; Georgieva, A.V.; Traykovska, M.; Penchovsky, R. Versatile tools of synthetic biology applied to drug discovery and production. Future Med. Chem. 2022, 14, 1325–1340. [Google Scholar] [CrossRef]
- Pavlova, N.; Penchovsky, R. Bioinformatics and Genomic Analyses of the Suitability of Eight Riboswitches for Antibacterial Drug Targets. Antibiotics 2022, 11, 1177. [Google Scholar] [CrossRef]
- Traykovska, M.; Popova, K.B.; Penchovsky, R. Targeting glmS Ribozyme with Chimeric Antisense Oligonucleotides for Antibacterial Drug Development. ACS Synth. Biol. 2021, 10, 3167–3176. [Google Scholar] [CrossRef] [PubMed]
- Traykovska, M.; Penchovsky, R. Targeting SAM-I Riboswitch Using Antisense Oligonucleotide Technology for Inhibiting the Growth of Staphylococcus aureus and Listeria monocytogenes. Antibiotics 2022, 11, 1662. [Google Scholar] [CrossRef]
- Traykovska, M.; Penchovsky, R. Engineering Antisense Oligonucleotides as Antibacterial Agents That Target FMN Riboswitches and Inhibit the Growth of Staphylococcus aureus, Listeria monocytogenes, and Escherichia coli. ACS Synth. Biol. 2022, 11, 1845–1855. [Google Scholar] [CrossRef]
- Pollak, A.J.; Zhao, L.; Crooke, S.T. Systematic Analysis of Chemical Modifications of Phosphorothioate Antisense Oligonucleotides that Modulate Their Innate Immune Response. Nucleic Acid Ther. 2023, 33, 95–107. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Fang, L.; Jiang, T.; Liu, M.; Li, W.; Mao, C.; Lou, S.; Zuo, H. Structural-Based Stability Enhancement of Antisense DNA Oligonucleotides. Macromol. Biosci. 2023, 23, e2200453. [Google Scholar] [CrossRef]
- Kang, S.; Jeon, S.; Kim, S.; Chang, Y.K.; Kim, Y.C. Development of a pVEC peptide-based ribonucleoprotein (RNP) delivery system for genome editing using CRISPR/Cas9 in Chlamydomonas reinhardtii. Sci. Rep. 2020, 10, 22158. [Google Scholar] [CrossRef]
- Alaybeyoglu, B.; Sariyar Akbulut, B.; Ozkirimli, E. pVEC hydrophobic N-terminus is critical for antibacterial activity. J. Pept. Sci. 2018, 24, e3083. [Google Scholar] [CrossRef] [PubMed]
- Alaybeyoglu, B.; Sariyar Akbulut, B.; Ozkirimli, E. Insights into membrane translocation of the cell-penetrating peptide pVEC from molecular dynamics calculations. J. Biomol. Struct. Dyn. 2016, 34, 2387–2398. [Google Scholar] [CrossRef]
- Eggimann, G.A.; Buschor, S.; Darbre, T.; Reymond, J.L. Convergent synthesis and cellular uptake of multivalent cell penetrating peptides derived from Tat, Antp, pVEC, TP10 and SAP. Org. Biomol. Chem. 2013, 11, 6717–6733. [Google Scholar] [CrossRef]
- Chugh, A.; Eudes, F. Cellular uptake of cell-penetrating peptides pVEC and transportan in plants. J. Pept. Sci. 2008, 14, 477–481. [Google Scholar] [CrossRef]
- Herbig, M.E.; Assi, F.; Textor, M.; Merkle, H.P. The cell penetrating peptides pVEC and W2-pVEC induce transformation of gel phase domains in phospholipid bilayers without affecting their integrity. Biochemistry 2006, 45, 3598–3609. [Google Scholar] [CrossRef]
- Sherlock, M.E.; Breaker, R.R. Former orphan riboswitches reveal unexplored areas of bacterial metabolism, signaling, and gene control processes. RNA 2020, 26, 675–693. [Google Scholar] [CrossRef] [PubMed]
- Furukawa, K.; Ramesh, A.; Zhou, Z.; Weinberg, Z.; Vallery, T.; Winkler, W.C.; Breaker, R.R. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Mol. Cell 2015, 57, 1088–1098. [Google Scholar] [CrossRef]
- Winkler, W.C.; Breaker, R.R. Regulation of bacterial gene expression by riboswitches. Annu. Rev. Microbiol. 2005, 59, 487–517. [Google Scholar] [CrossRef] [PubMed]
- Barrick, J.E.; Corbino, K.A.; Winkler, W.C.; Nahvi, A.; Mandal, M.; Collins, J.; Lee, M.; Roth, A.; Sudarsan, N.; Jona, I.; et al. New RNA motifs suggest an expanded scope for riboswitches in bacterial genetic control. Proc. Natl. Acad. Sci. USA 2004, 101, 6421–6426. [Google Scholar] [CrossRef] [PubMed]
- Lemay, J.F.; Desnoyers, G.; Blouin, S.; Heppell, B.; Bastet, L.; St-Pierre, P.; Masse, E.; Lafontaine, D.A. Comparative study between transcriptionally- and translationally-acting adenine riboswitches reveals key differences in riboswitch regulatory mechanisms. PLoS Genet. 2011, 7, e1001278. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, G.T.; Scaife, M.A.; Helliwell, K.E.; Smith, A.G. Role of riboswitches in gene regulation and their potential for algal biotechnology. J. Phycol. 2016, 52, 320–328. [Google Scholar] [CrossRef]
- Pedrolli, D.; Langer, S.; Hobl, B.; Schwarz, J.; Hashimoto, M.; Mack, M. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J. 2015, 282, 3230–3242. [Google Scholar] [CrossRef]
- Proshkin, S.; Mironov, A.; Nudler, E. Riboswitches in regulation of Rho-dependent transcription termination. Biochim. Biophys. Acta 2014, 1839, 974–977. [Google Scholar] [CrossRef]
- Ketzer, P.; Haas, S.F.; Engelhardt, S.; Hartig, J.S.; Nettelbeck, D.M. Synthetic riboswitches for external regulation of genes transferred by replication-deficient and oncolytic adenoviruses. Nucleic Acids Res. 2012, 40, e167. [Google Scholar] [CrossRef]
- Serganov, A.; Patel, D.J. Amino acid recognition and gene regulation by riboswitches. Biochim. Biophys. Acta 2009, 1789, 592–611. [Google Scholar] [CrossRef] [PubMed]
- Vitreschak, A.G.; Rodionov, D.A.; Mironov, A.A.; Gelfand, M.S. Riboswitches: The oldest mechanism for the regulation of gene expression? Trends Genet. 2004, 20, 44–50. [Google Scholar] [CrossRef]
- Giarimoglou, N.; Kouvela, A.; Maniatis, A.; Papakyriakou, A.; Zhang, J.; Stamatopoulou, V.; Stathopoulos, C. A Riboswitch-Driven Era of New Antibacterials. Antibiotics 2022, 11, 1243. [Google Scholar] [CrossRef]
- Vicens, Q.; Mondragon, E.; Batey, R.T. Molecular sensing by the aptamer domain of the FMN riboswitch: A general model for ligand binding by conformational selection. Nucleic Acids Res. 2011, 39, 8586–8598. [Google Scholar] [CrossRef]
- Wakchaure, P.D.; Jana, K.; Ganguly, B. Structural insights into the interactions of flavin mononucleotide (FMN) and riboflavin with FMN riboswitch: A molecular dynamics simulation study. J. Biomol. Struct. Dyn. 2020, 38, 3856–3866. [Google Scholar] [CrossRef]
- Padhi, S.; Pradhan, M.; Bung, N.; Roy, A.; Bulusu, G. TPP riboswitch aptamer: Role of Mg2+ ions, ligand unbinding, and allostery. J. Mol. Graph. Model. 2019, 88, 282–291. [Google Scholar] [CrossRef]
- Gong, S.; Du, C.; Wang, Y. Regulation of the thiamine pyrophosphate (TPP)-sensing riboswitch in NMT1 mRNA from Neurospora crassa. FEBS Lett. 2020, 594, 625–635. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Hong, L.; Liu, Y. Entropy Driving the Mg2+-Induced Folding of TPP Riboswitch RNA. J. Phys. Chem. B 2022, 126, 9457–9464. [Google Scholar] [CrossRef]
- Xie, J.; Frank, A.T. RNA Ensembles from Solvent Accessibility Data: Application to the SAM-I Riboswitch Aptamer Domain. J. Phys. Chem. B 2021, 125, 3486–3493. [Google Scholar] [CrossRef]
- Avakh, A.; Grant, G.D.; Cheesman, M.J.; Kalkundri, T.; Hall, S. The Art of War with Pseudomonas aeruginosa: Targeting Mex Efflux Pumps Directly to Strategically Enhance Antipseudomonal Drug Efficacy. Antibiotics 2023, 12, 1304. [Google Scholar] [CrossRef] [PubMed]
- Rima, M.; Pfennigwerth, N.; Cremanns, M.; Cirnski, K.; Oueslati, S.; Gatermann, S.G.; d’Amélio, N.; Herrmann, J.; Müller, R.; Naas, T. In Vitro Activity of Two Novel Antimicrobial Compounds on MDR-Resistant Clinical Isolates. Antibiotics 2023, 12, 1265. [Google Scholar] [CrossRef] [PubMed]
- Paschoalini, B.R.; Nuñez, K.V.M.; Maffei, J.T.; Langoni, H.; Guimarães, F.F.; Gebara, C.; Freitas, N.E.; dos Santos, M.V.; Fidelis, C.E.; Kappes, R.; et al. The Emergence of Antimicrobial Resistance and Virulence Characteristics in Enterococcus Species Isolated from Bovine Milk. Antibiotics 2023, 12, 1243. [Google Scholar] [CrossRef] [PubMed]
- Nan, Y.H.; Park, I.S.; Hahm, K.S.; Shin, S.Y. Antimicrobial activity, bactericidal mechanism and LPS-neutralizing activity of the cell-penetrating peptide pVEC and its analogs. J. Pept. Sci. 2011, 17, 812–817. [Google Scholar] [CrossRef]
- Elshenawi, Y.; Hu, S.; Hathroubi, S. Biofilm of Helicobacter pylori: Life Cycle, Features, and Treatment Options. Antibiotics 2023, 12, 1260. [Google Scholar] [CrossRef]
- Ablakimova, N.; Mussina, A.Z.; Smagulova, G.A.; Rachina, S.; Kurmangazin, M.S.; Balapasheva, A.; Karimoldayeva, D.; Zare, A.; Mahdipour, M.; Rahmanifar, F. Microbial Landscape and Antibiotic-Susceptibility Profiles of Microorganisms in Patients with Bacterial Pneumonia: A Comparative Cross-Sectional Study of COVID-19 and Non-COVID-19 Cases in Aktobe, Kazakhstan. Antibiotics 2023, 12, 1297. [Google Scholar] [CrossRef] [PubMed]
- Kalvari, I.; Nawrocki, E.P.; Ontiveros-Palacios, N.; Argasinska, J.; Lamkiewicz, K.; Marz, M.; Griffiths-Jones, S.; Toffano-Nioche, C.; Gautheret, D.; Weinberg, Z.; et al. Rfam 14: Expanded coverage of metagenomic, viral and microRNA families. Nucleic Acids Res. 2021, 49, D192–D200. [Google Scholar] [CrossRef] [PubMed]
- Kalvari, I.; Argasinska, J.; Quinones-Olvera, N.; Nawrocki, E.P.; Rivas, E.; Eddy, S.R.; Bateman, A.; Finn, R.D.; Petrov, A.I. Rfam 13.0: Shifting to a genome-centric resource for non-coding RNA families. Nucleic Acids Res. 2018, 46, D335–D342. [Google Scholar] [CrossRef]
- Sayers, E.W.; Cavanaugh, M.; Clark, K.; Pruitt, K.D.; Sherry, S.T.; Yankie, L.; Karsch-Mizrachi, I. GenBank 2023 update. Nucleic Acids Res. 2023, 51, D141–D144. [Google Scholar] [CrossRef] [PubMed]
- Huang, F.; Fu, M.; Li, J.; Chen, L.; Feng, K.; Huang, T.; Cai, Y.D. Analysis and prediction of protein stability based on interaction network, gene ontology, and KEGG pathway enrichment scores. Biochim. Biophys. Acta Proteins Proteom. 2023, 1871, 140889. [Google Scholar] [CrossRef]
- Kanehisa, M.; Furumichi, M.; Sato, Y.; Kawashima, M.; Ishiguro-Watanabe, M. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023, 51, D587–D592. [Google Scholar] [CrossRef]
- Kanehisa, M. The KEGG database. Novartis Found. Symp. 2002, 247, 91–101; discussion 101–103, 119–128, 244–152. [Google Scholar] [PubMed]
- Wilt, H.M.; Yu, P.; Tan, K.; Wang, Y.X.; Stagno, J.R. FMN riboswitch aptamer symmetry facilitates conformational switching through mutually exclusive coaxial stacking configurations. J. Struct. Biol. X 2020, 4, 100035. [Google Scholar] [CrossRef]
- Phan, C.S.; Morinaka, B.I. A Prevalent Group of Actinobacterial Radical SAM/SPASM Maturases Involved in Triceptide Biosynthesis. ACS Chem. Biol. 2022, 17, 3284–3289. [Google Scholar] [CrossRef]
- Sinner, E.K.; Townsend, C.A. Purification and characterization of sequential cobalamin-dependent radical SAM methylases ThnK and TokK in carbapenem beta-lactam antibiotic biosynthesis. Methods Enzymol. 2022, 669, 29–44. [Google Scholar]
- Guydosh, N.R.; Kimmig, P.; Walter, P.; Green, R. Regulated Ire1-dependent mRNA decay requires no-go mRNA degradation to maintain endoplasmic reticulum homeostasis in S. pombe. Elife 2017, 6, e29216. [Google Scholar] [CrossRef] [PubMed]
- Teramoto, T.; Kaitany, K.J.; Kakuta, Y.; Kimura, M.; Fierke, C.A.; Hall, T.M.T. Pentatricopeptide repeats of protein-only RNase P use a distinct mode to recognize conserved bases and structural elements of pre-tRNA. Nucleic Acids Res. 2020, 48, 11815–11826. [Google Scholar] [CrossRef]
- Summerton, J. Morpholino antisense oligomers: The case for an RNase H-independent structural type. Biochim. Biophys. Acta 1999, 1489, 141–158. [Google Scholar] [CrossRef] [PubMed]
- Heidenreich, O.; Gryaznov, S.; Nerenberg, M. RNase H-independent antisense activity of oligonucleotide N3′→P5′ phosphoramidates. Nucleic Acids Res. 1997, 25, 776–780. [Google Scholar] [CrossRef] [PubMed]
- Nuckowski, Ł.; Kilanowska, A.; Studzińska, S. Hydrophilic interaction in solid-phase extraction of antisense oligonucleotides. J. Chromatogr. Sci. 2020, 58, 383–387. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Chen, L.; Chikkanna, A.; Chen, S.; Brusius, I.; Sbuh, N.; Veedu, R.N. Development of nucleic acid aptamer-based lateral flow assays: A robust platform for cost-effective point-of-care diagnosis. Theranostics 2021, 11, 5174–5196. [Google Scholar] [CrossRef]
- Katzmann, J.L.; Packard, C.J.; Chapman, M.J.; Katzmann, I.; Laufs, U. Targeting RNA with Antisense Oligonucleotides and Small Interfering RNA: JACC State-of-the-Art Review. J. Am. Coll. Cardiol. 2020, 76, 563–579. [Google Scholar] [CrossRef]
- Yoshida, T.; Morihiro, K.; Naito, Y.; Mikami, A.; Kasahara, Y.; Inoue, T.; Obika, S. Identification of nucleobase chemical modifications that reduce the hepatotoxicity of gapmer antisense oligonucleotides. Nucleic Acids Res. 2022, 50, 7224–7234. [Google Scholar] [CrossRef]
- Doxtader Lacy, K.A.; Liang, X.H.; Zhang, L.; Crooke, S.T. RNA modifications can affect RNase H1-mediated PS-ASO activity. Mol. Ther. Nucleic Acids 2022, 28, 814–828. [Google Scholar] [CrossRef]
- Sheng, L.; Rigo, F.; Bennett, C.F.; Krainer, A.R.; Hua, Y. Comparison of the efficacy of MOE and PMO modifications of systemic antisense oligonucleotides in a severe SMA mouse model. Nucleic Acids Res. 2020, 48, 2853–2865. [Google Scholar] [CrossRef]
- Prakash, T.P.; Yu, J.; Kinberger, G.A.; Low, A.; Jackson, M.; Rigo, F.; Swayze, E.E.; Seth, P.P. Evaluation of the effect of 2′-O-methyl, fluoro hexitol, bicyclo and Morpholino nucleic acid modifications on potency of GalNAc conjugated antisense oligonucleotides in mice. Bioorg. Med. Chem. Lett. 2018, 28, 3774–3779. [Google Scholar] [CrossRef] [PubMed]
- Urban, E.; Noe, C.R. Structural modifications of antisense oligonucleotides. Farmaco 2003, 58, 243–258. [Google Scholar] [CrossRef]
- Mansoor, M.; Melendez, A.J. Advances in antisense oligonucleotide development for target identification, validation, and as novel therapeutics. Gene Regul. Syst. Biol. 2008, 2, 275–295. [Google Scholar] [CrossRef]
- Sahu, N.; Saini, A.; Behera, S.; Sayama, T.; Nayak, S.; Sahu, L.; Duan, W.; Avtar, R.; Yamada, M.; Singh, R.B.; et al. Impact of Indo-Pacific Climate Variability on Rice Productivity in Bihar, India. Sustainability 2020, 12, 7023. [Google Scholar] [CrossRef]
- Yavin, E. Peptide Nucleic Acids: Applications in Biomedical Sciences. Molecules 2020, 25, 3317. [Google Scholar] [CrossRef] [PubMed]
- Kuespert, S.; Heydn, R.; Peters, S.; Wirkert, E.; Meyer, A.-L.; Siebörger, M.; Johannesen, S.; Aigner, L.; Bogdahn, U.; Bruun, T.-H. Antisense Oligonucleotide in LNA-Gapmer Design Targeting TGFBR2—A Key Single Gene Target for Safe and Effective Inhibition of TGFβ Signaling. Int. J. Mol. Sci. 2020, 21, 1952. [Google Scholar] [CrossRef]
- Ott, E.; Stolz, J.; Mack, M. The RFN riboswitch of Bacillus subtilis is a target for the antibiotic roseoflavin produced by Streptomyces davawensis. RNA Biol. 2009, 6, 276–280. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Mann, P.A.; Xiao, L.; Gill, C.; Galgoci, A.M.; Howe, J.A.; Villafania, A.; Barbieri, C.M.; Malinverni, J.C.; Sher, X.; et al. Dual-Targeting Small-Molecule Inhibitors of the Staphylococcus aureus FMN Riboswitch Disrupt Riboflavin Homeostasis in an Infectious Setting. Cell Chem. Biol. 2017, 24, 576–588.e6. [Google Scholar] [CrossRef] [PubMed]
- Howe, J.A.; Wang, H.; Fischmann, T.O.; Balibar, C.J.; Xiao, L.; Galgoci, A.M.; Malinverni, J.C.; Mayhood, T.; Villafania, A.; Nahvi, A.; et al. Selective small-molecule inhibition of an RNA structural element. Nature 2015, 526, 672–677. [Google Scholar] [CrossRef]
- Howe, J.A.; Xiao, L.; Fischmann, T.O.; Wang, H.; Tang, H.; Villafania, A.; Zhang, R.; Barbieri, C.M.; Roemer, T. Atomic resolution mechanistic studies of ribocil: A highly selective unnatural ligand mimic of the E. coli FMN riboswitch. RNA Biol. 2016, 13, 946–954. [Google Scholar] [CrossRef]
- Harale, B.; Kidwai, S.; Ojha, D.; Singh, M.; Chouhan, D.K.; Singh, R.; Khedkar, V.; Rode, A.B. Synthesis and evaluation of antimycobacterial activity of riboflavin derivatives. Bioorg. Med. Chem. Lett. 2021, 48, 128236. [Google Scholar] [CrossRef] [PubMed]
- Blount, K.F.; Megyola, C.; Plummer, M.; Osterman, D.; O’Connell, T.; Aristoff, P.; Quinn, C.; Chrusciel, R.A.; Poel, T.J.; Schostarez, H.J.; et al. Novel riboswitch-binding flavin analog that protects mice against Clostridium difficile infection without inhibiting cecal flora. Antimicrob. Agents Chemother. 2015, 59, 5736–5746. [Google Scholar] [CrossRef] [PubMed]
- Vicens, Q.; Mondragón, E.; Reyes, F.E.; Coish, P.; Aristoff, P.; Berman, J.; Kaur, H.; Kells, K.W.; Wickens, P.; Wilson, J.; et al. Structure–Activity Relationship of Flavin Analogues That Target the Flavin Mononucleotide Riboswitch. ACS Chem. Biol. 2018, 13, 2908–2919. [Google Scholar] [CrossRef]
- Schüller, A.; Matzner, D.; Lünse, C.E.; Wittmann, V.; Schumacher, C.; Unsleber, S.; Brötz-Oesterhelt, H.; Mayer, C.; Bierbaum, G.; Mayer, G. Activation of the glmS Ribozyme Confers Bacterial Growth Inhibition. ChemBioChem 2017, 18, 435–440. [Google Scholar] [CrossRef] [PubMed]
- Matzner, D.; Schüller, A.; Seitz, T.; Wittmann, V.; Mayer, G. Fluoro-Carba-Sugars are Glycomimetic Activators of the glmS Ribozyme. Chem.–Eur. J. 2017, 23, 12604–12612. [Google Scholar] [CrossRef]
- Kofoed, E.M.; Yan, D.; Katakam, A.K.; Reichelt, M.; Lin, B.; Kim, J.; Park, S.; Date, S.V.; Monk, I.R.; Xu, M.; et al. De Novo Guanine Biosynthesis but Not the Riboswitch-Regulated Purine Salvage Pathway Is Required for Staphylococcus aureus Infection In Vivo. J. Bacteriol. 2016, 198, 2001–2015. [Google Scholar] [CrossRef]
- Mulhbacher, J.; Brouillette, E.; Allard, M.; Fortier, L.-C.; Malouin, F.; Lafontaine, D.A. Novel Riboswitch Ligand Analogs as Selective Inhibitors of Guanine-Related Metabolic Pathways. PLoS Pathog. 2010, 6, e1000865. [Google Scholar] [CrossRef]
- Ster, C.; Allard, M.; Boulanger, S.; Lamontagne Boulet, M.; Mulhbacher, J.; Lafontaine, D.A.; Marsault, E.; Lacasse, P.; Malouin, F. Experimental treatment of Staphylococcus aureus bovine intramammary infection using a guanine riboswitch ligand analog. J. Dairy Sci. 2013, 96, 1000–1008. [Google Scholar] [CrossRef]
- Stamatopoulou, V.; Apostolidi, M.; Li, S.; Lamprinou, K.; Papakyriakou, A.; Zhang, J.; Stathopoulos, C. Direct modulation of T-box riboswitch-controlled transcription by protein synthesis inhibitors. Nucleic Acids Res. 2017, 45, 10242–10258. [Google Scholar] [CrossRef]
- Anupam, R.; Denapoli, L.; Muchenditsi, A.; Hines, J.V. Identification of neomycin B-binding site in T box antiterminator model RNA. Bioorg. Med. Chem. 2008, 16, 4466–4470. [Google Scholar] [CrossRef]
- Frohlich, K.M.; Weintraub, S.F.; Bell, J.T.; Todd, G.C.; Väre, V.Y.P.; Schneider, R.; Kloos, Z.A.; Tabe, E.S.; Cantara, W.A.; Stark, C.J.; et al. Discovery of Small-Molecule Antibiotics against a Unique tRNA-Mediated Regulation of Transcription in Gram-Positive Bacteria. ChemMedChem 2019, 14, 758–769. [Google Scholar] [CrossRef] [PubMed]
- Väre, V.Y.P.; Schneider, R.F.; Kim, H.; Lasek-Nesselquist, E.; McDonough, K.A.; Agris, P.F. Small-Molecule Antibiotics Inhibiting tRNA-Regulated Gene Expression Is a Viable Strategy for Targeting Gram-Positive Bacteria. Antimicrob. Agents Chemother. 2020, 65, e01247-200. [Google Scholar] [CrossRef]
- Seyler, T.M.; Moore, C.; Kim, H.; Ramachandran, S.; Agris, P.F. A New Promising Anti-Infective Agent Inhibits Biofilm Growth by Targeting Simultaneously a Conserved RNA Function That Controls Multiple Genes. Antibiotics 2021, 10, 41. [Google Scholar] [CrossRef] [PubMed]
- Sudarsan, N.; Cohen-Chalamish, S.; Nakamura, S.; Emilsson, G.M.; Breaker, R.R. Thiamine pyrophosphate riboswitches are targets for the antimicrobial compound pyrithiamine. Chem. Biol. 2005, 12, 1325–1335. [Google Scholar] [CrossRef] [PubMed]
Human Pathogenic Bacteria | glmS Riboswitch | FMN Riboswitch | TPP Riboswitch | SAM-I Riboswitch | |
---|---|---|---|---|---|
1 | Acinetobacter baumannii +++ | + | + | - | - |
2 | Actinomyces israelii | - | + | + | + |
3 | Bacillus anthracis | + | + | + | + |
4 | Bacillus cereus | + | + | + | + |
5 | Bacteroides fragilis | - | - | + | + |
6 | Bartonella henselae | - | - | + | + |
7 | Bartonella quintana | - | - | + | + |
8 | Bordetella pertussis | + | + | + | + |
9 | Brucella abortus | + | + | + | + |
10 | Brucella canis | + | + | + | + |
11 | Brucella melitensis | + | + | + | + |
12 | Brucella suis | + | + | + | + |
13 | Campylobacter jejuni ++ | - | - | + | - |
14 | Chlamydia pneumoniae | - | - | + | - |
15 | Chlamydia psittaci | - | - | + | - |
16 | Chlamydia trachomatis | - | - | + | - |
17 | Clostridium botulinum | + | + | + | + |
18 | Clostridium difficile | + | + | + | + |
19 | Clostridium perfringens | + | + | + | + |
20 | Clostridium tetani | + | + | + | + |
21 | Corynebacterium diphtheriae | + | + | + | - |
22 | Enterococcus faecalis | + | + | + | - |
23 | Enterococcus faecium ++ | + | + | + | - |
24 | Enterobacter sp. +++ | + | + | + | - |
25 | Escherichia coli + | + | + | + | - |
26 | Francisella tularensis | + | + | + | - |
27 | Haemophilus influenzae + | + | + | + | - |
28 | Helicobacter pylori ++ | - | - | + | - |
29 | Klebsiella pneumoniae + | + | + | + | + |
30 | Legionella pneumophila | - | + | + | - |
31 | Leptospira interrogans | - | + | + | - |
32 | Leptospira noguchii | - | + | + | - |
33 | Leptospira santarosai | - | + | + | - |
34 | Leptospira weilii | - | + | + | - |
35 | Listeria monocytogenes | + | + | + | + |
36 | Mycobacterium leprae | - | + | + | - |
37 | Mycobacterium tuberculosis | - | + | + | + |
38 | Mycobacterium ulcerans | - | + | + | + |
39 | Mycoplasma pneumoniae | - | + | + | - |
40 | Neisseria gonorrhoeae ++ | - | - | + | + |
41 | Neisseria meningitidis | - | - | + | + |
42 | Nocardia asteroides | - | + | + | + |
43 | Pseudomonas aeruginosa +++ | - | + | + | + |
44 | Rickettsia rickettsii | - | + | + | + |
45 | Salmonella enterica ++ | + | + | + | - |
46 | Salmonella typhi ++ | + | + | + | - |
47 | Shigella dysenteriae + | - | + | + | - |
48 | Shigella sonnei + | - | + | + | - |
49 | Staphylococcus aureus ++ | + | + | + | + |
50 | Staphylococcus epidermidis | + | + | + | + |
51 | Staphylococcus saprophyticus | + | + | + | - |
52 | Streptococcus agalactiae | - | + | + | - |
53 | Streptococcus mutans | - | + | + | - |
54 | Streptococcus pneumoniae + | - | + | + | - |
55 | Streptococcus viridans | + | + | + | + |
56 | Streptococcus pyogenes | - | + | + | - |
57 | Vibrio cholerae | + | + | + | - |
58 | Yersinia enterocolitica | + | + | + | - |
59 | Yersinia pestis + | + | + | + | - |
60 | Yersinia pseudotuberculosis | + | + | + | - |
Number of riboswitches | 31 | 50 | 59 | 28 |
Riboswitch’s Criteria | glmS Riboswitch | FMN Riboswitch | TPP Riboswitch | SAM-I Riboswitch |
---|---|---|---|---|
Number of bacterial species | 912 | 2403 | 5624 | 2598 |
Number of human bacterial pathogens | 31 | 50 | 59 | 28 |
Riboswitch-controlled biosynthetic pathway | ✔ | ✔ | ✔ | ✔ |
Transporter protein for essential metabolite | - | ✔ | ✔/- | ✔ |
Without alternative biosynthetic pathways not under riboswitch control | - | ✔ | ✔ | ✔ |
Suitability for drug targeting | + | +++ | ++/+++ | +++ |
ASO Name | pVEC_ASO Sequence 5′-3′ | Nucleotides | ASO Target |
---|---|---|---|
pVEC_FMN_ASO_1 | pVEC-T1T1C1T2C2C2C2A2T2C2C2A2G2A1C1T1 | 16nt | The aptamer of the FMN riboswitch |
pVEC_FMN_ASO_2 | pVEC-A1C1C1T2C2C2T2A2C2T2A2T2C2A1C1T1 | 16nt | Negative control for FMN riboswitch with 8 mismatches |
pVEC_TPP_ ASO_1 | pVEC-C1A1A1T2C2C2C2T2A2C1G1C1 | 12nt | The aptamer of the TPP riboswitch |
pVEC_glmS_ASO_1 | pVEC-C1T1T1T2A2A2C2T2G2T2A2C2T2G1C1C1 | 16nt | glmS riboswitch mRNA |
pVEC_glmS_ASO_2 | pVEC-T1G1C1T2T2C2T2T2C2G2T1A1T1 | 13nt | nagA mRNA |
pVEC_SAM-I_ ASO_1 | pVEC-T1C1C1C2T2C2C2A2C2C2A2C1T1C1 | 14nt | The aptamer of the SAM-I riboswitch |
Riboswitch Target | Name of the Antimicrobial Compound | Targeted Bacteria | References |
---|---|---|---|
FMN | pVEC_FMN_ASO_1 | E. coli L. monocytogenes S. aureus | [13,19] |
Roseoflavin | B. subtilis E.faecalis L. monocytogenes S. pyogenes | [39,77,78] | |
Ribocil | E. coli | [39,79] | |
Ribocil-C | E. coli S. aureus | [79,80] | |
Ribocil-C-PA | K. pneumoniae | [39,81] | |
SFDQD | B. suntilis Cl. difficile | [39,82,83] | |
10-(2,2-dihydroxylethy l)-7,8-di-methylisoalloxazine (5a) | M. tubervulosis | [6,81] | |
glmS | carba-α-D-glucosamine | S. aureus | [39,84] |
carba-α-D-glucosamine-6-phosphate | S. aureus | [39,84] | |
fluoro- carba-α-D-glucosamine-6-phosphate | B. subtilis S. aureus | [39,85] | |
pVEC_glms_ASO_1 | E. coli L. monocytogenes S. aureus | [13,17] | |
Guanine | PC1 | S. aureus Cl. Difficile, MDR | [39,86,87,88] |
nagA | pVEC_glms_ASO_2 | S. aureus | [13,17] |
SAM-I | pVEC_SAM-I_ASO_1 | L. monocytogenes S. aureus | [13,18] |
TPP | Neomycin B | B. subtilis S. aureus | [89,90] |
PKZ18 | B. subtilis S. aureus | [91] | |
PKZ18-22 | B. subtilis S. aureus, MRSA | [92,93] | |
pVEC_TPP_ASO_1 | B. subtilis L. monocytogenes | [13,14] | |
Pyrithiamine | B. subtilis | [39,94] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pavlova, N.; Traykovska, M.; Penchovsky, R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics 2023, 12, 1607. https://doi.org/10.3390/antibiotics12111607
Pavlova N, Traykovska M, Penchovsky R. Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics. 2023; 12(11):1607. https://doi.org/10.3390/antibiotics12111607
Chicago/Turabian StylePavlova, Nikolet, Martina Traykovska, and Robert Penchovsky. 2023. "Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development" Antibiotics 12, no. 11: 1607. https://doi.org/10.3390/antibiotics12111607
APA StylePavlova, N., Traykovska, M., & Penchovsky, R. (2023). Targeting FMN, TPP, SAM-I, and glmS Riboswitches with Chimeric Antisense Oligonucleotides for Completely Rational Antibacterial Drug Development. Antibiotics, 12(11), 1607. https://doi.org/10.3390/antibiotics12111607