Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (9,534)

Search Parameters:
Keywords = traditional imaging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
28 pages, 845 KiB  
Review
Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
by Stepan A. Kopytov, Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin and Alexey S. Rzhevskiy
Cancers 2025, 17(15), 2589; https://doi.org/10.3390/cancers17152589 - 6 Aug 2025
Abstract
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor [...] Read more.
Prostate cancer (PC) remains a leading cause of malignancy in men worldwide, with current diagnostic methods such as prostate-specific antigen (PSA) testing and tissue biopsies facing limitations in specificity, invasiveness, and ability to capture tumor heterogeneity. Liquid biopsy, especially analysis of circulating tumor DNA (ctDNA), has emerged as a transformative tool for non-invasive detection, real-time monitoring, and treatment selection for PC. This review examines the role of ctDNA in both localized and metastatic PCs, focusing on its utility in early detection, risk stratification, therapy selection, and post-treatment monitoring. In localized PC, ctDNA-based biomarkers, including ctDNA fraction, methylation patterns, fragmentation profiles, and mutations, demonstrate promise in improving diagnostic accuracy and predicting disease recurrence. For metastatic PC, ctDNA analysis provides insights into tumor burden, genomic alterations, and resistance mechanisms, enabling immediate assessment of treatment response and guiding therapeutic decisions. Despite challenges such as the low ctDNA abundance in early-stage disease and the need for standardized protocols, advances in sequencing technologies and multimodal approaches enhance the clinical applicability of ctDNA. Integrating ctDNA with imaging and traditional biomarkers offers a pathway to precision oncology, ultimately improving outcomes. This review underscores the potential of ctDNA to redefine PC management while addressing current limitations and future directions for research and clinical implementation. Full article
Show Figures

Graphical abstract

17 pages, 3354 KiB  
Article
Quantitative Analysis of Adulteration in Anoectochilus roxburghii Powder Using Hyperspectral Imaging and Multi-Channel Convolutional Neural Network
by Ziyuan Liu, Tingsong Zhang, Haoyuan Ding, Zhangting Wang, Hongzhen Wang, Lu Zhou, Yujia Dai and Yiqing Xu
Agronomy 2025, 15(8), 1894; https://doi.org/10.3390/agronomy15081894 - 6 Aug 2025
Abstract
Adulteration detection in medicinal plant powders remains a critical challenge in quality control. In this study, we propose a hyperspectral imaging (HSI)-based method combined with deep learning models to quantitatively analyze adulteration levels in Anoectochilus roxburghii powder. After preprocessing the spectral data using [...] Read more.
Adulteration detection in medicinal plant powders remains a critical challenge in quality control. In this study, we propose a hyperspectral imaging (HSI)-based method combined with deep learning models to quantitatively analyze adulteration levels in Anoectochilus roxburghii powder. After preprocessing the spectral data using raw, first-order, and second-order Savitzky–Golay derivatives, we systematically evaluated the performance of traditional machine learning models (Random Forest, Support Vector Regression, Partial Least Squares Regression) and deep learning architectures. While traditional models achieved reasonable accuracy (R2 up to 0.885), their performance was limited by feature extraction and generalization ability. A single-channel convolutional neural network (CNN) utilizing individual spectral representations improved performance marginally (maximum R2 = 0.882), but still failed to fully capture the multi-scale spectral features. To overcome this, we developed a multi-channel CNN that simultaneously integrates raw, SG-1, and SG-2 spectra, effectively leveraging complementary spectral information. This architecture achieved a significantly higher prediction accuracy (R2 = 0.964, MSE = 0.005), demonstrating superior robustness and generalization. The findings highlight the potential of multi-channel deep learning models in enhancing quantitative adulteration detection and ensuring the authenticity of herbal products. Full article
(This article belongs to the Section Precision and Digital Agriculture)
Show Figures

Figure 1

29 pages, 2766 KiB  
Article
(H-DIR)2: A Scalable Entropy-Based Framework for Anomaly Detection and Cybersecurity in Cloud IoT Data Centers
by Davide Tosi and Roberto Pazzi
Sensors 2025, 25(15), 4841; https://doi.org/10.3390/s25154841 - 6 Aug 2025
Abstract
Modern cloud-based Internet of Things (IoT) infrastructures face increasingly sophisticated and diverse cyber threats that challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper, we present (H-DIR)2, a hybrid entropy-based framework designed to detect and mitigate [...] Read more.
Modern cloud-based Internet of Things (IoT) infrastructures face increasingly sophisticated and diverse cyber threats that challenge traditional detection systems in terms of scalability, adaptability, and explainability. In this paper, we present (H-DIR)2, a hybrid entropy-based framework designed to detect and mitigate anomalies in large-scale heterogeneous networks. The framework combines Shannon entropy analysis with Associated Random Neural Networks (ARNNs) and integrates semantic reasoning through RDF/SPARQL, all embedded within a distributed Apache Spark 3.5.0 pipeline. We validate (H-DIR)2 across three critical attack scenarios—SYN Flood (TCP), DAO-DIO (RPL), and NTP amplification (UDP)—using real-world datasets. The system achieves a mean detection latency of 247 ms and an AUC of 0.978 for SYN floods. For DAO-DIO manipulations, it increases the packet delivery ratio from 81.2% to 96.4% (p < 0.01), and for NTP amplification, it reduces the peak load by 88%. The framework achieves vertical scalability across millions of endpoints and horizontal scalability on datasets exceeding 10 TB. All code, datasets, and Docker images are provided to ensure full reproducibility. By coupling adaptive neural inference with semantic explainability, (H-DIR)2 offers a transparent and scalable solution for cloud–IoT cybersecurity, establishing a robust baseline for future developments in edge-aware and zero-day threat detection. Full article
(This article belongs to the Special Issue Privacy and Cybersecurity in IoT-Based Applications)
18 pages, 1253 KiB  
Article
Leveraging Synthetic Degradation for Effective Training of Super-Resolution Models in Dermatological Images
by Francesco Branciforti, Kristen M. Meiburger, Elisa Zavattaro, Paola Savoia and Massimo Salvi
Electronics 2025, 14(15), 3138; https://doi.org/10.3390/electronics14153138 - 6 Aug 2025
Abstract
Teledermatology relies on digital transfer of dermatological images, but compression and resolution differences compromise diagnostic quality. Image enhancement techniques are crucial to compensate for these differences and improve quality for both clinical assessment and AI-based analysis. We developed a customized image degradation pipeline [...] Read more.
Teledermatology relies on digital transfer of dermatological images, but compression and resolution differences compromise diagnostic quality. Image enhancement techniques are crucial to compensate for these differences and improve quality for both clinical assessment and AI-based analysis. We developed a customized image degradation pipeline simulating common artifacts in dermatological images, including blur, noise, downsampling, and compression. This synthetic degradation approach enabled effective training of DermaSR-GAN, a super-resolution generative adversarial network tailored for dermoscopic images. The model was trained on 30,000 high-quality ISIC images and evaluated on three independent datasets (ISIC Test, Novara Dermoscopic, PH2) using structural similarity and no-reference quality metrics. DermaSR-GAN achieved statistically significant improvements in quality scores across all datasets, with up to 23% enhancement in perceptual quality metrics (MANIQA). The model preserved diagnostic details while doubling resolution and surpassed existing approaches, including traditional interpolation methods and state-of-the-art deep learning techniques. Integration with downstream classification systems demonstrated up to 14.6% improvement in class-specific accuracy for keratosis-like lesions compared to original images. Synthetic degradation represents a promising approach for training effective super-resolution models in medical imaging, with significant potential for enhancing teledermatology applications and computer-aided diagnosis systems. Full article
(This article belongs to the Section Computer Science & Engineering)
23 pages, 1191 KiB  
Article
The Power of Interaction: Fan Growth in Livestreaming E-Commerce
by Hangsheng Yang and Bin Wang
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 203; https://doi.org/10.3390/jtaer20030203 - 6 Aug 2025
Abstract
Fan growth serves as a critical performance indicator for the sustainable development of livestreaming e-commerce (LSE). However, existing research has paid limited attention to this topic. This study investigates the unique interactive advantages of LSE over traditional e-commerce by examining how interactivity drives [...] Read more.
Fan growth serves as a critical performance indicator for the sustainable development of livestreaming e-commerce (LSE). However, existing research has paid limited attention to this topic. This study investigates the unique interactive advantages of LSE over traditional e-commerce by examining how interactivity drives fan growth through the mediating role of user retention and the moderating role of anchors’ facial attractiveness. To conduct the analysis, real-time data were collected from 1472 livestreaming sessions on Douyin, China’s leading LSE platform, between January and March 2023, using Python-based (3.12.7) web scraping and third-party data sources. This study operationalizes key variables through text sentiment analysis and image recognition techniques. Empirical analyses are performed using ordinary least squares (OLS) regression with robust standard errors, propensity score matching (PSM), and sensitivity analysis to ensure robustness. The results reveal the following: (1) Interactivity has a significant positive effect on fan growth. (2) User retention partially mediates the relationship between interactivity and fan growth. (3) There is a substitution effect between anchors’ facial attractiveness and interactivity in enhancing user retention, highlighting the substitution relationship between anchors’ personal characteristics and livestreaming room attributes. This research advances the understanding of interactivity’s mechanisms in LSE and, notably, is among the first to explore the marketing implications of anchors’ facial attractiveness in this context. The findings offer valuable insights for both academic research and managerial practice in the evolving livestreaming commerce landscape. Full article
Show Figures

Figure 1

29 pages, 12050 KiB  
Article
PolSAR-SFCGN: An End-to-End PolSAR Superpixel Fully Convolutional Generation Network
by Mengxuan Zhang, Jingyuan Shi, Long Liu, Wenbo Zhang, Jie Feng, Jin Zhu and Boce Chu
Remote Sens. 2025, 17(15), 2723; https://doi.org/10.3390/rs17152723 - 6 Aug 2025
Abstract
Polarimetric Synthetic Aperture Radar (PolSAR) image classification is one of the most important applications in remote sensing. The impressive superpixel generation approaches can improve the efficiency of the subsequent classification task and restrain the influence of the speckle noise to an extent. Most [...] Read more.
Polarimetric Synthetic Aperture Radar (PolSAR) image classification is one of the most important applications in remote sensing. The impressive superpixel generation approaches can improve the efficiency of the subsequent classification task and restrain the influence of the speckle noise to an extent. Most of the classical PolSAR superpixel generation approaches use the features extracted manually and even only consider the pseudocolor images. They do not make full use of polarimetric information and do not necessarily lead to good enough superpixels. The deep learning methods can extract effective deep features but they are difficult to combine with superpixel generation to achieve true end-to-end training. Addressing the above issues, this study proposes an end-to-end fully convolutional superpixel generation network for PolSAR images. It integrates the extraction of polarization information features and the generation of PolSAR superpixels into one step. PolSAR superpixels can be generated based on deep polarization feature extraction and need no traditional clustering process. Both the performance and efficiency of generations of PolSAR superpixels can be enhanced effectively. The experimental results on various PolSAR datasets show that the proposed method can achieve impressive superpixel segmentation by fitting the real boundaries of different types of ground objects effectively and efficiently. It can achieve excellent classification performance by connecting a very simple classification network, which is helpful to improve the efficiency of the subsequent PolSAR image classification tasks. Full article
21 pages, 4909 KiB  
Article
Rapid 3D Camera Calibration for Large-Scale Structural Monitoring
by Fabio Bottalico, Nicholas A. Valente, Christopher Niezrecki, Kshitij Jerath, Yan Luo and Alessandro Sabato
Remote Sens. 2025, 17(15), 2720; https://doi.org/10.3390/rs17152720 - 6 Aug 2025
Abstract
Computer vision techniques such as three-dimensional digital image correlation (3D-DIC) and three-dimensional point tracking (3D-PT) have demonstrated broad applicability for monitoring the conditions of large-scale engineering systems by reconstructing and tracking dynamic point clouds corresponding to the surface of a structure. Accurate stereophotogrammetry [...] Read more.
Computer vision techniques such as three-dimensional digital image correlation (3D-DIC) and three-dimensional point tracking (3D-PT) have demonstrated broad applicability for monitoring the conditions of large-scale engineering systems by reconstructing and tracking dynamic point clouds corresponding to the surface of a structure. Accurate stereophotogrammetry measurements require the stereo cameras to be calibrated to determine their intrinsic and extrinsic parameters by capturing multiple images of a calibration object. This image-based approach becomes cumbersome and time-consuming as the size of the tested object increases. To streamline the calibration and make it scale-insensitive, a multi-sensor system embedding inertial measurement units and a laser sensor is developed to compute the extrinsic parameters of the stereo cameras. In this research, the accuracy of the proposed sensor-based calibration method in performing stereophotogrammetry is validated experimentally and compared with traditional approaches. Tests conducted at various scales reveal that the proposed sensor-based calibration enables reconstructing both static and dynamic point clouds, measuring displacements with an accuracy higher than 95% compared to image-based traditional calibration, while being up to an order of magnitude faster and easier to deploy. The novel approach has broad applications for making static, dynamic, and deformation measurements to transform how large-scale structural health monitoring can be performed. Full article
(This article belongs to the Special Issue New Perspectives on 3D Point Cloud (Third Edition))
Show Figures

Figure 1

20 pages, 7088 KiB  
Article
SAR Images Despeckling Using Subaperture Decomposition and Non-Local Low-Rank Tensor Approximation
by Xinwei An, Hongcheng Zeng, Zhaohong Li, Wei Yang, Wei Xiong, Yamin Wang and Yanfang Liu
Remote Sens. 2025, 17(15), 2716; https://doi.org/10.3390/rs17152716 - 6 Aug 2025
Abstract
Synthetic aperture radar (SAR) images suffer from speckle noise due to their imaging mechanism, which deteriorates image interpretability and hinders subsequent tasks like target detection and recognition. Traditional denoising methods fall short of the demands for high-quality SAR image processing, and deep learning [...] Read more.
Synthetic aperture radar (SAR) images suffer from speckle noise due to their imaging mechanism, which deteriorates image interpretability and hinders subsequent tasks like target detection and recognition. Traditional denoising methods fall short of the demands for high-quality SAR image processing, and deep learning approaches trained on synthetic datasets exhibit poor generalization because noise-free real SAR images are unattainable. To solve this problem and improve the quality of SAR images, a speckle noise suppression method based on subaperture decomposition and non-local low-rank tensor approximation is proposed. Subaperture decomposition yields azimuth-frame subimages with high global structural similarity, which are modeled as low-rank and formed into a 3D tensor. The tensor is decomposed to derive a low-dimensional orthogonal basis and low-rank representation, followed by non-local denoising and iterative regularization in the low-rank subspace for data reconstruction. Experiments on simulated and real SAR images demonstrate that the proposed method outperforms state-of-the-art techniques in speckle suppression, significantly improving SAR image quality. Full article
Show Figures

Figure 1

19 pages, 487 KiB  
Review
Smart Clothing and Medical Imaging Innovations for Real-Time Monitoring and Early Detection of Stroke: Bridging Technology and Patient Care
by David Sipos, Kata Vészi, Bence Bogár, Dániel Pető, Gábor Füredi, József Betlehem and Attila András Pandur
Diagnostics 2025, 15(15), 1970; https://doi.org/10.3390/diagnostics15151970 - 6 Aug 2025
Abstract
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and [...] Read more.
Stroke is a significant global health concern characterized by the abrupt disruption of cerebral blood flow, leading to neurological impairment. Accurate and timely diagnosis—enabled by imaging modalities such as computed tomography (CT) and magnetic resonance imaging (MRI)—is essential for differentiating stroke types and initiating interventions like thrombolysis, thrombectomy, or surgical management. In parallel, recent advancements in wearable technology, particularly smart clothing, offer new opportunities for stroke prevention, real-time monitoring, and rehabilitation. These garments integrate various sensors, including electrocardiogram (ECG) electrodes, electroencephalography (EEG) caps, electromyography (EMG) sensors, and motion or pressure sensors, to continuously track physiological and functional parameters. For example, ECG shirts monitor cardiac rhythm to detect atrial fibrillation, smart socks assess gait asymmetry for early mobility decline, and EEG caps provide data on neurocognitive recovery during rehabilitation. These technologies support personalized care across the stroke continuum, from early risk detection and acute event monitoring to long-term recovery. Integration with AI-driven analytics further enhances diagnostic accuracy and therapy optimization. This narrative review explores the application of smart clothing in conjunction with traditional imaging to improve stroke management and patient outcomes through a more proactive, connected, and patient-centered approach. Full article
Show Figures

Figure 1

23 pages, 6490 KiB  
Article
LISA-YOLO: A Symmetry-Guided Lightweight Small Object Detection Framework for Thyroid Ultrasound Images
by Guoqing Fu, Guanghua Gu, Wen Liu and Hao Fu
Symmetry 2025, 17(8), 1249; https://doi.org/10.3390/sym17081249 - 6 Aug 2025
Abstract
Non-invasive ultrasound diagnosis, combined with deep learning, is frequently used for detecting thyroid diseases. However, real-time detection on portable devices faces limitations due to constrained computational resources, and existing models often lack sufficient capability for small object detection of thyroid nodules. To address [...] Read more.
Non-invasive ultrasound diagnosis, combined with deep learning, is frequently used for detecting thyroid diseases. However, real-time detection on portable devices faces limitations due to constrained computational resources, and existing models often lack sufficient capability for small object detection of thyroid nodules. To address this, this paper proposes an improved lightweight small object detection network framework called LISA-YOLO, which enhances the lightweight multi-scale collaborative fusion algorithm. The proposed framework exploits the inherent symmetrical characteristics of ultrasound images and the symmetrical architecture of the detection network to better capture and represent features of thyroid nodules. Specifically, an improved depthwise separable convolution algorithm replaces traditional convolution to construct a lightweight network (DG-FNet). Through symmetrical cross-scale fusion operations via FPN, detection accuracy is maintained while reducing computational overhead. Additionally, an improved bidirectional feature network (IMS F-NET) fully integrates the semantic and detailed information of high- and low-level features symmetrically, enhancing the representation capability for multi-scale features and improving the accuracy of small object detection. Finally, a collaborative attention mechanism (SAF-NET) uses a dual-channel and spatial attention mechanism to adaptively calibrate channel and spatial weights in a symmetric manner, effectively suppressing background noise and enabling the model to focus on small target areas in thyroid ultrasound images. Extensive experiments on two image datasets demonstrate that the proposed method achieves improvements of 2.3% in F1 score, 4.5% in mAP, and 9.0% in FPS, while maintaining only 2.6 M parameters and reducing GFLOPs from 6.1 to 5.8. The proposed framework provides significant advancements in lightweight real-time detection and demonstrates the important role of symmetry in enhancing the performance of ultrasound-based thyroid diagnosis. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

30 pages, 3188 KiB  
Article
A Multimodal Bone Stick Matching Approach Based on Large-Scale Pre-Trained Models and Dynamic Cross-Modal Feature Fusion
by Tao Fan, Huiqin Wang, Ke Wang, Rui Liu and Zhan Wang
Appl. Sci. 2025, 15(15), 8681; https://doi.org/10.3390/app15158681 (registering DOI) - 5 Aug 2025
Abstract
Among the approximately 60,000 bone stick fragments unearthed from the Weiyang Palace site of the Han Dynasty, about 57,000 bear inscriptions. Most of these fragments exhibit vertical fractures, leading to a separation between the upper and lower fragments, which poses significant challenges to [...] Read more.
Among the approximately 60,000 bone stick fragments unearthed from the Weiyang Palace site of the Han Dynasty, about 57,000 bear inscriptions. Most of these fragments exhibit vertical fractures, leading to a separation between the upper and lower fragments, which poses significant challenges to digital preservation and artifact restoration. Manual matching is inefficient and may cause further damage to the bone sticks. This paper proposes a novel multimodal bone stick matching approach that integrates image, inscription, and archeological information to enhance the accuracy and efficiency of matching fragmented bone stick artifacts. Unlike traditional methods that rely solely on image data, our method leverages large-scale pre-trained models, namely Vision-RWKV for visual feature extraction, RWKV for inscription analysis, and BERT for archeological metadata encoding. A dynamic cross-modal feature fusion mechanism is introduced to effectively combine these features, enabling better interaction and weighting based on the contextual relevance of each modality. This approach significantly improves matching performance, particularly in challenging cases involving fractures, corrosion, and missing sections. The novelty of this method lies in its ability to simultaneously extract and fuse multiple sources of information, addressing the limitations of traditional image-based matching methods. This paper uses Rank-N and Cumulative Match Characteristic (CMC) curves as evaluation metrics. Experimental evaluation shows that the matching accuracy reaches 94.73% at Rank-15, and the method performs significantly better than the comparative methods on the CMC evaluation curve, demonstrating outstanding performance. Overall, this approach significantly enhances the efficiency and accuracy of bone stick artifact matching, providing robust technical support for the research and restoration of bone stick cultural heritage. Full article
Show Figures

Figure 1

18 pages, 2839 KiB  
Article
Detection of Maize Pathogenic Fungal Spores Based on Deep Learning
by Yijie Ren, Ying Xu, Huilin Tian, Qian Zhang, Mingxiu Yang, Rongsheng Zhu, Dawei Xin, Qingshan Chen, Qiaorong Wei and Shuang Song
Agriculture 2025, 15(15), 1689; https://doi.org/10.3390/agriculture15151689 - 5 Aug 2025
Abstract
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve [...] Read more.
Timely detection of pathogen spores is fundamental to ensuring early intervention and reducing the spread of corn diseases, like northern corn leaf blight, corn head smut, and corn rust. Traditional spore detection methods struggle to identify spore-level targets within complex backgrounds. To improve the recognition accuracy of various maize disease spores, this study introduced the YOLOv8s-SPM model by incorporating the space-to-depth and convolution (SPD-Conv) layers, the Partial Self-Attention (PSA) mechanism, and Minimum Point Distance Intersection over Union (MPDIoU) loss function. First, we combined SPD-Conv layers into the Backbone of the YOLOv8s to enhance recognition performance on small targets and low-resolution images. To improve computational efficiency, the PSA mechanism was incorporated within the Neck layer of the network. Finally, MPDIoU loss function was applied to refine the localization performance of bounding boxes. The results revealed that the YOLOv8s-SPM model achieved 98.9% accuracy on the mixed spore dataset. Relative to the baseline YOLOv8s, the YOLOv8s-SPM model yielded a 1.4% gain in accuracy. The improved model significantly improved spore detection accuracy and demonstrated superior performance in recognizing diverse spore types under complex background conditions. It met the demands for high-precision spore detection and filled a gap in intelligent spore recognition for maize, offering an effective starting point and practical path for future research in this field. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

17 pages, 2283 KiB  
Article
A Remote Strawberry Health Monitoring System Performed with Multiple Sensors Approach
by Xiao Du, Jun Steed Huang, Qian Shi, Tongge Li, Yanfei Wang, Haodong Liu, Zhaoyuan Zhang, Ni Yu and Ning Yang
Agriculture 2025, 15(15), 1690; https://doi.org/10.3390/agriculture15151690 - 5 Aug 2025
Abstract
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in [...] Read more.
Temperature is a key physiological indicator of plant health, influenced by factors including water status, disease and developmental stage. Monitoring changes in multiple factors is helpful for early diagnosis of plant growth. However, there are a variety of complex light interference phenomena in the greenhouse, so traditional detection methods cannot meet effective online monitoring of strawberry health status without manual intervention. Therefore, this paper proposes a leaf soft-sensing method based on a thermal infrared imaging sensor and adaptive image screening Internet of Things system, with additional sensors to realize indirect and rapid monitoring of the health status of a large range of strawberries. Firstly, a fuzzy comprehensive evaluation model is established by analyzing the environmental interference terms from the other sensors. Secondly, through the relationship between plant physiological metabolism and canopy temperature, a growth model is established to predict the growth period of strawberries based on canopy temperature. Finally, by deploying environmental sensors and solar height sensors, the image acquisition node is activated when the environmental interference is less than the specified value and the acquisition is completed. The results showed that the accuracy of this multiple sensors system was 86.9%, which is 30% higher than the traditional model and 4.28% higher than the latest advanced model. It makes it possible to quickly and accurately assess the health status of plants by a single factor without in-person manual intervention, and provides an important indication of the early, undetectable state of strawberry disease, based on remote operation. Full article
(This article belongs to the Section Artificial Intelligence and Digital Agriculture)
Show Figures

Figure 1

25 pages, 29559 KiB  
Article
CFRANet: Cross-Modal Frequency-Responsive Attention Network for Thermal Power Plant Detection in Multispectral High-Resolution Remote Sensing Images
by Qinxue He, Bo Cheng, Xiaoping Zhang and Yaocan Gan
Remote Sens. 2025, 17(15), 2706; https://doi.org/10.3390/rs17152706 - 5 Aug 2025
Abstract
Thermal Power Plants (TPPs), as widely used industrial facilities for electricity generation, represent a key task in remote sensing image interpretation. However, detecting TPPs remains a challenging task due to their complex and irregular composition. Many traditional approaches focus on detecting compact, small-scale [...] Read more.
Thermal Power Plants (TPPs), as widely used industrial facilities for electricity generation, represent a key task in remote sensing image interpretation. However, detecting TPPs remains a challenging task due to their complex and irregular composition. Many traditional approaches focus on detecting compact, small-scale objects, while existing composite object detection methods are mostly part-based, limiting their ability to capture the structural and textural characteristics of composite targets like TPPs. Moreover, most of them rely on single-modality data, failing to fully exploit the rich information available in remote sensing imagery. To address these limitations, we propose a novel Cross-Modal Frequency-Responsive Attention Network (CFRANet). Specifically, the Modality-Aware Fusion Block (MAFB) facilitates the integration of multi-modal features, enhancing inter-modal interactions. Additionally, the Frequency-Responsive Attention (FRA) module leverages both spatial and localized dual-channel information and utilizes Fourier-based frequency decomposition to separately capture high- and low-frequency components, thereby improving the recognition of TPPs by learning both detailed textures and structural layouts. Experiments conducted on our newly proposed AIR-MTPP dataset demonstrate that CFRANet achieves state-of-the-art performance, with a mAP50 of 82.41%. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

12 pages, 1076 KiB  
Article
Rapid Identification of the SNP Mutation in the ABCD4 Gene and Its Association with Multi-Vertebrae Phenotypes in Ujimqin Sheep Using TaqMan-MGB Technology
by Yue Zhang, Min Zhang, Hong Su, Jun Liu, Feifei Zhao, Yifan Zhao, Xiunan Li, Yanyan Yang, Guifang Cao and Yong Zhang
Animals 2025, 15(15), 2284; https://doi.org/10.3390/ani15152284 - 5 Aug 2025
Abstract
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, [...] Read more.
Ujimqin sheep, known for its distinctive multi-vertebrae phenotypes (T13L7, T14L6, and T14L7) and economic value, has garnered significant attention. However, conventional phenotypic detection methods suffer from low efficiency and high costs. In this study, based on a key SNP locus (ABCD4 gene, Chr7:89393414, C > T) identified through a genome-wide association study (GWAS), a TaqMan-MGB (minor groove binder) genotyping system was developed. the objective was to establish a high-throughput and efficient molecular marker-assisted selection (MAS) tool. Specific primers and dual fluorescent probes were designed to optimize the reaction system. Standard plasmids were adopted to validate genotyping accuracy. A total of 152 Ujimqin sheep were subjected to TaqMan-MGB genotyping, digital radiography (DR) imaging, and Sanger sequencing. the results showed complete concordance between TaqMan-MGB and Sanger sequencing, with an overall agreement rate of 83.6% with DR imaging. For individuals with T/T genotypes (127/139), the detection accuracy reached 91.4%. This method demonstrated high specificity, simplicity, and cost-efficiency, significantly reducing the time and financial burden associated with traditional imaging-based approaches. the findings indicate that the TaqMan-MGB technique can accurately identify the T/T genotype at the SNP site and its strong association with the multi-vertebrae phenotypes, offering an effective and reliable tool for molecular breeding of Ujimqin sheep. Full article
(This article belongs to the Section Animal Genetics and Genomics)
Show Figures

Figure 1

Back to TopTop