Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (43)

Search Parameters:
Keywords = transcranial Doppler ultrasound

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2624 KiB  
Article
Cerebral Hemodynamics as a Diagnostic Bridge Between Mild Cognitive Impairment and Late-Life Depression: A Multimodal Approach Using Transcranial Doppler and MRI
by Sergiu-Florin Arnautu, Diana-Aurora Arnautu, Minodora Andor, Cristina Vacarescu, Dragos Cozma, Brenda-Cristina Bernad, Catalin Juratu, Adrian Tutelca and Catalin-Dragos Jianu
Life 2025, 15(8), 1246; https://doi.org/10.3390/life15081246 - 6 Aug 2025
Abstract
Background: Vascular dysfunction is increasingly recognized as a shared contributor to both cognitive impairment and late-life depression (LLD). However, the combined diagnostic value of cerebral hemodynamics, neuroimaging markers, and neuropsychological outcomes remains underexplored. This study aimed to investigate the associations be-tween transcranial Doppler [...] Read more.
Background: Vascular dysfunction is increasingly recognized as a shared contributor to both cognitive impairment and late-life depression (LLD). However, the combined diagnostic value of cerebral hemodynamics, neuroimaging markers, and neuropsychological outcomes remains underexplored. This study aimed to investigate the associations be-tween transcranial Doppler (TCD) ultrasound parameters, cognitive performance, and depressive symptoms in older adults with mild cognitive impairment (MCI) and LLD. Importantly, we evaluated the integrative value of TCD-derived indices alongside MRI-confirmed white matter lesions (WMLs) and standardized neurocognitive and affective assessments. Methods: In this cross-sectional study, 96 older adults were enrolled including 78 cognitively unimpaired individuals and 18 with MCI. All participants underwent structured clinical, neuropsychological, and imaging evaluations including the Mini-Mental State Examination (MMSE), Montreal Cognitive Assessment (MoCA), Geriatric Depression Scale (GDS-15), MRI-based Fazekas scoring of WMLs, and TCD ultrasonography of the middle cerebral artery. Hemodynamic variables included mean blood flow velocity (MBFV), end-diastolic velocity (EDV), pulsatility index (PI), and resistive index (RI). Logistic regression and receiver operating characteristic (ROC) analyses were used to identify independent predictors of MCI. Results: Participants with MCI showed significantly lower MBFV and EDV, and higher PI and RI (p < 0.05 for all) compared with cognitively unimpaired participants. In multivariate analysis, lower MBFV (OR = 0.64, p = 0.02) and EDV (OR = 0.70, p = 0.03), and higher PI (OR = 3.2, p < 0.01) and RI (OR = 1.9, p < 0.01) remained independently associated with MCI. ROC analysis revealed excellent discriminative performance for RI (AUC = 0.919) and MBFV (AUC = 0.879). Furthermore, PI correlated positively with depressive symptom severity, while RI was inversely related to the GDS-15 scores. Conclusions: Our findings underscore the diagnostic utility of TCD-derived hemodynamic parameters—particularly RI and MBFV—in identifying early vascular contributions to cognitive and affective dysfunction in older adults. The integration of TCD with MRI-confirmed WML assessment and standardized cognitive/mood measures represents a novel and clinically practical multi-modal approach for neurovascular profiling in aging populations. Full article
(This article belongs to the Special Issue Intracerebral Hemorrhage: Advances and Perspectives)
Show Figures

Figure 1

44 pages, 1445 KiB  
Review
Artificial Intelligence in the Diagnostic Use of Transcranial Doppler and Sonography: A Scoping Review of Current Applications and Future Directions
by Giuseppe Miceli, Maria Grazia Basso, Elena Cocciola and Antonino Tuttolomondo
Bioengineering 2025, 12(7), 681; https://doi.org/10.3390/bioengineering12070681 - 21 Jun 2025
Viewed by 1488
Abstract
Artificial intelligence (AI) is revolutionizing the field of medical imaging, offering unprecedented capabilities in data analysis, image interpretation, and decision support. Transcranial Doppler (TCD) and Transcranial Color-Coded Doppler (TCCD) are widely used, non-invasive modalities for evaluating cerebral hemodynamics in acute and chronic conditions. [...] Read more.
Artificial intelligence (AI) is revolutionizing the field of medical imaging, offering unprecedented capabilities in data analysis, image interpretation, and decision support. Transcranial Doppler (TCD) and Transcranial Color-Coded Doppler (TCCD) are widely used, non-invasive modalities for evaluating cerebral hemodynamics in acute and chronic conditions. Yet, their reliance on operator expertise and subjective interpretation limits their full potential. AI, particularly machine learning and deep learning algorithms, has emerged as a transformative tool to address these challenges by automating image acquisition, optimizing signal quality, and enhancing diagnostic accuracy. Key applications reviewed include the automated identification of cerebrovascular abnormalities such as vasospasm and embolus detection in TCD, AI-guided workflow optimization, and real-time feedback in general ultrasound imaging. Despite promising advances, significant challenges remain, including data standardization, algorithm interpretability, and the integration of these tools into clinical practice. Developing robust, generalizable AI models and integrating multimodal imaging data promise to enhance diagnostic and prognostic capabilities in TCD and ultrasound. By bridging the gap between technological innovation and clinical utility, AI has the potential to reshape the landscape of neurovascular and diagnostic imaging, driving advancements in personalized medicine and improving patient outcomes. This review highlights the critical role of interdisciplinary collaboration in achieving these goals, exploring the current applications and future directions of AI in TCD and TCCD imaging. This review included 41 studies on the application of artificial intelligence (AI) in neurosonology in the diagnosis and monitoring of vascular and parenchymal brain pathologies. Machine learning, deep learning, and convolutional neural network algorithms have been effectively utilized in the analysis of TCD and TCCD data for several conditions. Conversely, the application of artificial intelligence techniques in transcranial sonography for the assessment of parenchymal brain disorders, such as dementia and space-occupying lesions, remains largely unexplored. Nonetheless, this area holds significant potential for future research and clinical innovation. Full article
Show Figures

Figure 1

15 pages, 2902 KiB  
Article
Transcranial Doppler-Based Neurofeedback to Improve Hemispheric Lateralization
by Rosita Rabbito, Leonardo Ermini, Caterina Guiot and Silvestro Roatta
Appl. Sci. 2025, 15(10), 5763; https://doi.org/10.3390/app15105763 - 21 May 2025
Viewed by 368
Abstract
Functional transcranial Doppler (fTCD) ultrasound can detect cerebral blood flow lateralization to the left/right hemisphere during different tasks. This study aims to test the effectiveness of neurofeedback in improving the individual capacity to lateralize blood flow with mental activity. Bilateral monitoring of blood [...] Read more.
Functional transcranial Doppler (fTCD) ultrasound can detect cerebral blood flow lateralization to the left/right hemisphere during different tasks. This study aims to test the effectiveness of neurofeedback in improving the individual capacity to lateralize blood flow with mental activity. Bilateral monitoring of blood velocity (CBV) in the middle cerebral arteries was performed in 14 subjects engaged in 15 min of training, followed by a 15 min test in each of four sessions. A ball, displayed on a screen, moved right or left, according to the current right/left difference in normalized CBVs, thus providing a visual neurofeedback of lateralization. The subjects were invited to control the left/right movement of the depicted ball by appropriately orienting their mental activity, freely exploring different strategies. These attempts were completely free and unsupervised during training, while during the test, the subjects were required to follow randomized left/right cues lasting 35 s. Performance was assessed using receiver operating characteristic (ROC) analysis. With training, responses to left and right cues diverged more rapidly and consistently. Accuracy improved significantly from 0.51 to 0.65, and the area under the ROC increased from 0.55 to 0.69. These results demonstrate the effectiveness of neurofeedback in improving lateralization capacity, with implications for the development of fTCD-based brain–computer interfaces. Full article
Show Figures

Figure 1

21 pages, 1808 KiB  
Review
Neuromodulation of Cerebral Blood Flow: A Physiological Mechanism and Methodological Review of Neurovascular Coupling
by Jiawen Zhong, Gen Li, Zexiang Lv, Jingbo Chen, Chunyan Wang, Ansheng Shao, Zhiwei Gong, Junjie Wang, Siqiao Liu, Jun Luo, Shuping Yang, Sibei Wu, Lin Ning, Zhinong Wang, Jiahao Li and Yu Wu
Bioengineering 2025, 12(5), 442; https://doi.org/10.3390/bioengineering12050442 - 23 Apr 2025
Cited by 1 | Viewed by 2475
Abstract
Neurovascular coupling (NVC) refers to the dynamic regulation of cerebral blood flow via neuronal activity, a mechanism crucial for maintaining normal brain function. This review elucidates the intricate physiological mechanisms underlying NVC, emphasizing the coordinated roles of neurons, glial cells, and vascular cells [...] Read more.
Neurovascular coupling (NVC) refers to the dynamic regulation of cerebral blood flow via neuronal activity, a mechanism crucial for maintaining normal brain function. This review elucidates the intricate physiological mechanisms underlying NVC, emphasizing the coordinated roles of neurons, glial cells, and vascular cells in mediating activity-induced changes in blood flow. We examine how NVC is impaired in neurological disorders such as Alzheimer’s disease and stroke, where the dysfunction of this coupling contributes to neurodegeneration and neurological deficits. A broad range of techniques for assessing NVC is discussed—encompassing the established modalities like transcranial Doppler, near-infrared spectroscopy, and functional magnetic resonance imaging (fMRI), as well as emerging technologies such as functional ultrasound imaging and miniaturized endoscopy that enable high-resolution monitoring in deep brain regions. We also highlight the computational modeling approaches for simulating NVC dynamics and identify the novel biomarkers of NVC dysfunction with potential utility in early diagnosis. Finally, emerging translational applications—including neuromodulation techniques and targeted pharmacological interventions—are explored as means to restore normal neurovascular function. These advancements underscore the clinical significance of NVC research, paving the way for improved diagnostic tools and therapeutic strategies in neurological disorders. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

12 pages, 1505 KiB  
Article
Cerebral Hemodynamic Alterations in Dialysis COVID-19 Survivors: A Transcranial Doppler Ultrasound Study on Intracranial Pressure Dynamics
by José Lapeña-Motilva, Daniel Fouz-Ruiz, Mariano Ruiz-Ortiz, Eduardo Sanpedro-Murillo, Sara Gómez-Enjuto, Inés Hernando-Jimenez, Aida Frias-González, Andrea Soledad Suso, Evangelina Merida-Herrero and Julián Benito-León
Kidney Dial. 2025, 5(2), 12; https://doi.org/10.3390/kidneydial5020012 - 3 Apr 2025
Viewed by 784
Abstract
Background: We observed a COVID-19 survivor with a ventriculoperitoneal shunt who developed increased intracranial pressure during hemodialysis. We hypothesized that post-SARS-CoV-2 infection, patients may have altered cerebral perfusion pressure regulation in response to intracranial pressure changes. Methods: From April to July 2021, we [...] Read more.
Background: We observed a COVID-19 survivor with a ventriculoperitoneal shunt who developed increased intracranial pressure during hemodialysis. We hypothesized that post-SARS-CoV-2 infection, patients may have altered cerebral perfusion pressure regulation in response to intracranial pressure changes. Methods: From April to July 2021, we recruited dialysis patients with prior COVID-19 from two Madrid nephrology departments. We also recruited age- and sex-matched dialysis patients without prior SARS-CoV-2 infection. Transcranial Doppler ultrasound was used to measure the middle cerebral artery velocity before dialysis and 30, 60, and 90 min after the initiation of dialysis. Results: The final sample included 37 patients (16 post-COVID-19 and 21 without). The COVID-19 survivors showed a significant pulsatility index increase between 30 and 60 min compared to those without COVID-19. They also had lower heart rates. Conclusions: We propose two mechanisms: an increase in intracranial pressure or a decreased arterial elasticity. A lower heart rate was also observed in the COVID-19 survivors. This study highlights SARS-CoV-2’s multifaceted effects, including potential long-term vascular and cerebral repercussions. Full article
Show Figures

Figure 1

25 pages, 561 KiB  
Review
Brain Ultrasonography in Critically Ill Septic Patients: A Scoping Review
by Giada Cucciolini, Irene Corda, Francesco Forfori and Francesco Corradi
J. Clin. Med. 2024, 13(22), 6920; https://doi.org/10.3390/jcm13226920 - 17 Nov 2024
Cited by 1 | Viewed by 2421
Abstract
Sepsis-associated encephalopathy (SAE) is linked to high mortality and impaired neurologic outcome. Brain ultrasonography (US) is a non-invasive tool for cerebral monitoring. A scoping review of the literature in three databases was performed to answer if brain perfusion is altered in sepsis, to [...] Read more.
Sepsis-associated encephalopathy (SAE) is linked to high mortality and impaired neurologic outcome. Brain ultrasonography (US) is a non-invasive tool for cerebral monitoring. A scoping review of the literature in three databases was performed to answer if brain perfusion is altered in sepsis, to determine the role of brain US in guiding resuscitation and its ability to predict the outcome. Randomized controlled trials, clinical trials, observational studies, and systematic reviews on adults with sepsis or septic shock in the ICU were included. A total of 625 articles were screened, and 34 included. There were 85% observational studies and 15% systematic reviews with or without meta-analysis. The majority of studies had a small sample size and used different metrics. The studies focused on cerebral blood flow (CBF) alterations reporting variable results (CBF increased, normal, or decreased). The findings showed a variable rate of cerebral autoregulation (CAR) impairment, with higher incidence in the early stages of sepsis and associations with poor neurological outcomes. However, the impact of CAR and CBF alterations on neurological outcomes and mortality was not clear. Very few studies were found on resuscitation. In conclusion, brain US can identify cerebral perfusions alterations and its usage in sepsis is promising. However, the current body of evidence for its usage is poor and lacks standardization. Full article
(This article belongs to the Section Intensive Care)
Show Figures

Figure 1

10 pages, 1721 KiB  
Article
Aggressive and Autoaggressive Behaviors in Patients with Autism Spectrum Disorder in Correlation with Middle Cerebral Artery Flow Velocity
by Maciej Abakumow, Maciej Przybylski, Mariusz Słoma, Olga Markowska, Katarzyna Sowa, Przemysław Jaśkiewicz and Krzysztof Kowalczuk
J. Pers. Med. 2024, 14(9), 1010; https://doi.org/10.3390/jpm14091010 - 22 Sep 2024
Viewed by 9646
Abstract
Background/Objectives The purpose of this study was to see whether there is a correlation between the behavior of autism spectrum disorder patients and brain abnormalities based on the velocity of blood flow in the MCA (middle cerebral artery). Methods: The use [...] Read more.
Background/Objectives The purpose of this study was to see whether there is a correlation between the behavior of autism spectrum disorder patients and brain abnormalities based on the velocity of blood flow in the MCA (middle cerebral artery). Methods: The use of HAP (High Altitude Protection) suits, which are used in aviation, to treat patients with ASD (autism spectrum disorder) causes significant changes in their functioning and physiological processes. These changes are not only noted in psychological tests but are observed in cerebral blood flow using transcranial Doppler ultrasound of the MCA. Results The results of this study made it possible to distinguish two groups with different flow velocities, which can be characterized as flows of less than 80 cm/s and flows of more than 80 cm/s. In addition, it was shown that in patients with elevated blood flow velocity, aggressive behaviors account for 86.96%, while self-aggressive behaviors account for 65.2%. On the other hand, in the case of patients with reduced flow velocity, i.e., less than 80 cm/s, the rate of aggressive behavior is 20% and that of self-aggressive behavior is 50%. The experiment showed that after therapy, there is a normalization of blood flow, which increased in the case of patients with a reduced flow rate below 80 cm/s and, in the case of elevated blood velocity after therapy, decreased towards normal levels. Conclusions The observed rate of normalization of flow velocities in the MCA translated into significant changes in the behavior and functioning of patients in the neurotypical direction, which was noticeable in the psychological tests conducted. Full article
(This article belongs to the Special Issue Personalized Medicine for Autism Spectrum Disorder)
Show Figures

Figure 1

16 pages, 5022 KiB  
Article
Multi-Modal Assessment of Cerebral Hemodynamics in Resuscitated Out-of-Hospital Cardiac Arrest Patients: A Case-Series
by Shir Lynn Lim, May Zin Myint, Kai Lee Woo, Elaine Young Heng Chee, Chiew Sie Hong, Erta Beqiri, Peter Smielewski, Marcus Eng Hock Ong and Vijay Kumar Sharma
Life 2024, 14(9), 1067; https://doi.org/10.3390/life14091067 - 26 Aug 2024
Cited by 1 | Viewed by 1634
Abstract
We assessed the feasibility of concurrent monitoring of cerebral hemodynamics in adult, comatose out-of-hospital cardiac arrest (OHCA) patients admitted to the National University Heart Centre Singapore from October 2021 to August 2023. Patients underwent continuous near-infrared spectroscopy (NIRS) monitoring in the first 72 [...] Read more.
We assessed the feasibility of concurrent monitoring of cerebral hemodynamics in adult, comatose out-of-hospital cardiac arrest (OHCA) patients admitted to the National University Heart Centre Singapore from October 2021 to August 2023. Patients underwent continuous near-infrared spectroscopy (NIRS) monitoring in the first 72 h after return of spontaneous circulation (ROSC) and 30-min transcranial Doppler ultrasound (TCD) monitoring at least once. With constant mechanical ventilatory settings and continuous electrocardiographic, pulse oximeter and end-tidal carbon dioxide monitoring, blood pressure was manipulated via vasopressors and cerebral autoregulation assessed by measuring changes in regional cerebral oxygenation (NIRS) and cerebral blood flow velocities (TCD) in response to changes in mean arterial pressure. The primary outcome was neurological recovery at hospital discharge. Amongst the first 16 patients (median age 61, 94% males), we observed four unique patterns: preserved cerebral autoregulation, loss of cerebral autoregulation, cardio-cerebral asynchrony and cerebral circulatory arrest. Patients with preserved cerebral autoregulation had lower levels of neuro-injury biomarkers (neurofilaments light and heavy) and the majority (86%) were discharged with good neurological recovery. Multi-modal assessment of cerebral hemodynamics after OHCA is feasible and derived patterns correlated with neurological outcomes. The between- and within-patient heterogeneity in cerebral hemodynamics calls for more research on individualized treatment strategies. Full article
(This article belongs to the Special Issue Clinical Update for Resuscitation Science)
Show Figures

Figure 1

12 pages, 1277 KiB  
Article
Treating Aortic Valve Stenosis for Vitality Improvement: The TAVI Study
by Donato Tartaglione, Dario Prozzo, Renatomaria Bianchi, Giovanni Ciccarelli, Maurizio Cappelli Bigazzi, Francesco Natale, Paolo Golino and Giovanni Cimmino
Diseases 2024, 12(8), 175; https://doi.org/10.3390/diseases12080175 - 2 Aug 2024
Cited by 1 | Viewed by 1899
Abstract
Background: Degenerative aortic valve stenosis (AS) is the most common valvular heart disease among the elderly. Once cardiac symptoms occur, current guidelines recommend aortic valve replacement. Progressive degeneration/calcification reduces leaflet mobility with gradual cardiac output (CO) impairment. Low CO might induce abnormal brain-aging [...] Read more.
Background: Degenerative aortic valve stenosis (AS) is the most common valvular heart disease among the elderly. Once cardiac symptoms occur, current guidelines recommend aortic valve replacement. Progressive degeneration/calcification reduces leaflet mobility with gradual cardiac output (CO) impairment. Low CO might induce abnormal brain-aging with cognitive impairment and increased risk of dementia, such as Alzheimer’s disease or vascular dementia. On the contrary, cognitive improvement has been reported in patients in whom CO was restored. Transcatheter aortic valve implantation (TAVI) has proven to be a safe alternative to conventional surgery, with a similar mid-term survival and stroke risk even in low-risk patients. TAVI is associated with an immediate CO improvement, also effecting the cerebrovascular system, leading to an increased cerebral blood flow. The correlation between TAVI and cognitive improvement is still debated. The present study aims at evaluating this relationship in a cohort of AS patients where cognitive assessment before and after TAVI was available. Methods: a total of 47 patients were retrospectively selected. A transcranial Doppler ultrasound (TCD) before and after TAVI, a quality of life (QoL) score, as well as a mini-mental state examination (MMSE) at baseline and up to 36 months, were available. Results: TAVI was associated with immediate increase in mean cerebral flow at TCD. MMSE slowly increase at 36-months follow-up with improved QoL mainly for symptoms, emotions and social interactions. Conclusions: this proof-of-concept study indicates that TAVI might induce cognitive improvement in the long-term as a result of multiple factors, such as cerebral flow restoration and a better QoL. Full article
Show Figures

Figure 1

15 pages, 4404 KiB  
Case Report
Sensor-Assisted Analysis of Autonomic and Cerebrovascular Dysregulation following Concussion in an Individual with a History of Ten Concussions: A Case Study
by Courtney M. Kennedy, Joel S. Burma and Jonathan D. Smirl
Sensors 2024, 24(13), 4404; https://doi.org/10.3390/s24134404 - 7 Jul 2024
Viewed by 2138
Abstract
Introduction: Concussion is known to cause transient autonomic and cerebrovascular dysregulation that generally recovers; however, few studies have focused on individuals with an extensive concussion history. Method: The case was a 26-year-old male with a history of 10 concussions, diagnosed for bipolar type [...] Read more.
Introduction: Concussion is known to cause transient autonomic and cerebrovascular dysregulation that generally recovers; however, few studies have focused on individuals with an extensive concussion history. Method: The case was a 26-year-old male with a history of 10 concussions, diagnosed for bipolar type II disorder, mild attention-deficit hyperactivity disorder, and a history of migraines/headaches. The case was medicated with Valproic Acid and Escitalopram. Sensor-based baseline data were collected within six months of his injury and on days 1–5, 10, and 14 post-injury. Symptom reporting, heart rate variability (HRV), neurovascular coupling (NVC), and dynamic cerebral autoregulation (dCA) assessments were completed using numerous biomedical devices (i.e., transcranial Doppler ultrasound, 3-lead electrocardiography, finger photoplethysmography). Results: Total symptom and symptom severity scores were higher for the first-week post-injury, with physical and emotional symptoms being the most impacted. The NVC response showed lowered activation in the first three days post-injury, while autonomic (HRV) and autoregulation (dCA) were impaired across all testing visits occurring in the first 14 days following his concussion. Conclusions: Despite symptom resolution, the case demonstrated ongoing autonomic and autoregulatory dysfunction. Larger samples examining individuals with an extensive history of concussion are warranted to understand the chronic physiological changes that occur following cumulative concussions through biosensing devices. Full article
(This article belongs to the Special Issue Biomedical Sensors for Cardiology)
Show Figures

Figure 1

14 pages, 3645 KiB  
Article
Transcranial Doppler Ultrasound and Transesophageal Echocardiography for Intraoperative Diagnosis and Monitoring of Patent Foramen Ovale in Non-Cardiac Surgery
by Amedeo Bianchini, Giovanni Vitale, Stefano Romano, Irene Sbaraini Zernini, Lorenzo Galeotti, Matteo Cescon, Matteo Ravaioli and Antonio Siniscalchi
Appl. Sci. 2024, 14(11), 4590; https://doi.org/10.3390/app14114590 - 27 May 2024
Viewed by 1716
Abstract
Background: perioperative stroke is one of the major complications after surgery. Patent foramen ovale (PFO) increases the risk of stroke in non-cardiac surgery by right-to-left shunt related to intraoperative hemodynamic alterations, leading to paradoxical embolism. Transesophageal echocardiography is the best tool for obtaining [...] Read more.
Background: perioperative stroke is one of the major complications after surgery. Patent foramen ovale (PFO) increases the risk of stroke in non-cardiac surgery by right-to-left shunt related to intraoperative hemodynamic alterations, leading to paradoxical embolism. Transesophageal echocardiography is the best tool for obtaining anatomical confirmation of PFO and essential details such as the PFO measure and the degree and direction of the shunt. Despite this, preoperative PFO screening is not routinely performed. Methods and results: we described the features of ten consecutive patients undergoing major abdominal surgery at the Abdominal Organ Transplant Intensive Care Unit, IRCCS Sant’Orsola, Bologna, Italy, who were screened for PFO using a PFO diagnostic and monitoring standardized intraoperative protocol by transesophageal echocardiography and transcranial color Doppler ultrasound. Finally, we highlighted the neurological and respiratory outcomes, the course and the management of three patients with intracardiac and extracardiac shunts. Conclusions: identifying an unknown PFO by a TCCD-TEE approach allowed the intraoperative monitoring of the shunt direction. It prevents the risk of complications secondary to paradoxical embolism in non-cardiac high-embolic-risk surgery. Full article
Show Figures

Figure 1

13 pages, 1203 KiB  
Article
A Multi-Parametric Approach for Characterising Cerebral Haemodynamics in Acute Ischaemic and Haemorrhagic Stroke
by Abdulaziz Alshehri, Ronney B. Panerai, Angela Salinet, Man Yee Lam, Osian Llwyd, Thompson G. Robinson and Jatinder S. Minhas
Healthcare 2024, 12(10), 966; https://doi.org/10.3390/healthcare12100966 - 8 May 2024
Cited by 3 | Viewed by 1865
Abstract
Background and Purpose: Early differentiation between acute ischaemic (AIS) and haemorrhagic stroke (ICH), based on cerebral and peripheral hemodynamic parameters, would be advantageous to allow for pre-hospital interventions. In this preliminary study, we explored the potential of multiple parameters, including dynamic cerebral autoregulation, [...] Read more.
Background and Purpose: Early differentiation between acute ischaemic (AIS) and haemorrhagic stroke (ICH), based on cerebral and peripheral hemodynamic parameters, would be advantageous to allow for pre-hospital interventions. In this preliminary study, we explored the potential of multiple parameters, including dynamic cerebral autoregulation, for phenotyping and differentiating each stroke sub-type. Methods: Eighty patients were included with clinical stroke syndromes confirmed by computed tomography within 48 h of symptom onset. Continuous recordings of bilateral cerebral blood velocity (transcranial Doppler ultrasound), end-tidal CO2 (capnography), electrocardiogram (ECG), and arterial blood pressure (ABP, Finometer) were used to derive 67 cerebral and peripheral parameters. Results: A total of 68 patients with AIS (mean age 66.8 ± SD 12.4 years) and 12 patients with ICH (67.8 ± 16.2 years) were included. The median ± SD NIHSS of the cohort was 5 ± 4.6. Statistically significant differences between AIS and ICH were observed for (i) an autoregulation index (ARI) that was higher in the unaffected hemisphere (UH) for ICH compared to AIS (5.9 ± 1.7 vs. 4.9 ± 1.8 p = 0.07); (ii) coherence function for both hemispheres in different frequency bands (AH, p < 0.01; UH p < 0.02); (iii) a baroreceptor sensitivity (BRS) for the low-frequency (LF) bands that was higher for AIS (6.7 ± 4.2 vs. 4.10 ± 2.13 ms/mmHg, p = 0.04) compared to ICH, and that the mean gain of the BRS in the LF range was higher in the AIS than in the ICH (5.8 ± 5.3 vs. 2.7 ± 1.8 ms/mmHg, p = 0.0005); (iv) Systolic and diastolic velocities of the affected hemisphere (AH) that were significantly higher in ICH than in AIS (82.5 ± 28.09 vs. 61.9 ± 18.9 cm/s), systolic velocity (p = 0.002), and diastolic velocity (p = 0.05). Conclusion: Further multivariate modelling might improve the ability of multiple parameters to discriminate between AIS and ICH and warrants future prospective studies of ultra-early classification (<4 h post symptom onset) of stroke sub-types. Full article
(This article belongs to the Special Issue Prehospital and Hospital Care for Stroke Patients)
Show Figures

Figure 1

12 pages, 1879 KiB  
Systematic Review
Cerebral Blood Flow in Alzheimer’s Disease: A Meta-Analysis on Transcranial Doppler Investigations
by Marco Zuin, Alessandro De Vito, Tommaso Romagnoli, Michele Polastri, Eleonora Capatti, Cristiano Azzini, Gloria Brombo and Giovanni Zuliani
Geriatrics 2024, 9(3), 58; https://doi.org/10.3390/geriatrics9030058 - 4 May 2024
Cited by 2 | Viewed by 2683
Abstract
Background: Cerebrovascular hemodynamic impairment has been reported in Alzheimer’s disease (AD). We performed a systematic review and meta-analysis to investigate changes in cerebral blood flow (CBF) in AD patients. Methods: Data were obtained by searching MEDLINE and Scopus for all investigations published between [...] Read more.
Background: Cerebrovascular hemodynamic impairment has been reported in Alzheimer’s disease (AD). We performed a systematic review and meta-analysis to investigate changes in cerebral blood flow (CBF) in AD patients. Methods: Data were obtained by searching MEDLINE and Scopus for all investigations published between 1 January 2011 and 1 November 2021, comparing the cerebrovascular hemodynamic between AD patients and cognately healthy age-matched controls, using transcranial Doppler (TCD) ultrasound. Results: Twelve studies, based on 685 patients [395 with AD and 290 age-matched cognitively healthy controls, with a mean age of 71.5 and 72.1 years, respectively] were included in the analysis. A random effect model revealed that AD patients, in the proximal segments of the middle cerebral artery (MCA), have a significantly lower CBF velocity, compared to controls (MD: −7.80 cm/s, 95%CI: −10.78 to −5.13, p < 0.0001, I2 = 71.0%). Due to a significant Egger’s test (t = 3.12, p = 0.008), a trim-and-fill analysis was performed, confirming the difference (MD: −11.05 cm/s, 95%CI: –12.28 to −9.82, p < 0.0001). Meta-regression analysis demonstrated that the mean CBF at the proximal MCA was directly correlated with arterial hypertension (p = 0.03) and MMSE score (p < 0.001), but inversely correlated with age (p = 0.01). In AD patients, the pulsatility index was significantly higher compared to controls (MD: 0.16, 95%CI: 0.07 to 0.25, p < 0.0001, I2: 84.5%), while the breath-holding index test results were significant lower (MD: −1.72, 95%CI: −2.53 to −0.91, p < 0.001, I2: 85.4%). Conclusions: AD patients have a significant impairment in relation to their cerebrovascular perfusion, suggesting that cerebrovascular hemodynamic deterioration, evaluated using TCD, may be a useful diagnostic tool. Full article
(This article belongs to the Section Geriatric Psychiatry and Psychology)
Show Figures

Graphical abstract

20 pages, 4587 KiB  
Article
Heart Rate Variability and Pulse Rate Variability: Do Anatomical Location and Sampling Rate Matter?
by Joel S. Burma, James K. Griffiths, Andrew P. Lapointe, Ibukunoluwa K. Oni, Ateyeh Soroush, Joseph Carere, Jonathan D. Smirl and Jeff F. Dunn
Sensors 2024, 24(7), 2048; https://doi.org/10.3390/s24072048 - 23 Mar 2024
Cited by 5 | Viewed by 3953
Abstract
Wearable technology and neuroimaging equipment using photoplethysmography (PPG) have become increasingly popularized in recent years. Several investigations deriving pulse rate variability (PRV) from PPG have demonstrated that a slight bias exists compared to concurrent heart rate variability (HRV) estimates. PPG devices commonly sample [...] Read more.
Wearable technology and neuroimaging equipment using photoplethysmography (PPG) have become increasingly popularized in recent years. Several investigations deriving pulse rate variability (PRV) from PPG have demonstrated that a slight bias exists compared to concurrent heart rate variability (HRV) estimates. PPG devices commonly sample at ~20–100 Hz, where the minimum sampling frequency to derive valid PRV metrics is unknown. Further, due to different autonomic innervation, it is unknown if PRV metrics are harmonious between the cerebral and peripheral vasculature. Cardiac activity via electrocardiography (ECG) and PPG were obtained concurrently in 54 participants (29 females) in an upright orthostatic position. PPG data were collected at three anatomical locations: left third phalanx, middle cerebral artery, and posterior cerebral artery using a Finapres NOVA device and transcranial Doppler ultrasound. Data were sampled for five minutes at 1000 Hz and downsampled to frequencies ranging from 20 to 500 Hz. HRV (via ECG) and PRV (via PPG) were quantified and compared at 1000 Hz using Bland–Altman plots and coefficient of variation (CoV). A sampling frequency of ~100–200 Hz was required to produce PRV metrics with a bias of less than 2%, while a sampling rate of ~40–50 Hz elicited a bias smaller than 20%. At 1000 Hz, time- and frequency-domain PRV measures were slightly elevated compared to those derived from HRV (mean bias: ~1–8%). In conjunction with previous reports, PRV and HRV were not surrogate biomarkers due to the different nature of the collected waveforms. Nevertheless, PRV estimates displayed greater validity at a lower sampling rate compared to HRV estimates. Full article
Show Figures

Figure 1

18 pages, 6019 KiB  
Systematic Review
The Diagnostic Accuracy of Transcranial Color-Coded Doppler Ultrasound Technique in Stratifying Intracranial Cerebral Artery Stenoses in Cerebrovascular Disease Patients: A Systematic Review and Meta-Analysis
by Simon Takadiyi Gunda, Jerica Hiu-Yui Yip, Veronica Tsam-Kit Ng, Ziman Chen, Xinyang Han, Xiangyan Chen, Marco Yiu-Chung Pang and Michael Tin-Cheung Ying
J. Clin. Med. 2024, 13(5), 1507; https://doi.org/10.3390/jcm13051507 - 5 Mar 2024
Cited by 3 | Viewed by 3138
Abstract
The early and accurate stratification of intracranial cerebral artery stenosis (ICAS) is critical to inform treatment management and enhance the prognostic outcomes in patients with cerebrovascular disease (CVD). Digital subtraction angiography (DSA) is an invasive and expensive procedure but is the gold standard [...] Read more.
The early and accurate stratification of intracranial cerebral artery stenosis (ICAS) is critical to inform treatment management and enhance the prognostic outcomes in patients with cerebrovascular disease (CVD). Digital subtraction angiography (DSA) is an invasive and expensive procedure but is the gold standard for the diagnosis of ICAS. Over recent years, transcranial color-coded Doppler ultrasound (TCCD) has been suggested to be a useful imaging method for accurately diagnosing ICAS. However, the diagnostic accuracy of TCCD in stratifying ICASs among patients with CVD remains unclear. Therefore, this systematic review and meta-analysis aimed at evaluating the diagnostic accuracy of TCCD in the stratification of intracranial steno-occlusions among CVD patients. A total of six databases—Embase, CINAHL, Medline, PubMed, Google Scholar, and Web of Science (core collection)—were searched for studies that assessed the diagnostic accuracy of TCCD in stratifying ICASs. The meta-analysis was performed using Meta-DiSc 1.4. The Quality Assessment of Diagnostic Accuracy Studies tool version 2 (QUADAS-2) assessed the risk of bias. Eighteen studies met all of the eligibility criteria. TCCD exhibited a high pooled diagnostic accuracy in stratifying intracranial steno-occlusions in patients presenting with CVD when compared to DSA as a reference standard (sensitivity = 90%; specificity = 87%; AUC = 97%). Additionally, the ultrasound parameters peak systolic velocity (PSV) and mean flow velocity (MFV) yielded a comparable diagnostic accuracy of “AUC = 0.96”. In conclusion, TCCD could be a noble, safe, and accurate alternative imaging technique to DSA that can provide useful diagnostic information in stratifying intracranial steno-occlusions in patients presenting with CVD. TCCD should be considered in clinical cases where access to DSA is limited. Full article
(This article belongs to the Special Issue Cerebrovascular Diseases: Diagnosis, Prognosis, and Intervention)
Show Figures

Graphical abstract

Back to TopTop