Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management
Abstract
Simple Summary
Abstract
1. Introduction
2. Classification, Conventional Diagnostics, and Staging of Prostate Cancer
- Localized/locally advanced prostate cancer: Disease confined to the prostate gland or immediately adjacent tissues (T1-T4, N0/X, M0).
- Biochemically recurrent (BCR)/non-metastatic castration-sensitive prostate cancer (nmCSPC): Rising PSA following definitive local therapy, without evidence of metastases on conventional imaging (M0).
- Metastatic hormone-sensitive prostate cancer (mHSPC): Radiographically evident metastatic disease, responsive to initial androgen deprivation therapy (ADT) (M1).
- Non-metastatic castration-resistant prostate cancer (nmCRPC): Rising PSA despite castrate levels of testosterone (<50 ng/dL) and no detectable metastases on conventional imaging (CT/bone scan) (M0).
- Metastatic castration-resistant prostate cancer (mCRPC): Radiographically evident metastatic disease progressing despite castrate levels of testosterone (<50 ng/dL) (M1).
- High-risk/very high-risk localized disease represents a subset of localized/locally advanced prostate cancer.
- Oligometastatic disease can manifest within the mHSPC or mCRPC states.
- Aggressive variant prostate cancers (AVPCs)/neuroendocrine prostate cancer (NEPC) typically arise within the mCRPC state.
2.1. Imaging
- Bone scan: It detects osteoblastic metastases using technetium-99m-labeled diphosphonates. It remains cost-effective and widely available but has low sensitivity for early micrometastases/osteolytic lesions and carries a risk of false positives [23].
- PSMA PET/CT: It targets prostate-specific membrane antigen (PSMA) with Ga-68/F-18 tracers. It detects micrometastases (<10 mm), altering management in ~30% of cases by identifying oligometastatic disease or upstaging. It is recommended for high-risk staging and biochemical recurrence despite limited availability and higher cost [26,27,28].
- FDG PET/CT: It measures glucose metabolism but has limited utility in prostate adenocarcinoma due to low FDG avidity. It is primarily reserved for aggressive neuroendocrine subtypes [29].
- PSMA PET/MRI: It combines PSMA PET with MRI’s soft-tissue resolution, improving pelvic/spinal lesion detection. However, it suffers from limited availability, longer scan times (60–90 min), and higher costs [25].
- Whole-body MRI: It provides radiation-free assessment of bone/visceral metastases, ideal for young patients or repeated monitoring. It is effective for bone-dominant disease but has longer scan times (30–60 min) and inferior sensitivity for small lymph node metastases vs. PSMA PET/CT [30].
2.2. Biomarkers
2.3. Biopsy in Prostate Cancer
3. ctDNA in Localized Prostate Cancer
3.1. Early Detection
3.2. Risk Stratification
3.3. Post-Treatment Monitoring
3.4. Technical Considerations
3.5. Challenges and Future Directions
Challenge | Description | Potential Solutions/Technologies | References |
---|---|---|---|
Low ctDNA concentration | ctDNA levels often fall below detection thresholds in early-stage PC | Highly sensitive methods: ddPCR, NGS, cfMeDIP-seq | Hennigan et al., Chen et al. [74,97] |
Limited sensitivity of standard assays | Conventional PCR/sequencing may miss low-frequency variants | Use of multiplex ddPCR; optimized amplicon panels; integration of cfRNA and other biomarkers | Stitz et al. [93] |
Pre-analytical variability | Sample degradation due to handling/storage/processing errors | Compliance with ISO 20186–3, CEN/TS 17390–3 standards | Bonstingl et al. [102] |
Lack of protocol standardization | Inconsistent results across labs; difficult to compare studies | Harmonized workflows, SOPs, multicenter validation | Gorgannezhad et al. [98] |
Limited scope of cfDNA | cfDNA reflects mutations but not dynamic gene expression | Combine with cfRNA, EV-DNA/RNA, or exosomal analysis | Ding et al. [101] |
4. ctDNA in Metastatic Prostate Cancer
4.1. Liquid Biopsy in Advanced Disease
4.2. Clinical Applications
4.2.1. Prognostication
4.2.2. Therapy Selection
4.2.3. Post-Treatment Monitoring
4.3. Technical Advances
4.4. Challenges and Future Directions
5. Discussion
6. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ADT | androgen deprivation therapy. |
ALP | alkaline phosphatase. |
ARSIs | androgen receptor signaling inhibitors. |
AR | androgen receptor. |
AR-V | androgen receptor variant. |
BCR | biochemical recurrence. |
BEAMing | beads, emulsions, amplification, and magnets. |
BPH | benign prostatic hyperplasia. |
BSP | bone sialoprotein. |
CDx | companion diagnostics. |
cfDI | cell-free DNA integrity index. |
cfDNA | cell-free DNA. |
cfMeDIP-seq | cell-free methylated DNA immunoprecipitation sequencing. |
cfMBD-seq | cell-free methyl CpG-binding domain protein sequencing. |
CgA | chromogranin A. |
CIN | chromosomal instability. |
CRPC | castration-resistant prostate cancer. |
CRPC-NE | neuroendocrine castration-resistant prostate cancer. |
CTCs | circulating tumor cells. |
ctDNA | circulating tumor DNA. |
ctDNAF | circulating tumor DNA fraction. |
DDR | DNA damage repair. |
ddPCR | digital droplet PCR. |
dMMR | mismatch repair deficiency. |
FDG | fluorodeoxyglucose. |
GGT | gamma-glutamyl transferase. |
Hb | hemoglobin. |
HRR | homologous recombination repair. |
HSPC | hormone-sensitive prostate cancer. |
LoD | limit of detection. |
mCRPC | metastatic castration-resistant prostate cancer. |
mHSPC | metastatic hormone-sensitive prostate cancer. |
mPC | metastatic prostate cancer. |
MRD | minimal residual disease. |
MSI | microsatellite instability. |
NE | neuroendocrine. |
NEPC | neuroendocrine prostate cancer. |
NGS | next-generation sequencing. |
NSE | neuron-specific enolase. |
OPG | osteoprotegerin. |
OPN | osteopontin. |
OS | overall survival. |
PAP | prostatic acid phosphatase. |
PARP | poly(adenosine diphosphate-ribose)polymerase. |
PARPis | poly(adenosine diphosphate-ribose)polymerase inhibitors. |
PC | prostate cancer. |
PFS | progression-free survival. |
PSA | prostate-specific antigen. |
PSMA | prostate-specific membrane antigen. |
rPFS | radiographic progression-free survival. |
RRM2 | ribonucleoside-diphosphate reductase subunit M2. |
RCA | rolling circle amplification. |
SLFN11 | schlafen family member 11. |
SRE | skeletal-related event. |
TMB | tumor mutation burden. |
TP | transperineal. |
TR | transrectal. |
TRACP | tartrate-resistant acid phosphatase. |
TRUS | transrectal ultrasound. |
WGS | whole-genome sequencing. |
References
- Bray, F.; Laversanne, M.; Sung, H.; Ferlay, J.; Siegel, R.L.; Soerjomataram, I.; Jemal, A. Global Cancer Statistics 2022: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2024, 74, 229–263. [Google Scholar] [CrossRef] [PubMed]
- Mettlin, C.; Littrup, P.J.; Kane, R.A.; Murphy, G.P.; Lee, F.; Chesley, A.; Badalament, R.; Mostofi, F.K. Relative Sensitivity and Specificity of Serum Prostate Specific Antigen (PSA) Level Compared with Age-Referenced PSA, PSA Density, and PSA Change. Data from the American Cancer Society National Prostate Cancer Detection Project. Cancer 1994, 74, 1615–1620. [Google Scholar] [CrossRef] [PubMed]
- Charrier, J.P.; Tournel, C.; Michel, S.; Comby, S.; Jolivet-Reynaud, C.; Passagot, J.; Dalbon, P.; Chautard, D.; Jolivet, M. Differential Diagnosis of Prostate Cancer and Benign Prostate Hyperplasia Using Two-Dimensional Electrophoresis. Electrophoresis 2001, 22, 1861–1866. [Google Scholar] [CrossRef] [PubMed]
- Loeb, S.; Gashti, S.N.; Catalona, W.J. Exclusion of Inflammation in the Differential Diagnosis of an Elevated Prostate-Specific Antigen (PSA). Urol. Oncol. 2009, 27, 64–66. [Google Scholar] [CrossRef]
- Humphrey, P.A. Diagnosis of Adenocarcinoma in Prostate Needle Biopsy Tissue. J. Clin. Pathol. 2007, 60, 35–42. [Google Scholar] [CrossRef]
- Fujita, K.; Landis, P.; McNeil, B.K.; Pavlovich, C.P. Serial Prostate Biopsies Are Associated with an Increased Risk of Erectile Dysfunction in Men with Prostate Cancer on Active Surveillance. J. Urol. 2009, 182, 2664–2669. [Google Scholar] [CrossRef]
- Hanna, B.; Ranasinghe, W.; Lawrentschuk, N. Risk Stratification and Avoiding Overtreatment in Localized Prostate Cancer. Curr. Opin. Urol. 2019, 29, 612–619. [Google Scholar] [CrossRef]
- Bartolomucci, A.; Nobrega, M.; Ferrier, T.; Dickinson, K.; Kaorey, N.; Nadeau, A.; Castillo, A.; Burnier, J.V. Circulating Tumor DNA to Monitor Treatment Response in Solid Tumors and Advance Precision Oncology. NPJ Precis. Oncol. 2025, 9, 84. [Google Scholar] [CrossRef]
- Han, D.S.C.; Lo, Y.M.D. The Nexus of CfDNA and Nuclease Biology. Trends Genet. 2021, 37, 758–770. [Google Scholar] [CrossRef]
- Bubendorf, L.; Schöpfer, A.; Wagner, U.; Sauter, G.; Moch, H.; Willi, N.; Gasser, T.C.; Mihatsch, M.J. Metastatic Patterns of Prostate Cancer: An Autopsy Study of 1589 Patients. Hum. Pathol. 2000, 31, 578–583. [Google Scholar] [CrossRef]
- Gandaglia, G.; Karakiewicz, P.I.; Briganti, A.; Passoni, N.M.; Schiffmann, J.; Trudeau, V.; Graefen, M.; Montorsi, F.; Sun, M. Impact of the Site of Metastases on Survival in Patients with Metastatic Prostate Cancer. Eur. Urol. 2015, 68, 325–334. [Google Scholar] [CrossRef]
- Klusa, D.; Lohaus, F.; Furesi, G.; Rauner, M.; Benešová, M.; Krause, M.; Kurth, I.; Peitzsch, C. Metastatic Spread in Prostate Cancer Patients Influencing Radiotherapy Response. Front. Oncol. 2021, 10, 627379. [Google Scholar] [CrossRef]
- McDowell, S. Cancer in Men: Prostate Cancer Is #1 for 118 Countries Globally; American Cancer Society: Atlanta, GA, USA, 2024. [Google Scholar]
- Holzgreve, A.; Armstrong, W.R.; Clark, K.J.; Benz, M.R.; Smith, C.P.; Djaileb, L.; Gafita, A.; Thin, P.; Nickols, N.G.; Kishan, A.U.; et al. PSMA-PET/CT Findings in Patients With High-Risk Biochemically Recurrent Prostate Cancer With No Metastatic Disease by Conventional Imaging. JAMA Netw. Open 2025, 8, e2452971. [Google Scholar] [CrossRef]
- Lowrance, W.; Dreicer, R.; Jarrard, D.F.; Scarpato, K.R.; Kim, S.K.; Kirkby, E.; Buckley, D.I.; Griffin, J.C.; Cookson, M.S. Updates to Advanced Prostate Cancer: AUA/SUO Guideline (2023). J. Urol. 2023, 209, 1082–1090. [Google Scholar] [CrossRef] [PubMed]
- Mahjoub, S.; Heidenreich, A. Oligometastatic Prostate Cancer: Definition and the Role of Local and Systemic Therapy: A Narrative Review. Transl. Androl. Urol. 2021, 10, 3167–3175. [Google Scholar] [CrossRef] [PubMed]
- Hamid, A.A.; Sayegh, N.; Tombal, B.; Hussain, M.; Sweeney, C.J.; Graff, J.N.; Agarwal, N. Metastatic Hormone-Sensitive Prostate Cancer: Toward an Era of Adaptive and Personalized Treatment. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390166. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.; Smith, S.; Shamash, J. Metastatic Hormone-Sensitive Prostate Cancer (MHSPC): Advances and Treatment Strategies in the First-Line Setting. Oncol. Ther. 2020, 8, 209–230. [Google Scholar] [CrossRef]
- Esther, J.; Swami, U.; Chipman, J.; McFarland, T.R.; Hahn, A.W.; Sirohi, D.; Sharma, P.; Nussenzveig, R.; Agarwal, N.; Maughan, B.L. Genomic Alterations in Visceral versus Nonvisceral “Metastatic” Site Tumor Tissue in Metastatic Prostate Cancer (MPC). J. Clin. Oncol. 2020, 38, 167. [Google Scholar] [CrossRef]
- Kulasegaran, T.; Oliveira, N. Metastatic Castration-Resistant Prostate Cancer: Advances in Treatment and Symptom Management. Curr. Treat. Options Oncol. 2024, 25, 914–931. [Google Scholar] [CrossRef]
- Aggarwal, R.; Huang, J.; Alumkal, J.J.; Zhang, L.; Feng, F.Y.; Thomas, G.V.; Weinstein, A.S.; Friedl, V.; Zhang, C.; Witte, O.N.; et al. Clinical and Genomic Characterization of Treatment-Emergent Small-Cell Neuroendocrine Prostate Cancer: A Multi-Institutional Prospective Study. J. Clin. Oncol. 2018, 36, 2492–2503. [Google Scholar] [CrossRef]
- Yamada, Y.; Beltran, H. Clinical and Biological Features of Neuroendocrine Prostate Cancer. Curr. Oncol. Rep. 2021, 23, 15. [Google Scholar] [CrossRef]
- Simsek, D.H.; Sanli, Y.; Civan, C.; Engin, M.N.; Isik, E.G.; Ozkan, Z.G.; Kuyumcu, S. Does bone scintigraphy still have a role in the era of 68 Ga-PSMA PET/CT in prostate cancer? Ann. Nucl. Med. 2020, 34, 476–485. [Google Scholar] [CrossRef]
- Grant Owens, R.; Loloi, J.; Lehman, E.B.; Kaag, M.G.; Raman, J.D.; Merrill, S.B. Is Pelvic MRI Imaging Sufficient Cross-Sectional Imaging for Staging Intermediate and High-Risk Prostate Cancer? Urol. Oncol. Semin. Orig. Investig. 2021, 39, 433.e9–433.e15. [Google Scholar] [CrossRef]
- Gammel, M.C.M.; Solari, E.L.; Eiber, M.; Rauscher, I.; Nekolla, S.G. A Clinical Role of PET-MRI in Prostate Cancer? Semin. Nucl. Med. 2024, 54, 132–140. [Google Scholar] [CrossRef]
- Lenzo, N.; Meyrick, D.; Turner, J. Review of Gallium-68 PSMA PET/CT Imaging in the Management of Prostate Cancer. Diagnostics 2018, 8, 16. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-Specific Membrane Antigen PET-CT in Patients with High-Risk Prostate Cancer before Curative-Intent Surgery or Radiotherapy (ProPSMA): A Prospective, Randomised, Multicentre Study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef] [PubMed]
- Gomis-Sellés, E.; Maldonado, A.; Gaztañaga, M.; Vera, V.; Ajulia, O.; Sancho, G.; Siva, S.; Lopez-Campos, F.; Couñago, F. Impact of PSMA-PET/CT on Radiotherapy Decisions: Is There a Clinical Benefit? Cancers 2025, 17, 1350. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.; Lee, D.; Shim, H. Metabolic Positron Emission Tomography Imaging in Cancer Detection and Therapy Response. Semin. Oncol. 2011, 38, 55–69. [Google Scholar] [CrossRef] [PubMed]
- Summers, P.; Saia, G.; Colombo, A.; Pricolo, P.; Zugni, F.; Alessi, S.; Marvaso, G.; Jereczek-Fossa, B.A.; Bellomi, M.; Petralia, G. Whole-Body Magnetic Resonance Imaging: Technique, Guidelines and Key Applications. Ecancermedicalscience 2021, 15, 1164. [Google Scholar] [CrossRef]
- Trabulsi, E.J.; Rumble, R.B.; Jadvar, H.; Hope, T.; Pomper, M.; Turkbey, B.; Rosenkrantz, A.B.; Verma, S.; Margolis, D.J.; Froemming, A.; et al. Optimum Imaging Strategies for Advanced Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2020, 38, 1963–1996. [Google Scholar] [CrossRef]
- Parker, A.L.; Benguigui, M.; Fornetti, J.; Goddard, E.; Lucotti, S.; Insua-Rodríguez, J.; Wiegmans, A.P. Current Challenges in Metastasis Research and Future Innovation for Clinical Translation. Clin. Exp. Metastasis 2022, 39, 263–277. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, Z.-Y.; Li, S.-N.; Ma, J.-Q.; Zhao, Z. Liquid Biopsy: Comprehensive Overview of Circulating Tumor DNA (Review). Oncol. Lett. 2024, 28, 548. [Google Scholar] [CrossRef] [PubMed]
- Saini, S. PSA and beyond: Alternative Prostate Cancer Biomarkers. Cell. Oncol. 2016, 39, 97–106. [Google Scholar] [CrossRef] [PubMed]
- Bryce, A.H.; Chen, Y.H.; Liu, G.; Carducci, M.A.; Jarrard, D.M.; Garcia, J.A.; Dreicer, R.; Hussain, M.; Eisenberger, M.A.; Plimack, E.R.; et al. Patterns of Cancer Progression of Metastatic Hormone-Sensitive Prostate Cancer in the ECOG3805 CHAARTED Trial. Eur. Urol. Oncol. 2020, 3, 717–724. [Google Scholar] [CrossRef] [PubMed]
- Bryce, A.H.; Alumkal, J.J.; Armstrong, A.; Higano, C.S.; Iversen, P.; Sternberg, C.N.; Rathkopf, D.; Loriot, Y.; de Bono, J.; Tombal, B.; et al. Radiographic Progression with Nonrising PSA in Metastatic Castration-Resistant Prostate Cancer: Post Hoc Analysis of PREVAIL. Prostate Cancer Prostatic Dis. 2017, 20, 221–227. [Google Scholar] [CrossRef]
- Wenzel, M.; Lutz, M.; Hoeh, B.; Koll, F.; Cano Garcia, C.; Siech, C.; Steuber, T.; Graefen, M.; Tilki, D.; Kluth, L.A.; et al. Influence of Tumor Characteristics and Time to Metastatic Disease on Oncological Outcomes in Metachronous Metastatic Prostate Cancer Patients. Clin. Genitourin. Cancer 2024, 22, 102158. [Google Scholar] [CrossRef]
- Li, D.; Lv, H.; Hao, X.; Hu, B.; Song, Y. Prognostic Value of Serum Alkaline Phosphatase in the Survival of Prostate Cancer: Evidence from a Meta-Analysis. Cancer Manag. Res 2018, 10, 3125–3139. [Google Scholar] [CrossRef]
- Mori, K.; Janisch, F.; Parizi, M.K.; Mostafaei, H.; Lysenko, I.; Enikeev, D.V.; Kimura, S.; Egawa, S.; Shariat, S.F. Prognostic Value of Alkaline Phosphatase in Hormone-Sensitive Prostate Cancer: A Systematic Review and Meta-Analysis. Int. J. Clin. Oncol. 2020, 25, 247–257. [Google Scholar] [CrossRef]
- Rao, S.R.; Snaith, A.E.; Marino, D.; Cheng, X.; Lwin, S.T.; Orriss, I.R.; Hamdy, F.C.; Edwards, C.M. Tumour-Derived Alkaline Phosphatase Regulates Tumour Growth, Epithelial Plasticity and Disease-Free Survival in Metastatic Prostate Cancer. Br. J. Cancer 2017, 116, 227–236. [Google Scholar] [CrossRef]
- Dai, D.; Han, S.; Li, L.; Guo, Y.; Wei, Y.; Jin, H.; Wang, X. Anemia Is Associated with Poor Outcomes of Metastatic Castration-Resistant Prostate Cancer, a Systematic Review and Meta-Analysis. Am. J. Transl. Res. 2018, 10, 3877–3886. [Google Scholar]
- Beer, T.M.; Tangen, C.M.; Bland, L.B.; Hussain, M.; Goldman, B.H.; DeLoughery, T.G.; Crawford, E.D. The Prognostic Value of Hemoglobin Change after Initiating Androgen-deprivation Therapy for Newly Diagnosed Metastatic Prostate Cancer. Cancer 2006, 107, 489–496. [Google Scholar] [CrossRef]
- Nalesnik, J.G.; Mysliwiec, A.G.; Canby-Hagino, E. Anemia in Men with Advanced Prostate Cancer: Incidence, Etiology, and Treatment. Rev. Urol. 2004, 6, 1. [Google Scholar]
- Grossmann, M.; Zajac, J.D. Hematological Changes during Androgen Deprivation Therapy. Asian J. Androl. 2012, 14, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Agrawal, A.C.; Saini, D.; Nanda, R. Serum Osteopontin as a Potential Marker for Metastasis and Prognosis in Primary Osteogenic Sarcoma: A Systematic Review. Cureus 2024, 16, e60544. [Google Scholar] [CrossRef]
- Ying, M.; Mao, J.; Sheng, L.; Wu, H.; Bai, G.; Zhong, Z.; Pan, Z. Biomarkers for Prostate Cancer Bone Metastasis Detection and Prediction. J. Pers. Med. 2023, 13, 705. [Google Scholar] [CrossRef] [PubMed]
- Lv, Y.; Wang, G.; Xu, W.; Tao, P.; Lv, X.; Wang, Y. Tartrate-Resistant Acid Phosphatase 5b Is a Marker of Osteoclast Number and Volume in RAW 264.7 Cells Treated with Receptor-Activated Nuclear ΚB Ligand. Exp. Ther. Med. 2015, 9, 143–146. [Google Scholar] [CrossRef] [PubMed]
- Antonarakis, E.S.; Lu, C.; Wang, H.; Luber, B.; Nakazawa, M.; Roeser, J.C.; Chen, Y.; Mohammad, T.A.; Chen, Y.; Fedor, H.L.; et al. AR-V7 and Resistance to Enzalutamide and Abiraterone in Prostate Cancer. N. Engl. J. Med. 2014, 371, 1028–1038. [Google Scholar] [CrossRef]
- Bastos, D.A.; Antonarakis, E.S. CTC-Derived AR-V7 Detection as a Prognostic and Predictive Biomarker in Advanced Prostate Cancer. Expert. Rev. Mol. Diagn. 2018, 18, 155–163. [Google Scholar] [CrossRef]
- McKay, R.R.; Nelson, T.J.; Pagadala, M.S.; Teerlink, C.C.; Gao, A.; Bryant, A.K.; Agiri, F.Y.; Guram, K.; Thompson, R.F.; Pridgen, K.M.; et al. Adrenal-Permissive Germline HSD3B1 Allele and Prostate Cancer Outcomes. JAMA Netw. Open 2024, 7, e242976. [Google Scholar] [CrossRef]
- Lee, H.; Shen, J.; Fadlullah, M.Z.; Neibling, A.; Hanson, C.; Ampaw, E.; Lin, T.; Larsen, M.; Lloyd, J.; Maughan, B.L.; et al. Circulatory Prostate Cancer Proteome Landscapes and Prognostic Biomarkers in Metastatic Castrate Resistant Prostate Cancer. Clin. Proteom. 2025, 22, 13. [Google Scholar] [CrossRef]
- Krauss, D.J.; Hayek, S.; Amin, M.; Ye, H.; Kestin, L.L.; Zadora, S.; Vicini, F.A.; Cotant, M.; Brabbins, D.S.; Ghilezan, M.I.; et al. Prognostic Significance of Neuroendocrine Differentiation in Patients With Gleason Score 8–10 Prostate Cancer Treated With Primary Radiotherapy. Int. J. Radiat. Oncol. Biol. Phys. 2011, 81, e119–e125. [Google Scholar] [CrossRef]
- Tang, X.; Liu, Z.; Song, L.; Zhu, H.; Su, S.; Wang, D. Prognostic Value of Circulating Chromogranin A in Prostate Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2025, 15, 1521558. [Google Scholar] [CrossRef] [PubMed]
- Spetsieris, N.; Boukovala, M.; Patsakis, G.; Alafis, I.; Efstathiou, E. Neuroendocrine and Aggressive-Variant Prostate Cancer. Cancers 2020, 12, 3792. [Google Scholar] [CrossRef] [PubMed]
- Lok, B.H.; Gardner, E.E.; Schneeberger, V.E.; Ni, A.; Desmeules, P.; Rekhtman, N.; de Stanchina, E.; Teicher, B.A.; Riaz, N.; Powell, S.N.; et al. PARP Inhibitor Activity Correlates with SLFN11 Expression and Demonstrates Synergy with Temozolomide in Small Cell Lung Cancer. Clin. Cancer Res. 2017, 23, 523–535. [Google Scholar] [CrossRef] [PubMed]
- Wrenger, R.; Jüptner, M.; Marx, M.; Zhao, Y.; Zuhayra, M.; Caliebe, A.; Osmonov, D.; Lützen, U. Pre- and Intratherapeutic Predictors of Overall Survival in Patients with Advanced Metastasized Castration-Resistant Prostate Cancer Receiving Lu-177-PSMA-617 Radioligand Therapy. BMC Urol. 2022, 22, 96. [Google Scholar] [CrossRef]
- Li, Y.; Tang, X.; Wang, B.; Chen, M.; Zheng, J.; Chang, K. Current Landscape of Exosomal Non-Coding RNAs in Prostate Cancer: Modulators and Biomarkers. Noncoding RNA Res. 2024, 9, 1351–1362. [Google Scholar] [CrossRef]
- Matijašević Joković, S.; Korać, A.; Kovačević, S.; Djordjević, A.; Filipović, L.; Dobrijević, Z.; Brkušanin, M.; Savić-Pavićević, D.; Vuković, I.; Popović, M.; et al. Exosomal Prostate-Specific Membrane Antigen (PSMA) and Caveolin-1 as Potential Biomarkers of Prostate Cancer—Evidence from Serbian Population. Int. J. Mol. Sci. 2024, 25, 3533. [Google Scholar] [CrossRef]
- Saxby, H.; Mikropoulos, C.; Boussios, S. An Update on the Prognostic and Predictive Serum Biomarkers in Metastatic Prostate Cancer. Diagnostics 2020, 10, 549. [Google Scholar] [CrossRef]
- Goldkorn, A.; Tangen, C.; Plets, M.; Morrison, G.J.; Cunha, A.; Xu, T.; Pinski, J.K.; Ingles, S.A.; Triche, T.; Harzstark, A.L.; et al. Baseline Circulating Tumor Cell Count as a Prognostic Marker of PSA Response and Disease Progression in Metastatic Castrate-Sensitive Prostate Cancer (SWOG S1216). Clin. Cancer Res. 2021, 27, 1967–1973. [Google Scholar] [CrossRef]
- Li, J.; Gregory, S.G.; Garcia-Blanco, M.A.; Armstrong, A.J. Using Circulating Tumor Cells to Inform on Prostate Cancer Biology and Clinical Utility. Crit. Rev. Clin. Lab. Sci. 2015, 52, 191–210. [Google Scholar] [CrossRef]
- Lorente, D.; Olmos, D.; Mateo, J.; Dolling, D.; Bianchini, D.; Seed, G.; Flohr, P.; Crespo, M.; Figueiredo, I.; Miranda, S.; et al. Circulating Tumour Cell Increase as a Biomarker of Disease Progression in Metastatic Castration-Resistant Prostate Cancer Patients with Low Baseline CTC Counts. Ann. Oncol. 2018, 29, 1554–1560. [Google Scholar] [CrossRef]
- Scher, H.I.; Armstrong, A.J.; Schonhoft, J.D.; Gill, A.; Zhao, J.L.; Barnett, E.; Carbone, E.; Lu, J.; Antonarakis, E.S.; Luo, J.; et al. Development and Validation of Circulating Tumour Cell Enumeration (Epic Sciences) as a Prognostic Biomarker in Men with Metastatic Castration-Resistant Prostate Cancer. Eur. J. Cancer 2021, 150, 83–94. [Google Scholar] [CrossRef] [PubMed]
- Brown, L.C.; Halabi, S.; Schonhoft, J.D.; Yang, Q.; Luo, J.; Nanus, D.M.; Giannakakou, P.; Szmulewitz, R.Z.; Danila, D.C.; Barnett, E.S.; et al. Circulating Tumor Cell Chromosomal Instability and Neuroendocrine Phenotype by Immunomorphology and Poor Outcomes in Men with MCRPC Treated with Abiraterone or Enzalutamide. Clin. Cancer Res. 2021, 27, 4077–4088. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.W.; Tuac, Y.; Li, S.; Leeman, J.E.; King, M.T.; Orio, P.F.; Nguyen, P.L.; D’Amico, A.V.; Aktan, C.; Sayan, M. Clinical Outcomes and Genomic Alterations in Gleason Score 10 Prostate Cancer. Cancers 2025, 17, 1055. [Google Scholar] [CrossRef] [PubMed]
- Ruhotina, N. Biomarkers in Advanced Prostate Cancer: Liquid Biopsy, CtDNA, and More; Urology Times: Cranbury, NJ, USA, 2025. [Google Scholar]
- Hu, J.C.; Assel, M.; Allaf, M.E.; Vickers, A.J.; Ehdaie, B.; Cohen, A.J.; Green, D.A.; Ghazi, A.; Ristau, B.T.; Kowalczyk, K.J.; et al. Transperineal vs. Transrectal Prostate Biopsy—The PREVENT Randomized Clinical Trial. JAMA Oncol. 2024, 10, 1590. [Google Scholar] [CrossRef]
- Li, S.; Berg, S.A. The Clinical Impact of the Decipher Genomic Classifier in Prostate Cancer. Eurasian J. Med. 2024, 57, e25828. [Google Scholar] [CrossRef]
- Cimadamore, A.; Rescigno, P.; Conteduca, V.; Caliò, A.; Allegritti, M.; Calò, V.; Montagnani, I.; Lucianò, R.; Patruno, M.; Bracarda, S. SIUrO Best Practice Recommendations to Optimize BRCA 1/2 Gene Testing from DNA Extracted from Bone Biopsy in MCRPC Patients (BRCA Optimal Bone Biopsy Procedure: BOP). Virchows Arch. 2023, 483, 579–589. [Google Scholar] [CrossRef]
- Ramón y Cajal, S.; Sesé, M.; Capdevila, C.; Aasen, T.; De Mattos-Arruda, L.; Diaz-Cano, S.J.; Hernández-Losa, J.; Castellví, J. Clinical Implications of Intratumor Heterogeneity: Challenges and Opportunities. J. Mol. Med. 2020, 98, 161–177. [Google Scholar] [CrossRef]
- Hawkey, N.M.; Armstrong, A.J. Liquid Biopsy: It’s the Bloody Truth! Clin. Cancer Res. 2021, 27, 2961–2963. [Google Scholar] [CrossRef]
- Trujillo, B.; Wu, A.; Wetterskog, D.; Attard, G. Blood-Based Liquid Biopsies for Prostate Cancer: Clinical Opportunities and Challenges. Br. J. Cancer 2022, 127, 1394–1402. [Google Scholar] [CrossRef]
- Chen, E.; Cario, C.L.; Leong, L.; Lopez, K.; Márquez, C.P.; Chu, C.; Li, P.S.; Oropeza, E.; Tenggara, I.; Cowan, J.; et al. Cell-Free DNA Concentration and Fragment Size as a Biomarker for Prostate Cancer. Sci. Rep. 2021, 11, 5040. [Google Scholar] [CrossRef]
- Chen, S.; Petricca, J.; Ye, W.; Guan, J.; Zeng, Y.; Cheng, N.; Gong, L.; Shen, S.Y.; Hua, J.T.; Crumbaker, M.; et al. The Cell-Free DNA Methylome Captures Distinctions between Localized and Metastatic Prostate Tumors. Nat. Commun. 2022, 13, 6467. [Google Scholar] [CrossRef]
- Brikun, I.; Nusskern, D.; Freije, D. An Expanded Biomarker Panel for the Detection of Prostate Cancer from Urine DNA. Exp. Hematol. Oncol. 2019, 8, 13. [Google Scholar] [CrossRef] [PubMed]
- Brikun, I.; Nusskern, D.; Decatus, A.; Harvey, E.; Li, L.; Freije, D. A Panel of DNA Methylation Markers for the Detection of Prostate Cancer from FV and DRE Urine DNA. Clin. Epigenetics 2018, 10, 91. [Google Scholar] [CrossRef]
- Aykanli, E.; Arisan, S.; Arisan, E.D.; Yavuzsan, A.H. Diagnostic Value of GSTP1, RASSF1, AND RASSF2 Methylation in Serum of Prostate Cancer Patients. Urol. J. 2024, 21, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Sobhani, N.; Tierno, D.; Pavan, N.; Generali, D.; Grassi, G.; Zanconati, F.; Scaggiante, B. Circulating Cell-Free DNA Integrity for Breast and Prostate Cancer: What Is the Landscape for Clinical Management of the Most Common Cancers in Women and Men? Int. J. Mol. Sci. 2025, 26, 900. [Google Scholar] [CrossRef]
- Casadio, V.; Calistri, D.; Salvi, S.; Gunelli, R.; Carretta, E.; Amadori, D.; Silvestrini, R.; Zoli, W. Urine Cell-Free DNA Integrity as a Marker for Early Prostate Cancer Diagnosis: A Pilot Study. Biomed. Res. Int. 2013, 2013, 270457. [Google Scholar] [CrossRef]
- Feng, J.; Gang, F.; Li, X.; Jin, T.; Houbao, H.; Yu, C.; Guorong, L. Plasma Cell-Free DNA and Its DNA Integrity as Biomarker to Distinguish Prostate Cancer from Benign Prostatic Hyperplasia in Patients with Increased Serum Prostate-Specific Antigen. Int. Urol. Nephrol. 2013, 45, 1023–1028. [Google Scholar] [CrossRef]
- Arko-Boham, B.; Aryee, N.A.; Blay, R.M.; Owusu, E.D.A.; Tagoe, E.A.; Doris Shackie, E.-S.; Debrah, A.B.; Adu-Aryee, N.A. Circulating Cell-Free DNA Integrity as a Diagnostic and Prognostic Marker for Breast and Prostate Cancers. Cancer Genet. 2019, 235–236, 65–71. [Google Scholar] [CrossRef]
- Condappa, A.; McGrowder, D.; Aiken, W.; McLaughlin, W.; Gossell-Williams, M. Evaluation of Plasma Circulating Cell Free DNA Concentration and Integrity in Patients with Prostate Cancer in Jamaica: A Preliminary Study. Diseases 2020, 8, 34. [Google Scholar] [CrossRef]
- Temilola, D.O.; Wium, M.; Paccez, J.; Salukazana, A.S.; Rotimi, S.O.; Otu, H.H.; Carbone, G.M.; Kaestner, L.; Cacciatore, S.; Zerbini, L.F. Detection of Cancer-Associated Gene Mutations in Urinary Cell-Free DNA among Prostate Cancer Patients in South Africa. Genes 2023, 14, 1884. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Mandrioli, M.; Manfredini, M.; Micali, S.; Cotugno, M.; Bianchi, G.; Ozben, T.; Pellacani, G.; Del Prete, C.; et al. Seminal Cell-Free DNA Assessment as a Novel Prostate Cancer Biomarker. Pathol. Oncol. Res. 2018, 24, 941–945. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Micali, S.; Manfredini, M.; Milandri, R.; Bianchi, G.; Pellacani, G.; Kaleci, S.; Chester, J.; Conti, A.; et al. Seminal Cell Free DNA Concentration Levels Discriminate Between Prostate Cancer and Benign Prostatic Hyperplasia. Anticancer. Res. 2018, 38, 5121–5125. [Google Scholar] [CrossRef] [PubMed]
- Ponti, G.; Maccaferri, M.; Manfredini, M.; Micali, S.; Torricelli, F.; Milandri, R.; del Prete, C.; Ciarrocchi, A.; Ruini, C.; Benassi, L.; et al. Quick Assessment of Cell-Free DNA in Seminal Fluid and Fragment Size for Early Non-Invasive Prostate Cancer Diagnosis. Clin. Chim. Acta 2019, 497, 76–80. [Google Scholar] [CrossRef]
- Zhang, T.; Zhang, L.; Yuan, Q.; Wang, X.; Zhang, Y.; Wang, J.; Zhang, Y. The Noninvasive Detection of RARβ2 Promoter Methylation for the Diagnosis of Prostate Cancer. Cell Biochem. Biophys. 2015, 71, 925–930. [Google Scholar] [CrossRef]
- Škara, L.; Vodopić, T.; Pezelj, I.; Abramovic, I.; Vrhovec, B.; Vrtarić, A.; Sincic, N.; Tomas, D.; Bulimbašić, S.; Kuliš, T.; et al. Methylation Pattern of Caveolin-1 in Prostate Cancer as Potential CfDNA Biomarker. Biomol. Biomed. 2023, 23, 176. [Google Scholar] [CrossRef]
- Abramovic, I.; Pezelj, I.; Dumbovic, L.; Skara Abramovic, L.; Vodopic, T.; Bulimbasic, S.; Stimac, G.; Bulic-Jakus, F.; Kulis, T.; Katusic Bojanac, A.; et al. LGALS3 CfDNA Methylation in Seminal Fluid as a Novel Prostate Cancer Biomarker Outperforming PSA. Prostate 2024, 84, 1128–1137. [Google Scholar] [CrossRef]
- Cornford, P.; van den Bergh, R.C.N.; Briers, E.; Van den Broeck, T.; Brunckhorst, O.; Darraugh, J.; Eberli, D.; De Meerleer, G.; De Santis, M.; Farolfi, A.; et al. EAU-EANM-ESTRO-ESUR-ISUP-SIOG Guidelines on Prostate Cancer—2024 Update. Part I: Screening, Diagnosis, and Local Treatment with Curative Intent. Eur. Urol. 2024, 86, 148–163. [Google Scholar] [CrossRef]
- Fei, X.; Du, X.; Gong, Y.; Liu, J.; Fan, L.; Wang, J.; Wang, Y.; Zhu, Y.; Pan, J.; Dong, B.; et al. Early Plasma Circulating Tumor DNA as a Potential Biomarker of Disease Recurrence in Non-Metastatic Prostate Cancer. Cancer Res. Treat. 2023, 55, 969–977. [Google Scholar] [CrossRef]
- Pope, B.; Park, G.; Lau, E.; Belic, J.; Lach, R.; George, A.; McCoy, P.; Nguyen, A.; Grima, C.; Campbell, B.; et al. Ultrasensitive Detection of Circulating Tumour DNA Enriches for Patients with a Greater Risk of Recurrence of Clinically Localised Prostate Cancer. Eur. Urol. 2024, 85, 407–410. [Google Scholar] [CrossRef]
- Stitz, R.; Stoiber, F.; Silye, R.; Vlachos, G.; Andaloro, S.; Rebhan, E.; Dunzinger, M.; Pühringer, F.; Gallo, C.; El-Heliebi, A.; et al. Clinical Implementation of a Noninvasive, Multi-Analyte Droplet Digital PCR Test to Screen for Androgen Receptor Alterations. J. Mol. Diagn. 2024, 26, 467–478. [Google Scholar] [CrossRef]
- Zhang, X.; Zhou, F.; Lu, T.; Zhang, S.; Wei, X.; Qiu, X.; Xu, L.; Guo, H.; Zhuang, J. Neoadjuvant Darolutamide plus Androgen Deprivation Therapy for High-Risk and Locally Advanced Prostate Cancer: A Multicenter, Open-Label, Single-Arm, Phase II Trial. World J. Urol. 2025, 43, 58. [Google Scholar] [CrossRef]
- Alves, S.; Junior, C.S.; Muniz, G.; Silva, L.; Zortea, R.; Lima, V.; Veiga, G.; Alves, B.; Fonseca, F. Application of Z-Scan Technique in Detecting Circulating Free DNA for Prostate Cancer Diagnosis and Monitoring. Lasers Med. Sci. 2025, 40, 114. [Google Scholar] [CrossRef]
- Weiss, S.; Lamy, P.; Rusan, M.; Nørgaard, M.; Ulhøi, B.P.; Knudsen, M.; Kassentoft, C.G.; Farajzadeh, L.; Jensen, J.B.; Pedersen, J.S.; et al. Exploring the Tumor Genomic Landscape of Aggressive Prostate Cancer by Whole-Genome Sequencing of Tissue or Liquid Biopsies. Int. J. Cancer 2024, 155, 298–313. [Google Scholar] [CrossRef] [PubMed]
- Hennigan, S.T.; Trostel, S.Y.; Terrigino, N.T.; Voznesensky, O.S.; Schaefer, R.J.; Whitlock, N.C.; Wilkinson, S.; Carrabba, N.V.; Atway, R.; Shema, S.; et al. Low Abundance of Circulating Tumor DNA in Localized Prostate Cancer. JCO Precis. Oncol. 2019, 3, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Gorgannezhad, L.; Umer, M.; Islam, M.N.; Nguyen, N.-T.; Shiddiky, M.J.A. Circulating Tumor DNA and Liquid Biopsy: Opportunities, Challenges, and Recent Advances in Detection Technologies. Lab. Chip 2018, 18, 1174–1196. [Google Scholar] [CrossRef] [PubMed]
- Kluge, K.; Lotz, V.; Einspieler, H.; Haberl, D.; Spielvogel, C.; Amereller, D.; Kramer, G.; Grubmüller, B.; Shariat, S.; Haug, A.; et al. Imaging and Outcome Correlates of CtDNA Methylation Markers in Prostate Cancer: A Comparative, Cross-Sectional [68Ga]Ga-PSMA-11 PET/CT Study. Clin. Epigenetics 2025, 17, 36. [Google Scholar] [CrossRef]
- Kluge, K.; Einspieler, H.; Haberl, D.; Spielvogel, C.; Stoiber, S.; Vraka, C.; Papp, L.; Wunsch, S.; Egger, G.; Kramer, G.; et al. Examining the Relationship and Prognostic Significance of Cell-Free DNA Levels and the PSMA-Positive Tumor Volume in Men with Prostate Cancer: A Retrospective-Prospective [68Ga]Ga-PSMA-11 PET/CT Study. J. Nucl. Med. 2024, 65, 63–70. [Google Scholar] [CrossRef]
- Ding, T.; Li, X.; Zhang, L.; Wei, Z.; Xiong, C.; Wang, H.; Hao, X.; Zeng, X. Comparison of Androgen Receptor Mutation Detection between Plasma Extracellular Vesicle DNA and Cell-Free DNA and Its Relationship to Prostate Cancer Prognosis. Ann. Med. 2024, 56, 2426770. [Google Scholar] [CrossRef]
- Bonstingl, L.; Skofler, C.; Ulz, C.; Zinnegger, M.; Sallinger, K.; Schönberger, J.; Schuch, K.; Pankratz, K.; Borrás-Cherrier, A.; Somodi, V.; et al. Clinical Application of ISO and CEN/TS Standards for Liquid Biopsies-Information Everybody Wants but Nobody Wants to Pay For. Clin. Chem. 2024, 70, 1140–1150. [Google Scholar] [CrossRef]
- Liu, R.; Roberts, E.; Parsons, H.A.; Stover, E.H.; Choudhury, A.D.; Rhoades, J.; Blewett, T.; Yang, D.D.; Liu, J.F.; Mayer, E.L.; et al. DirectHRD Enables Sensitive Scar-Based Classification of Homologous Recombination Deficiency. Nucleic Acids Res. 2025, 53, gkaf313. [Google Scholar] [CrossRef] [PubMed]
- Sorrentino, C.; Di Carlo, E. Molecular Targeted Therapies in Metastatic Prostate Cancer: Recent Advances and Future Challenges. Cancers 2023, 15, 2885. [Google Scholar] [CrossRef] [PubMed]
- Beltran, H.; Romanel, A.; Conteduca, V.; Casiraghi, N.; Sigouros, M.; Franceschini, G.M.; Orlando, F.; Fedrizzi, T.; Ku, S.Y.; Dann, E.; et al. Circulating Tumor DNA Profile Recognizes Transformation to Castration-Resistant Neuroendocrine Prostate Cancer. J. Clin. Investig. 2020, 130, 1653–1668. [Google Scholar] [CrossRef] [PubMed]
- Garofoli, M.; Maiorano, B.A.; Bruno, G.; Giordano, G.; Falagario, U.G.; Necchi, A.; Carrieri, G.; Landriscina, M.; Conteduca, V. Circulating Tumor DNA: A New Research Frontier in Urological Oncology from Localized to Metastatic Disease. Eur. Urol. Oncol. 2024, 8, 805–817. [Google Scholar] [CrossRef]
- Berchuck, J.E.; Baca, S.C.; McClure, H.M.; Korthauer, K.; Tsai, H.K.; Nuzzo, P.V.; Kelleher, K.M.; He, M.; Steinharter, J.A.; Zacharia, S.; et al. Detecting Neuroendocrine Prostate Cancer Through Tissue-Informed Cell-Free DNA Methylation Analysis. Clin. Cancer Res. 2022, 28, 928–938. [Google Scholar] [CrossRef]
- Lone, S.N.; Nisar, S.; Masoodi, T.; Singh, M.; Rizwan, A.; Hashem, S.; El-Rifai, W.; Bedognetti, D.; Batra, S.K.; Haris, M.; et al. Liquid Biopsy: A Step Closer to Transform Diagnosis, Prognosis and Future of Cancer Treatments. Mol. Cancer 2022, 21, 79. [Google Scholar] [CrossRef]
- Yang, B.; Zhao, T.; Dong, B.; Chen, W.; Yang, G.; Xie, J.; Guo, C.; Wang, R.; Wang, H.; Huang, L.; et al. Circulating Tumor DNA and Tissue Complementarily Detect Genomic Alterations in Metastatic Hormone-Sensitive Prostate Cancer. iScience 2024, 27, 108931. [Google Scholar] [CrossRef]
- Choudhury, A.D.; Werner, L.; Francini, E.; Wei, X.X.; Ha, G.; Freeman, S.S.; Rhoades, J.; Reed, S.C.; Gydush, G.; Rotem, D.; et al. Tumor Fraction in Cell-Free DNA as a Biomarker in Prostate Cancer. JCI Insight 2018, 3, e122109. [Google Scholar] [CrossRef]
- Obinata, D.; Yamada, Y.; Sumiyoshi, T.; Tanegashima, T.; Watanabe, R.; Kobayashi, H.; Ito, D.; Urabe, F. Japanese Young Urologist Basic Research Collaboration Recent Advances in Basic Research on Prostate Cancer: Where We Are Heading? Int. J. Urol. 2024, 32, 219–228. [Google Scholar] [CrossRef]
- Ho, H.Y.; Chung, K.S.; Kan, C.M.; Wong, S.C. Liquid Biopsy in the Clinical Management of Cancers. Int. J. Mol. Sci. 2024, 25, 8594. [Google Scholar] [CrossRef]
- Wu, A.; Cremaschi, P.; Wetterskog, D.; Conteduca, V.; Franceschini, G.M.; Kleftogiannis, D.; Jayaram, A.; Sandhu, S.; Wong, S.Q.; Benelli, M.; et al. Genome-Wide Plasma DNA Methylation Features of Metastatic Prostate Cancer. J. Clin. Investig. 2020, 130, 1991–2000. [Google Scholar] [CrossRef] [PubMed]
- Helzer, K.T.; Sharifi, M.N.; Sperger, J.M.; Shi, Y.; Annala, M.; Bootsma, M.L.; Reese, S.R.; Taylor, A.; Kaufmann, K.R.; Krause, H.K.; et al. Fragmentomic Analysis of Circulating Tumor DNA-Targeted Cancer Panels. Ann. Oncol. 2023, 34, 813–825. [Google Scholar] [CrossRef] [PubMed]
- Yu, E.Y.; Rumble, R.B.; Agarwal, N.; Cheng, H.H.; Eggener, S.E.; Bitting, R.L.; Beltran, H.; Giri, V.N.; Spratt, D.; Mahal, B.; et al. Germline and Somatic Genomic Testing for Metastatic Prostate Cancer: ASCO Guideline. J. Clin. Oncol. 2025, 43, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Crippa, A.; De Laere, B.; Discacciati, A.; Larsson, B.; Persson, M.; Johansson, S.; D’hondt, S.; Hjälm-Eriksson, M.; Pettersson, L.; Enblad, G.; et al. Prognostic Value of the Circulating Tumor DNA Fraction in Metastatic Castration-Resistant Prostate Cancer: Results from the ProBio Platform Trial. Eur. Urol. Oncol. 2025. [Google Scholar] [CrossRef]
- Nørgaard, M.; Bjerre, M.T.; Fredsøe, J.; Vang, S.; Jensen, J.B.; De Laere, B.; Grönberg, H.; Borre, M.; Lindberg, J.; Sørensen, K.D. Prognostic Value of Low-Pass Whole Genome Sequencing of Circulating Tumor DNA in Metastatic Castration-Resistant Prostate Cancer. Clin. Chem. 2023, 69, 386–398. [Google Scholar] [CrossRef]
- Fonseca, N.M.; Maurice-Dror, C.; Herberts, C.; Tu, W.; Fan, W.; Murtha, A.J.; Kollmannsberger, C.; Kwan, E.M.; Parekh, K.; Schönlau, E.; et al. Prediction of Plasma CtDNA Fraction and Prognostic Implications of Liquid Biopsy in Advanced Prostate Cancer. Nat. Commun. 2024, 15, 1828. [Google Scholar] [CrossRef]
- Sumanasuriya, S.; Seed, G.; Parr, H.; Christova, R.; Pope, L.; Bertan, C.; Bianchini, D.; Rescigno, P.; Figueiredo, I.; Goodall, J.; et al. Elucidating Prostate Cancer Behaviour During Treatment via Low-Pass Whole-Genome Sequencing of Circulating Tumour DNA. Eur. Urol. 2021, 80, 243–253. [Google Scholar] [CrossRef]
- Kohli, M.; Tan, W.; Zheng, T.; Wang, A.; Montesinos, C.; Wong, C.; Du, P.; Jia, S.; Yadav, S.; Horvath, L.G.; et al. Clinical and Genomic Insights into Circulating Tumor DNA-Based Alterations across the Spectrum of Metastatic Hormone-Sensitive and Castrate-Resistant Prostate Cancer. EBioMedicine 2020, 54, 102728. [Google Scholar] [CrossRef]
- Conteduca, V.; Scarpi, E.; Caroli, P.; Lolli, C.; Gurioli, G.; Brighi, N.; Poti, G.; Farolfi, A.; Altavilla, A.; Schepisi, G.; et al. Combining Liquid Biopsy and Functional Imaging Analysis in Metastatic Castration-resistant Prostate Cancer Helps Predict Treatment Outcome. Mol. Oncol. 2022, 16, 538–548. [Google Scholar] [CrossRef]
- Kluge, K.; Einspieler, H.; Haberl, D.; Spielvogel, C.; Amereller, D.; Egger, G.; Kramer, G.; Grubmüller, B.; Shariat, S.; Hacker, M.; et al. Comparison of Discovery Rates and Prognostic Utility of [68Ga]Ga-PSMA-11 PET/CT and Circulating Tumor DNA in Prostate Cancer—A Cross-Sectional Study. Eur. J. Nucl. Med. Mol. Imaging 2024, 51, 2833–2842. [Google Scholar] [CrossRef]
- Mizuno, K.; Sumiyoshi, T.; Okegawa, T.; Terada, N.; Ishitoya, S.; Miyazaki, Y.; Kojima, T.; Katayama, H.; Fujimoto, N.; Hatakeyama, S.; et al. Clinical Impact of Detecting Low-Frequency Variants in Cell-Free DNA on Treatment of Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2021, 27, 6164–6173. [Google Scholar] [CrossRef]
- Franceschini, G.M.; Quaini, O.; Mizuno, K.; Orlando, F.; Ciani, Y.; Ku, S.-Y.; Sigouros, M.; Rothmann, E.; Alonso, A.; Benelli, M.; et al. Noninvasive Detection of Neuroendocrine Prostate Cancer through Targeted Cell-Free DNA Methylation. Cancer Discov. 2024, 14, 424–445. [Google Scholar] [CrossRef]
- Tukachinsky, H.; Madison, R.W.; Chung, J.H.; Gjoerup, O.V.; Severson, E.A.; Dennis, L.; Fendler, B.J.; Morley, S.; Zhong, L.; Graf, R.P.; et al. Genomic Analysis of Circulating Tumor DNA in 3,334 Patients with Advanced Prostate Cancer Identifies Targetable BRCA Alterations and AR Resistance Mechanisms. Clin. Cancer Res. 2021, 27, 3094–3105. [Google Scholar] [CrossRef]
- Conteduca, V.; Casadei, C.; Scarpi, E.; Brighi, N.; Schepisi, G.; Lolli, C.; Gurioli, G.; Toma, I.; Poti, G.; Farolfi, A.; et al. Baseline Plasma Tumor DNA (CtDNA) Correlates with PSA Kinetics in Metastatic Castration-Resistant Prostate Cancer (MCRPC) Treated with Abiraterone or Enzalutamide. Cancers 2022, 14, 2219. [Google Scholar] [CrossRef] [PubMed]
- Klein, E.A.; Richards, D.; Cohn, A.; Tummala, M.; Lapham, R.; Cosgrove, D.; Chung, G.; Clement, J.; Gao, J.; Hunkapiller, N.; et al. Clinical Validation of a Targeted Methylation-Based Multi-Cancer Early Detection Test Using an Independent Validation Set. Ann. Oncol. 2021, 32, 1167–1177. [Google Scholar] [CrossRef] [PubMed]
- Clarke, N.W.; Armstrong, A.J.; Thiery-Vuillemin, A.; Oya, M.; Shore, N.; Loredo, E.; Procopio, G.; de Menezes, J.; Girotto, G.; Arslan, C.; et al. Abiraterone and Olaparib for Metastatic Castration-Resistant Prostate Cancer. NEJM Evid. 2022, 1, EVIDoa2200043. [Google Scholar] [CrossRef]
- von Werdt, A.; Brandt, L.; Schärer, O.D.; Rubin, M.A. PARP Inhibition in Prostate Cancer With Homologous Recombination Repair Alterations. JCO Precis. Oncol. 2021, 5, 1639–1649. [Google Scholar] [CrossRef]
- Mekonnen, N.; Yang, H.; Shin, Y.K. Homologous Recombination Deficiency in Ovarian, Breast, Colorectal, Pancreatic, Non-Small Cell Lung and Prostate Cancers, and the Mechanisms of Resistance to PARP Inhibitors. Front. Oncol. 2022, 12, 880643. [Google Scholar] [CrossRef]
- Kolesnichenko, M.; Scheidereit, C. Synthetic Lethality by PARP Inhibitors: New Mechanism Uncovered Based on Unresolved Transcription-Replication Conflicts. Signal Transduct. Target. Ther. 2024, 9, 179. [Google Scholar] [CrossRef]
- Stewart, M.D.; Merino Vega, D.; Arend, R.C.; Baden, J.F.; Barbash, O.; Beaubier, N.; Collins, G.; French, T.; Ghahramani, N.; Hinson, P.; et al. Homologous Recombination Deficiency: Concepts, Definitions, and Assays. Oncologist 2022, 27, 167–174. [Google Scholar] [CrossRef]
- de Bono, J.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Olaparib for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 382, 2091–2102. [Google Scholar] [CrossRef] [PubMed]
- Abida, W.; Patnaik, A.; Campbell, D.; Shapiro, J.; Bryce, A.H.; McDermott, R.; Sautois, B.; Vogelzang, N.J.; Bambury, R.M.; Voog, E.; et al. Rucaparib in Men With Metastatic Castration-Resistant Prostate Cancer Harboring a BRCA1 or BRCA2 Gene Alteration. J. Clin. Oncol. 2020, 38, 3763–3772. [Google Scholar] [CrossRef] [PubMed]
- Woodhouse, R.; Li, M.; Hughes, J.; Delfosse, D.; Skoletsky, J.; Ma, P.; Meng, W.; Dewal, N.; Milbury, C.; Clark, T.; et al. Clinical and Analytical Validation of FoundationOne Liquid CDx, a Novel 324-Gene CfDNA-Based Comprehensive Genomic Profiling Assay for Cancers of Solid Tumor Origin. PLoS ONE 2020, 15, e0237802. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-P.H.; Tran, N.H.; Nguyen, T.A.; Ngo, M.T.; Doan, A.D.; Nguyen, D.Q.; Tang, H.S.; Nguyen, D.S.; Nguyen Thi, C.T.; Do Thi, T.T.; et al. Combination of BRCA Deep Targeted Sequencing and Shallow Whole Genome Sequencing to Detect Homologous Recombination Deficiency in Ovarian Cancer. medRxiv 2024. [Google Scholar] [CrossRef]
- Sudo, K.; Nakamura, Y.; Ueno, M.; Furukawa, M.; Mizuno, N.; Kawamoto, Y.; Okano, N.; Umemoto, K.; Asagi, A.; Ozaka, M.; et al. Clinical Utility of BRCA and ATM Mutation Status in Circulating Tumour DNA for Treatment Selection in Advanced Pancreatic Cancer. Br. J. Cancer 2024, 131, 1237–1245. [Google Scholar] [CrossRef]
- Cescon, D.W.; Bratman, S.V.; Chan, S.M.; Siu, L.L. Circulating Tumor DNA and Liquid Biopsy in Oncology. Nat. Cancer 2020, 1, 276–290. [Google Scholar] [CrossRef]
- Conteduca, V.; Wetterskog, D.; Gonzalez-Billalabeitia, E.; Brighi, N.; De Giorgi, U.; Attard, G. Circulating Androgen Receptor for Prognosis and Treatment Selection in Prostate Cancer. Eur. Urol. Oncol. 2021, 4, 740–744. [Google Scholar] [CrossRef]
- Vanwelkenhuyzen, J.; Van Bos, E.; Van Bruwaene, S.; Lesage, K.; Maes, A.; Üstmert, S.; Lavent, F.; Beels, L.; Grönberg, H.; Ost, P.; et al. AR and PI3K Genomic Profiling of Cell-Free DNA Can Identify Poor Responders to Lutetium-177-PSMA Among Patients with Metastatic Castration-Resistant Prostate Cancer. Eur. Urol. Open Sci. 2023, 53, 63–66. [Google Scholar] [CrossRef]
- Isebia, K.T.; de Jong, A.C.; van Dessel, L.F.; de Weerd, V.; Beaufort, C.; Helmijr, J.; Nakauma-González, J.A.; van Riet, J.; Hamberg, P.; Vis, D.; et al. Cell-Free DNA Aneuploidy Score as a Dynamic Early Response Marker in Prostate Cancer. Mol. Oncol. 2025, early view. [Google Scholar] [CrossRef]
- Casanova-Salas, I.; Athie, A.; Boutros, P.C.; Del Re, M.; Miyamoto, D.T.; Pienta, K.J.; Posadas, E.M.; Sowalsky, A.G.; Stenzl, A.; Wyatt, A.W.; et al. Quantitative and Qualitative Analysis of Blood-Based Liquid Biopsies to Inform Clinical Decision-Making in Prostate Cancer. Eur. Urol. 2021, 79, 762–771. [Google Scholar] [CrossRef]
- Bjerre, M.T.; Nørgaard, M.; Larsen, O.H.; Jensen, S.Ø.; Strand, S.H.; Østergren, P.; Fode, M.; Fredsøe, J.; Ulhøi, B.P.; Mortensen, M.M.; et al. Epigenetic Analysis of Circulating Tumor DNA in Localized and Metastatic Prostate Cancer: Evaluation of Clinical Biomarker Potential. Cells 2020, 9, 1362. [Google Scholar] [CrossRef]
- Conteduca, V.; Wetterskog, D.; Scarpi, E.; Romanel, A.; Gurioli, G.; Jayaram, A.; Lolli, C.; Tandefelt, D.G.; Schepisi, G.; Casadei, C.; et al. Plasma Tumour DNA as an Early Indicator of Treatment Response in Metastatic Castration-Resistant Prostate Cancer. Br. J. Cancer 2020, 123, 982–987. [Google Scholar] [CrossRef] [PubMed]
- Tolmeijer, S.H.; Boerrigter, E.; Sumiyoshi, T.; Kwan, E.M.; Ng, S.W.S.; Annala, M.; Donnellan, G.; Herberts, C.; Benoist, G.E.; Hamberg, P.; et al. Early On-Treatment Changes in Circulating Tumor DNA Fraction and Response to Enzalutamide or Abiraterone in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2023, 29, 2835–2844. [Google Scholar] [CrossRef] [PubMed]
- De Sarkar, N.; Patton, R.D.; Doebley, A.-L.; Hanratty, B.; Adil, M.; Kreitzman, A.J.; Sarthy, J.F.; Ko, M.; Brahma, S.; Meers, M.P.; et al. Nucleosome Patterns in Circulating Tumor DNA Reveal Transcriptional Regulation of Advanced Prostate Cancer Phenotypes. Cancer Discov. 2023, 13, 632–653. [Google Scholar] [CrossRef]
- Huang, J.; Soupir, A.C.; Wang, L. Cell-Free DNA Methylome Profiling by MBD-Seq with Ultra-Low Input. Epigenetics 2022, 17, 239–252. [Google Scholar] [CrossRef]
- Lleshi, E.; Milne-Clark, T.; Lee Yu, H.; Martin, H.W.; Hanson, R.; Lach, R.; Rossi, S.H.; Riediger, A.L.; Görtz, M.; Sültmann, H.; et al. Prostate Cancer Detection through Unbiased Capture of Methylated Cell-Free DNA. iScience 2024, 27, 110330. [Google Scholar] [CrossRef] [PubMed]
- Valle-Inclan, J.E.; Stangl, C.; de Jong, A.C.; van Dessel, L.F.; van Roosmalen, M.J.; Helmijr, J.C.A.; Renkens, I.; Janssen, R.; de Blank, S.; de Witte, C.J.; et al. Optimizing Nanopore Sequencing-Based Detection of Structural Variants Enables Individualized Circulating Tumor DNA-Based Disease Monitoring in Cancer Patients. Genome Med. 2021, 13, 86. [Google Scholar] [CrossRef]
- Scandino, R.; Nardone, A.; Casiraghi, N.; Galardi, F.; Genovese, M.; Romagnoli, D.; Paoli, M.; Biagioni, C.; Tonina, A.; Migliaccio, I.; et al. Enabling Sensitive and Precise Detection of CtDNA through Somatic Copy Number Aberrations in Breast Cancer. NPJ Breast Cancer 2025, 11, 25. [Google Scholar] [CrossRef]
- Beagan, J.J.; Drees, E.E.E.; Stathi, P.; Eijk, P.P.; Meulenbroeks, L.; Kessler, F.; Middeldorp, J.M.; Pegtel, D.M.; Zijlstra, J.M.; Sie, D.; et al. PCR-Free Shallow Whole Genome Sequencing for Chromosomal Copy Number Detection from Plasma of Cancer Patients Is an Efficient Alternative to the Conventional PCR-Based Approach. J. Mol. Diagn. 2021, 23, 1553–1563. [Google Scholar] [CrossRef]
- Chen, L.-T.; Jager, M.; Rebergen, D.; Brink, G.J.; van den Ende, T.; Vanderlinden, W.; Kolbeck, P.; Pagès-Gallego, M.; van der Pol, Y.; Besselink, N.; et al. Nanopore-Based Consensus Sequencing Enables Accurate Multimodal Tumor Cell-Free DNA Profiling. Genome Res. 2025, 35, 886–899. [Google Scholar] [CrossRef]
- Trinidad, E.M.; Juan-Ribelles, A.; Pisano, G.; Castel, V.; Cañete, A.; Gut, M.; Heath, S.; Font de Mora, J. Evaluation of Circulating Tumor DNA by Electropherogram Analysis and Methylome Profiling in High-Risk Neuroblastomas. Front. Oncol. 2023, 13, 1037342. [Google Scholar] [CrossRef]
- Yu, J.; Yang, C.; Zhu, X.; Wang, Z.; Xu, B.; Cai, Y.; Zhao, J.; Guo, R.; Yuan, W.; Wang, J.; et al. A DNA Alteration and Methylation Co-Detection Method for Clinical Purpose. EMBO Mol. Med. 2025, 17, 1825–1841. [Google Scholar] [CrossRef]
- Foundation Medicine Patient FAQs. Available online: https://www.foundationmedicine.com/faq/patient-faqs#:~:text=FoundationOne%C2%AEHeme%3A-,%243%2C500,-FoundationOne%C2%AERNA (accessed on 14 July 2025).
- FoundationOne®Liquid CDx. Available online: https://www.foundationmedicine.com/test/foundationone-liquid-cdx#:~:text=10%20patients%20%2D%2D%20pay%20%24-,0,-for%20testing.5 (accessed on 14 July 2025).
- Fizazi, K.; Bernard-Tessier, A.; Roubaud, G.; Utriainen, T.; Barthélémy, P.; Fléchon, A.; van der Voet, J.; Gravis, G.; Ratta, R.; Jones, R.; et al. Targeted Inhibition of CYP11A1 in Castration-Resistant Prostate Cancer. NEJM Evid. 2023, 3, EVIDoa2300171. [Google Scholar] [CrossRef]
- Urabe, F.; Sumiyoshi, T.; Tashiro, K.; Goto, T.; Kimura, T.; Kobayashi, T. Prostate Cancer and Liquid Biopsies: Clinical Applications and Challenges. Int. J. Urol. 2024, 31, 617–626. [Google Scholar] [CrossRef]
- Bao, Y.; Zhang, D.; Guo, H.; Ma, W. Beyond Blood: Advancing the Frontiers of Liquid Biopsy in Oncology and Personalized Medicine. Cancer Sci. 2024, 115, 1060–1072. [Google Scholar] [CrossRef]
- Mishra, A.; Huang, S.-B.; Dubash, T.; Burr, R.; Edd, J.F.; Wittner, B.S.; Cunneely, Q.E.; Putaturo, V.R.; Deshpande, A.; Antmen, E.; et al. Tumor Cell-Based Liquid Biopsy Using High-Throughput Microfluidic Enrichment of Entire Leukapheresis Product. Nat. Commun. 2025, 16, 32. [Google Scholar] [CrossRef] [PubMed]
- Nordgård, O.; Forthun, R.B.; Lapin, M.; Grønberg, B.H.; Kalland, K.H.; Kopperud, R.K.; Thomsen, L.C.V.; Tjensvoll, K.; Gilje, B.; Gjertsen, B.T.; et al. Liquid Biopsies in Solid Cancers: Implementation in a Nordic Healthcare System. Cancers 2021, 13, 1861. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Zhang, H.; Wang, Y.; Lin, Y.; Li, Q.; Li, L.; Zeng, G.; Ou, R.; Cheng, X.; Zhang, Y.; et al. Effects of Blood-Processing Protocols on Cell-Free DNA Fragmentomics in Plasma: Comparisons of One- and Two-Step Centrifugations. Clin. Chim. Acta 2024, 560, 119729. [Google Scholar] [CrossRef] [PubMed]
- Polatoglou, E.; Mayer, Z.; Ungerer, V.; Bronkhorst, A.J.; Holdenrieder, S. Isolation and Quantification of Plasma Cell-Free DNA Using Different Manual and Automated Methods. Diagnostics 2022, 12, 2550. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Y.; Zhang, H.; Cao, H.; Mao, J.; Chen, X.; Wang, L.; Zhang, N.; Luo, P.; Xue, J.; et al. Liquid Biopsy for Human Cancer: Cancer Screening, Monitoring, and Treatment. MedComm 2024, 5, e564. [Google Scholar] [CrossRef]
Site | Prevalence [10] | Prognostic Significance [11,12] |
---|---|---|
Bone | 90% | Associated with skeletal-related events (e.g., fractures) |
Lymph Nodes | 84% | Poor response to local therapies |
Lungs | 46% | Often concurrent with bone metastasis |
Liver | 25% | Halves median survival vs. bone-only |
Pleura/Adrenals | 21%/13% | Rarely isolated |
Modality | Mechanism and Utility | Clinical Role | Limitations | Additional Notes |
---|---|---|---|---|
Bone Scan [23] | Uses radioactive tracers that accumulate in osteoblastic metastases, creating “hot spots”. | Gold standard for detecting osteoblastic bone metastases; cost-effective and widely available. |
| Serial scans monitor treatment response, though changes lag behind PSA kinetics. |
CT Scan [24] | Cross-sectional imaging to visualize lymphadenopathy, visceral metastases (liver, lungs), and soft tissue. | Part of TNM staging; added tool for diagnostics and treatment planning. | Limited sensitivity for subcentimeter lesions or early lymph node/bone metastases. | Often paired with MRI for comprehensive assessment. |
MRI [24] |
|
| Less sensitive than PSMA PET/CT for small bone/lymph node metastases. | Preferred for assessing soft-tissue recurrence in the prostate bed. |
PSMA PET/CT [26,27,28] | Targets PSMA (overexpressed in prostate cancer) using tracers, such as gallium−68, fluorine−18, etc. |
|
| Recommended by NCCN/EUA guidelines for high-risk primary staging and biochemical recurrence. |
FDG PET/CT [29] | Detects glucose metabolism via fluorodeoxyglucose (FDG) uptake in metabolically active tumors. | Limited role in prostate cancer due to low FDG avidity in most adenocarcinomas. |
| Occasionally used in patients with advanced disease. |
PSMA PET/MRI [25] | Combines PSMA-targeted PET with MRI’s soft-tissue resolution for hybrid metabolic/anatomic imaging. |
| Limited availability, longer scan time, and higher cost than PET/CT. | Emerges as a “one-stop” modality for high-risk patients, but lacks widespread adoption. |
Whole-Body MRI [30] | Multi-sequence MRI covering entire body without radiation; detects bone/soft-tissue metastases. |
|
| Preferred young patients or those requiring repeated imaging (e.g., active surveillance). |
Biomarker | Sample Type |
Sensitivity
(95% CI) |
Specificity
(95% CI) |
PPV
(95% CI) |
NPV
(95% CI) | Purpose | Study |
---|---|---|---|---|---|---|---|
Panel of 10 epigenetic biomarkers | Post-digital rectal examination urine | 81% (0.68–0.93) | 76% (0.63–0.88) | 71% (N/A) | 85% (N/A) | Diagnosis | [75] |
First void urine | 93% (0.84–1.02) | 77% (0.63–0.91) | 77% (N/A) | 93% (N/A) | Diagnosis; risk stratification | ||
Panel of six methylated markers | Post-digital rectal examination urine | 89% (0.79–0.97) | 71% (0.57–0.86) | >70% (N/A) | ≥90% (N/A) | Diagnosis; risk stratification | [76] |
First void urine | 94% (0.84–1.0) | 71% (0.57–0.86) | >70% (N/A) | ≥90% (N/A) | Prognosis —metastasis risk | ||
RASSF2 | Serum | 69% (0.39–0.91) | 39% (0.24–0.55) | 26% (0.19–0.36) | 80% (0.62–0.91) | Diagnosis | [77] |
cfDI (ALU 247/115 ratio) | Plasma | 81.7% (N/A) | 78.8% (N/A) | 89% (N/A) | 67% (N/A) | Diagnosis | [80] |
cfDI | Urine | 79% (0.62–0.90) | 84% (0.65–0.94) | N/A | N/A | Risk stratification | [79] |
cfDI (ALU 247/115 ratio) | Serum | N/A | N/A | N/A | N/A | Diagnosis; risk stratification | [81] |
cfDI (ALU 247/115 ratio) | Plasma | N/A | N/A | N/A | N/A | Diagnosis (not significant) | [82] |
cfDNA methylome | Plasma | N/A | N/A | N/A | N/A | Diagnosis —aggressive PC | [74] |
RARβ2 promoter methylation | Seminal fluid | N/A | N/A | N/A | N/A | Diagnosis —high-grade PC | [87] |
CAV1 (CpG1) | Seminal fluid | 59% (0.51–0.75) | 63% (0.51–0.75) | N/A | N/A | Prognosis —biochemical recurrence | [88] |
LGALS3 methylation | Seminal fluid | 56.4% (0.53–0.76) | 70.4% (0.53–0.76) | N/A | N/A | Diagnosis | [89] |
Parameter | Localized PC | Metastatic PC |
---|---|---|
Fraction | ~0.1–10%, often below quantification threshold [108] | High (~50–95%), measurable for serial tracking [106] |
Markers in focus of research | Epigenomic alterations and fragmentomics for early diagnosis and risk stratification [74,75,76,78,79] | ctDNAF, epigenomic, and genomic alterations, including alterations used in therapy selection—AR, HRR and MMR deficiencies, etc. [105,106,107,113] |
Methylation profiles | Subtle, tissue-specific methylation signatures; harder to distinguish [74,75,76,77,87,88,89] | Abundant methylation aberrancies, patterns can differentiate between various subtypes [113] |
Tumor/ctDNA alterations correspondence | ~50–60% [109] | ~80–90% [109] |
Assay requirements | Ultra-sensitive [114] | Standard sequencing methods, low-pass sequencing, as well as ddPCR, etc. [106] |
Clinical utility | Experimental; early detection [115] | Established for monitoring, diagnosis; being tested for therapy selection [115] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kopytov, S.A.; Sagitova, G.R.; Guschin, D.Y.; Egorova, V.S.; Zvyagin, A.V.; Rzhevskiy, A.S. Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management. Cancers 2025, 17, 2589. https://doi.org/10.3390/cancers17152589
Kopytov SA, Sagitova GR, Guschin DY, Egorova VS, Zvyagin AV, Rzhevskiy AS. Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management. Cancers. 2025; 17(15):2589. https://doi.org/10.3390/cancers17152589
Chicago/Turabian StyleKopytov, Stepan A., Guzel R. Sagitova, Dmitry Y. Guschin, Vera S. Egorova, Andrei V. Zvyagin, and Alexey S. Rzhevskiy. 2025. "Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management" Cancers 17, no. 15: 2589. https://doi.org/10.3390/cancers17152589
APA StyleKopytov, S. A., Sagitova, G. R., Guschin, D. Y., Egorova, V. S., Zvyagin, A. V., & Rzhevskiy, A. S. (2025). Circulating Tumor DNA in Prostate Cancer: A Dual Perspective on Early Detection and Advanced Disease Management. Cancers, 17(15), 2589. https://doi.org/10.3390/cancers17152589