Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (245)

Search Parameters:
Keywords = traditional EMS

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2535 KiB  
Article
A High-Granularity, Machine Learning Informed Spatial Predictive Model for Epidemic Monitoring: The Case of COVID-19 in Lombardy Region, Italy
by Lorenzo Gianquintieri, Andrea Pagliosa, Rodolfo Bonora and Enrico Gianluca Caiani
Appl. Sci. 2025, 15(15), 8729; https://doi.org/10.3390/app15158729 - 7 Aug 2025
Abstract
This study aimed at proposing a predictive model for real-time monitoring of epidemic dynamics at the municipal scale in Lombardy region, in northern Italy, leveraging Emergency Medical Services (EMS) dispatch data and Geographic Information Systems (GIS) methodologies. Unlike traditional epidemiological models that rely [...] Read more.
This study aimed at proposing a predictive model for real-time monitoring of epidemic dynamics at the municipal scale in Lombardy region, in northern Italy, leveraging Emergency Medical Services (EMS) dispatch data and Geographic Information Systems (GIS) methodologies. Unlike traditional epidemiological models that rely on official diagnoses and offer limited spatial granularity, our approach uses EMS call data (rapidly collected, geo-referenced, and unbiased by institutional delays) as an early proxy for outbreak detection. The model integrates spatial filtering and machine learning (random forest classifier) to categorize municipalities into five epidemic scenarios: from no diffusion to active spread with increasing trends. Developed in collaboration with the Lombardy EMS agency (AREU), the system is designed for operational applicability, emphasizing simplicity, speed, and interpretability. Despite the complexity of the phenomenon and the use of a five-class output, the model shows promising predictive capacity, particularly for identifying outbreak-free areas. Performance is affected by changing epidemic dynamics, such as those induced by widespread vaccination, yet remains informative for early warning. The framework supports health decision-makers with timely, localized insights, offering a scalable tool for epidemic preparedness and response. Full article
(This article belongs to the Special Issue Artificial Intelligence (AI) Technologies in Biomedicine)
Show Figures

Figure 1

14 pages, 2728 KiB  
Article
Performance Analysis of Vehicle EM–ISD Suspension Considering Parasitic Damping
by Zhihong Jia, Yanling Liu, Yujie Shen, Chen Luo and Xiaofeng Yang
Machines 2025, 13(8), 690; https://doi.org/10.3390/machines13080690 - 6 Aug 2025
Abstract
In the practical physical structure of the electromagnetic inerter–spring–damper (EM–ISD) suspension, parasitic damping inevitably coexists with the mechanical inerter effect. To investigate the intrinsic influence of this parasitic effect on the suspension system’s performance, this study first establishes a quarter-vehicle dynamic model that [...] Read more.
In the practical physical structure of the electromagnetic inerter–spring–damper (EM–ISD) suspension, parasitic damping inevitably coexists with the mechanical inerter effect. To investigate the intrinsic influence of this parasitic effect on the suspension system’s performance, this study first establishes a quarter-vehicle dynamic model that incorporates parasitic damping, based on the actual configuration of the EM–ISD suspension. Subsequently, the particle swarm optimization (PSO) algorithm is employed to optimize the key suspension parameters, with the objective of enhancing its comprehensive performance. The optimized parameters are then utilized to systematically analyze the dynamic characteristics of the suspension under the influence of parasitic damping. The results indicate that, compared to an ideal model that neglects parasitic damping, an increase in the parasitic damping coefficient leads to a deterioration in the root mean square (RMS) value of body acceleration, while concurrently reducing the RMS values of the suspension working space and dynamic tire load. However, by incorporating parasitic damping into the design considerations during the optimization phase, its adverse impact on ride comfort can be effectively mitigated. Compared with a traditional passive suspension, the optimized EM–ISD suspension, which accounts for parasitic damping, demonstrates superior performance. Specifically, the RMS values of body acceleration and suspension working space are significantly reduced by 11.1% and 17.6%, respectively, thereby effectively improving the vehicle’s ride comfort and handling stability. Full article
(This article belongs to the Special Issue New Journeys in Vehicle System Dynamics and Control)
Show Figures

Figure 1

14 pages, 1728 KiB  
Article
Accelerating High-Frequency Circuit Optimization Using Machine Learning-Generated Inverse Maps for Enhanced Space Mapping
by Jorge Davalos-Guzman, Jose L. Chavez-Hurtado and Zabdiel Brito-Brito
Electronics 2025, 14(15), 3097; https://doi.org/10.3390/electronics14153097 - 3 Aug 2025
Viewed by 207
Abstract
The optimization of high-frequency circuits remains a computationally intensive task due to the need for repeated high-fidelity electromagnetic (EM) simulations. To address this challenge, we propose a novel integration of machine learning-generated inverse maps within the space mapping (SM) optimization framework to significantly [...] Read more.
The optimization of high-frequency circuits remains a computationally intensive task due to the need for repeated high-fidelity electromagnetic (EM) simulations. To address this challenge, we propose a novel integration of machine learning-generated inverse maps within the space mapping (SM) optimization framework to significantly accelerate circuit optimization while maintaining high accuracy. The proposed approach leverages Bayesian Neural Networks (BNNs) and surrogate modeling techniques to construct an inverse mapping function that directly predicts design parameters from target performance metrics, bypassing iterative forward simulations. The methodology was validated using a low-pass filter optimization scenario, where the inverse surrogate model was trained using electromagnetic simulations from COMSOL Multiphysics 2024 r6.3 and optimized using MATLAB R2024b r24.2 trust region algorithm. Experimental results demonstrate that our approach reduces the number of high-fidelity simulations by over 80% compared to conventional SM techniques while achieving high accuracy with a mean absolute error (MAE) of 0.0262 (0.47%). Additionally, convergence efficiency was significantly improved, with the inverse surrogate model requiring only 31 coarse model simulations, compared to 580 in traditional SM. These findings demonstrate that machine learning-driven inverse surrogate modeling significantly reduces computational overhead, accelerates optimization, and enhances the accuracy of high-frequency circuit design. This approach offers a promising alternative to traditional SM methods, paving the way for more efficient RF and microwave circuit design workflows. Full article
(This article belongs to the Special Issue Advances in Algorithm Optimization and Computational Intelligence)
Show Figures

Figure 1

15 pages, 5152 KiB  
Article
Assessment of Emergy, Environmental and Economic Sustainability of the Mango Orchard Production System in Hainan, China
by Yali Lei, Xiaohui Zhou and Hanting Cheng
Sustainability 2025, 17(15), 7030; https://doi.org/10.3390/su17157030 - 2 Aug 2025
Viewed by 252
Abstract
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the [...] Read more.
Mangoes are an important part of Hainan’s tropical characteristic agriculture. In response to the requirements of building an ecological civilization pilot demonstration zone in Hainan, China, green and sustainable development will be the future development trend of the mango planting system. However, the economic benefits and environmental impact during its planting and management process remain unclear. This paper combines emergy, life cycle assessment (LCA), and economic analysis to compare the system sustainability, environmental impact, and economic benefits of the traditional mango cultivation system (TM) in Dongfang City, Hainan Province, and the early-maturing mango cultivation system (EM) in Sanya City. The emergy evaluation results show that the total emergy input of EM (1.37 × 1016 sej ha−1) was higher than that of TM (1.32 × 1016 sej ha−1). From the perspective of the emergy index, compared with TM, EM exerted less pressure on the local environment and has better stability and sustainability. This was due to the higher input of renewable resources in EM. The LCA results showed that based on mass as the functional unit, the potential environmental impact of the EM is relatively high, and its total environmental impact index was 18.67–33.19% higher than that of the TM. Fertilizer input and On-Farm emissions were the main factors causing environmental consequences. Choosing alternative fertilizers that have a smaller impact on the environment may effectively reduce the environmental impact of the system. The economic analysis results showed that due to the higher selling price of early-maturing mango, the total profit and cost–benefit ratio of the EM have increased by 55.84% and 36.87%, respectively, compared with the TM. These results indicated that EM in Sanya City can enhance environmental sustainability and boost producers’ annual income, but attention should be paid to the negative environmental impact of excessive fertilizer input. These findings offer insights into optimizing agricultural inputs for Hainan mango production to mitigate multiple environmental impacts while enhancing economic benefits, aiming to provide theoretical support for promoting the sustainable development of the Hainan mango industry. Full article
Show Figures

Graphical abstract

22 pages, 6436 KiB  
Article
Low-Resolution ADCs Constrained Joint Uplink/Downlink Channel Estimation for mmWave Massive MIMO
by Songxu Wang, Yinyuan Wang and Congying Hu
Electronics 2025, 14(15), 3076; https://doi.org/10.3390/electronics14153076 - 31 Jul 2025
Viewed by 215
Abstract
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a [...] Read more.
The use of low-resolution analog-to-digital converters (ADCs) in receivers has emerged as an effective solution for reducing power consumption in millimeter-wave (mmWave) massive multiple-input–multiple-output (MIMO) systems. However, low-resolution ADCs also pose significant challenges for channel estimation. To address this issue, we propose a joint uplink/downlink (UL/DL) channel estimation algorithm that utilizes the spatial reciprocity of frequency division duplex (FDD) to improve the estimation of quantized UL channels. Quantified UL/DL channels are concentrated at the BS for joint estimation. This estimation problem is regarded as a compressed sensing problem with finite bits, which has led to the development of expectation-maximization-based quantitative generalized approximate messaging (EM-QGAMP) algorithms. In the expected step, QGAMP is used for posterior estimation of sparse channel coefficients, and the block maximization minimization (MM) algorithm is introduced in the maximization step to improve the estimation accuracy. Finally, simulation results verified the robustness of the proposed EM-QGAMP algorithm, and the proposed algorithm’s NMSE (normalized mean squared error) outperforms traditional methods by over 90% and recent state-of-the-art techniques by 30%. Full article
Show Figures

Figure 1

38 pages, 5939 KiB  
Article
Decentralized Energy Management for Microgrids Using Multilayer Perceptron Neural Networks and Modified Cheetah Optimizer
by Zulfiqar Ali Memon, Ahmed Bilal Awan, Hasan Abdel Rahim A. Zidan and Mohana Alanazi
Processes 2025, 13(8), 2385; https://doi.org/10.3390/pr13082385 - 27 Jul 2025
Viewed by 469
Abstract
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training [...] Read more.
This paper presents a decentralized energy management system (EMS) based on Multilayer Perceptron Artificial Neural Networks (MLP-ANNs) and a Modified Cheetah Optimizer (MCO) to account for uncertainty in renewable generation and load demand. The proposed framework applies an MLP-ANN with Levenberg–Marquardt (LM) training for high-precision forecasts of photovoltaic/wind generation, ambient temperature, and load demand, greatly outperforming traditional statistical methods (e.g., time-series analysis) and resilient backpropagation (RP) in precision. The new MCO algorithm eliminates local trapping and premature convergence issues in classical optimization methods like Particle Swarm Optimization (PSO) and Genetic Algorithms (GAs). Simulations on a test microgrid verily demonstrate the advantages of the framework, achieving a 26.8% cost-of-operation reduction against rule-based EMSs and classical PSO/GA, and a 15% improvement in forecast accuracy using an LM-trained MLP-ANN. Moreover, demand response programs embodied in the system reduce peak loads by 7.5% further enhancing grid stability. The MLP-ANN forecasting–MCO optimization duet is an effective and cost-competitive decentralized microgrid management solution under uncertainty. Full article
Show Figures

Figure 1

31 pages, 2271 KiB  
Article
Research on the Design of a Priority-Based Multi-Stage Emergency Material Scheduling System for Drone Coordination
by Shuoshuo Gong, Gang Chen and Zhiwei Yang
Drones 2025, 9(8), 524; https://doi.org/10.3390/drones9080524 - 25 Jul 2025
Viewed by 328
Abstract
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices [...] Read more.
Emergency material scheduling (EMS) is a core component of post-disaster emergency response, with its efficiency directly impacting rescue effectiveness and the satisfaction of affected populations. However, due to severe road damage, limited availability of resources, and logistical challenges after disasters, current EMS practices often suffer from uneven resource distribution. To address these issues, this paper proposes a priority-based, multi-stage EMS approach with drone coordination. First, we construct a three-level EMS network “storage warehouses–transit centers–disaster areas” by integrating the advantages of large-scale transportation via trains and the flexible delivery capabilities of drones. Second, considering multiple constraints, such as the priority level of disaster areas, drone flight range, transport capacity, and inventory capacities at each node, we formulate a bilevel mixed-integer nonlinear programming model. Third, given the NP-hard nature of the problem, we design a hybrid algorithm—the Tabu Genetic Algorithm combined with Branch and Bound (TGA-BB), which integrates the global search capability of genetic algorithms, the precise solution mechanism of branch and bound, and the local search avoidance features of Tabu search. A stage-adjustment operator is also introduced to better adapt the algorithm to multi-stage scheduling requirements. Finally, we designed eight instances of varying scales to systematically evaluate the performance of the stage-adjustment operator and the Tabu search mechanism within TGA-BB. Comparative experiments were conducted against several traditional heuristic algorithms. The experimental results show that TGA-BB outperformed the other algorithms across all eight test cases, in terms of both average response time and average runtime. Specifically, in Instance 7, TGA-BB reduced the average response time by approximately 52.37% compared to TGA-Particle Swarm Optimization (TGA-PSO), and in Instance 2, it shortened the average runtime by about 97.95% compared to TGA-Simulated Annealing (TGA-SA).These results fully validate the superior solution accuracy and computational efficiency of TGA-BB in drone-coordinated, multi-stage EMS. Full article
Show Figures

Figure 1

53 pages, 1950 KiB  
Article
Redefining Energy Management for Carbon-Neutral Supply Chains in Energy-Intensive Industries: An EU Perspective
by Tadeusz Skoczkowski, Sławomir Bielecki, Marcin Wołowicz and Arkadiusz Węglarz
Energies 2025, 18(15), 3932; https://doi.org/10.3390/en18153932 - 23 Jul 2025
Viewed by 324
Abstract
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth [...] Read more.
Energy-intensive industries (EIIs) face mounting pressure to reduce greenhouse gas emissions while maintaining international competitiveness—a balance that is central to achieving the EU’s 2030 and 2050 climate objectives. In this context, energy management (EM) emerges as a strategic instrument to decouple industrial growth from fossil energy consumption. This study proposes a redefinition of EM to support carbon-neutral supply chains within the European Union’s EIIs, addressing critical limitations of conventional EM frameworks under increasingly stringent carbon regulations. Using a modified systematic literature review based on PRISMA methodology, complemented by expert insights from EU Member States, this research identifies structural gaps in current EM practices and highlights opportunities for integrating sustainable innovations across the whole industrial value chain. The proposed EM concept is validated through an analysis of 24 EM definitions, over 170 scientific publications, and over 80 EU legal and strategic documents. The framework incorporates advanced digital technologies—including artificial intelligence (AI), the Internet of Things (IoT), and big data analytics—to enable real-time optimisation, predictive control, and greater system adaptability. Going beyond traditional energy efficiency, the redefined EM encompasses the entire energy lifecycle, including use, transformation, storage, and generation. It also incorporates social dimensions, such as corporate social responsibility (CSR) and stakeholder engagement, to cultivate a culture of environmental stewardship within EIIs. This holistic approach provides a strategic management tool for optimising energy use, reducing emissions, and strengthening resilience to regulatory, environmental, and market pressures, thereby promoting more sustainable, inclusive, and transparent supply chain operations. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

20 pages, 774 KiB  
Article
Robust Variable Selection via Bayesian LASSO-Composite Quantile Regression with Empirical Likelihood: A Hybrid Sampling Approach
by Ruisi Nan, Jingwei Wang, Hanfang Li and Youxi Luo
Mathematics 2025, 13(14), 2287; https://doi.org/10.3390/math13142287 - 16 Jul 2025
Viewed by 324
Abstract
Since the advent of composite quantile regression (CQR), its inherent robustness has established it as a pivotal methodology for high-dimensional data analysis. High-dimensional outlier contamination refers to data scenarios where the number of observed dimensions (p) is much greater than the [...] Read more.
Since the advent of composite quantile regression (CQR), its inherent robustness has established it as a pivotal methodology for high-dimensional data analysis. High-dimensional outlier contamination refers to data scenarios where the number of observed dimensions (p) is much greater than the sample size (n) and there are extreme outliers in the response variables or covariates (e.g., p/n > 0.1). Traditional penalized regression techniques, however, exhibit notable vulnerability to data outliers during high-dimensional variable selection, often leading to biased parameter estimates and compromised resilience. To address this critical limitation, we propose a novel empirical likelihood (EL)-based variable selection framework that integrates a Bayesian LASSO penalty within the composite quantile regression framework. By constructing a hybrid sampling mechanism that incorporates the Expectation–Maximization (EM) algorithm and Metropolis–Hastings (M-H) algorithm within the Gibbs sampling scheme, this approach effectively tackles variable selection in high-dimensional settings with outlier contamination. This innovative design enables simultaneous optimization of regression coefficients and penalty parameters, circumventing the need for ad hoc selection of optimal penalty parameters—a long-standing challenge in conventional LASSO estimation. Moreover, the proposed method imposes no restrictive assumptions on the distribution of random errors in the model. Through Monte Carlo simulations under outlier interference and empirical analysis of two U.S. house price datasets, we demonstrate that the new approach significantly enhances variable selection accuracy, reduces estimation bias for key regression coefficients, and exhibits robust resistance to data outlier contamination. Full article
Show Figures

Figure 1

19 pages, 2209 KiB  
Article
Fast Electromigration Analysis via Asymmetric Krylov-Based Model Reduction
by Pavlos Stoikos, Dimitrios Garyfallou, George Floros, Nestor Evmorfopoulos and George Stamoulis
Electronics 2025, 14(14), 2749; https://doi.org/10.3390/electronics14142749 - 8 Jul 2025
Viewed by 337
Abstract
As semiconductor technologies continue to scale aggressively, electromigration (EM) has become critical in modern VLSI design. Since traditional EM assessment methods fail to accurately capture the complex behavior of multi-segment interconnects, recent physics-based models have been developed to provide a more accurate representation [...] Read more.
As semiconductor technologies continue to scale aggressively, electromigration (EM) has become critical in modern VLSI design. Since traditional EM assessment methods fail to accurately capture the complex behavior of multi-segment interconnects, recent physics-based models have been developed to provide a more accurate representation of EM-induced stress evolution. However, numerical methods for these models result in large-scale systems, which are computationally expensive and impractical for complex interconnect structures. Model order reduction (MOR) has emerged as a key enabler for scalable EM analysis, with moment-matching (MM) techniques offering a favorable balance between efficiency and accuracy. However, conventional Krylov-based approaches often suffer from limited frequency resolution or high computational cost. Although the extended Krylov subspace (EKS) improves frequency coverage, its symmetric structure introduces significant overhead in large-scale scenarios. This work introduces a novel MOR technique based on the asymmetric extended Krylov subspace (AEKS), which improves upon the conventional EKS by incorporating a sparsity-aware and computationally efficient projection strategy. The proposed AEKS-based moment-matching framework dynamically adapts the Krylov subspace construction according to matrix sparsity, significantly reducing runtime without sacrificing accuracy. Experimental evaluation on IBM power grid benchmarks demonstrates the high accuracy of our method in both frequency-domain and transient EM simulations. The proposed approach delivers substantial runtime improvements of up to 15× over full-order simulations and 100× over COMSOL, while maintaining relative errors below 0.5%, even under time-varying current inputs. Full article
(This article belongs to the Special Issue Modern Circuits and Systems Technologies (MOCAST 2024))
Show Figures

Figure 1

9 pages, 388 KiB  
Article
Comparative Efficiency of Whole-Body Electromyostimulation and Resistance Training in Enhancing 1-Repetition Maximum
by Valentina Grgic, Ludovico Grossio, Anna Mulasso, Gennaro Boccia and Alberto Rainoldi
J. Funct. Morphol. Kinesiol. 2025, 10(3), 243; https://doi.org/10.3390/jfmk10030243 - 26 Jun 2025
Viewed by 929
Abstract
Background: Whole-body electromyostimulation (WB-EMS) combines full-body electrical muscle stimulation with instructor-assigned exercise. Electrical impulses are transmitted to the peripheral muscles through electrodes applied to the body. This study compared two training methodologies, WB-EMS training and traditional resistance training, to determine which approach [...] Read more.
Background: Whole-body electromyostimulation (WB-EMS) combines full-body electrical muscle stimulation with instructor-assigned exercise. Electrical impulses are transmitted to the peripheral muscles through electrodes applied to the body. This study compared two training methodologies, WB-EMS training and traditional resistance training, to determine which approach leads to greater strength improvement in terms of 1-repetition maximum (1-RM). Methods: Twenty sedentary women participated in a 10 weeks protocol with five evaluations conducted every two weeks. The WB-EMS group trained for 20 min per week, and the resistance training group (RT) performed an average of two training sessions per week, lasting 60 min each. Both groups were evaluated using three exercises: back squat and hammer curl (1-RM), and plank exercise (time to exhaustion). Results: Both groups increased their performance in squat (WB-EMS +36%, p = 0.0001; RT +34%, p = 0.0001), curl (WB-EMS +42%, p = 0.0001; RT +33%, p = 0.0001), and plank (WB-EMS +103%, p = 0.0001; RT +65%, p = 0.0001). No significant time × training interaction was found for any exercise, indicating that the two groups improved similarly. Conclusions: Although WB-EMS did not confer greater strength improvement than traditional resistance training, it offers a time-efficient alternative, achieving similar results with reduced time commitment. Full article
(This article belongs to the Section Physical Exercise for Health Promotion)
Show Figures

Figure 1

19 pages, 920 KiB  
Article
Ethicametrics: A New Interdisciplinary Science
by Fabio Zagonari
Stats 2025, 8(3), 50; https://doi.org/10.3390/stats8030050 - 22 Jun 2025
Cited by 1 | Viewed by 379
Abstract
This paper characterises Ethicametrics (EM) as a new interdisciplinary scientific research area focusing on metrics of ethics (MOE) and ethics of metrics (EOM), by providing a comprehensive methodological framework. EM is scientific: it is based on behavioural mathematical modelling to be statistically validated [...] Read more.
This paper characterises Ethicametrics (EM) as a new interdisciplinary scientific research area focusing on metrics of ethics (MOE) and ethics of metrics (EOM), by providing a comprehensive methodological framework. EM is scientific: it is based on behavioural mathematical modelling to be statistically validated and tested, with additional sensitivity analyses to favour immediate interpretations. EM is interdisciplinary: it spans from less to more traditional fields, with essential mutual improvements. EM is new: valid and invalid examples of EM (articles referring to an explicit and an implicit behavioural model, respectively) are scarce, recent, time-stable and discipline-focused, with 1 and 37 scientists, respectively. Thus, the core of EM (multi-level statistical analyses applied to behavioural mathematical models) is crucial to avoid biased MOE and EOM. Conversely, articles inside EM should study quantitatively any metrics or ethics, in any alternative context, at any analytical level, by using panel/longitudinal data. Behavioural models should be ethically explicit, possibly by evaluating ethics in terms of the consequences of actions. Ethical measures should be scientifically grounded by evaluating metrics in terms of ethical criteria coming from the relevant theological/philosophical literature. Note that behavioural models applied to science metrics can be used to deduce social consequences to be ethically evaluated. Full article
Show Figures

Figure 1

14 pages, 3406 KiB  
Article
Development and Evaluation of a Novel Mixed Reality-Based Surgical Navigation System for Distal Locking of Intramedullary Nails
by Fei Lyu, Puxun Tu, Xingguang Tao and Huixiang Wang
Electronics 2025, 14(12), 2486; https://doi.org/10.3390/electronics14122486 - 19 Jun 2025
Viewed by 334
Abstract
Intramedullary nailing (IMN) is the gold standard for fixing mid-shaft fractures of long bones, but distal locking remains a challenging procedure. This study aims to develop and evaluate a novel mixed reality (MR)-based surgical navigation system for distal locking of IMN through phantom [...] Read more.
Intramedullary nailing (IMN) is the gold standard for fixing mid-shaft fractures of long bones, but distal locking remains a challenging procedure. This study aims to develop and evaluate a novel mixed reality (MR)-based surgical navigation system for distal locking of IMN through phantom experiments. Twelve bone models closely replicating the mechanical properties, anatomy, and density of human tibial bone were utilized. Six orthopedic surgeons participated in the phantom experiments using both MR and traditional electromagnetic (EM) navigation systems. Effectiveness was evaluated using postoperative fluoroscopic imaging and the time taken for distal locking. Compared to the EM navigation system, the MR system significantly reduced distal locking time (81.54 ± 6.06 vs. 132.67 ± 6.45 s per screw) and achieved a higher success rate (23/24 vs. 21/24 screws accurately placed), but the difference in terms of success rate is not statistically significant. The MR-based navigation system for distal locking of IMN is time-efficient, accurate, and shows high potential for enhancing surgical precision in orthopedic procedures. Full article
(This article belongs to the Special Issue Medical Robots: Safety, Performance and Improvement)
Show Figures

Figure 1

14 pages, 1261 KiB  
Article
Influence of Pasture Diversity and NDVI on Sheep Foraging Behavior in Central Italy
by Sara Moscatelli, Simone Pesaresi, Martin Wikelski, Federico Maria Tardella, Andrea Catorci and Giacomo Quattrini
Geographies 2025, 5(2), 26; https://doi.org/10.3390/geographies5020026 - 16 Jun 2025
Viewed by 484
Abstract
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for [...] Read more.
Pastoral activities are an essential part of the cultural and ecological landscape of Central Italy. This traditional practice supports local economies, maintains biodiversity, and contributes to the sustainable use of natural resources. Understanding livestock behavior in response to environmental variability is essential for improving grazing management and animal welfare and ensuring the sustainability of these systems. This study evaluated the movement patterns of sheep grazing on pastures with differing vegetation indices in the Sibillini Mountains. Twenty lactating ewes foraging on two different pastures were monitored from June to October 2023 using GPS collars and accelerometers. GPS tracks were segmented using the Expectation Maximization Binary Clustering (EmBC) method to characterize movement behaviors, such as foraging, traveling, and resting. The NDVI was used to characterize vegetation dynamics, showing notable differences between the two pastures and across the grazing season. Additive mixed models were used to analyze data, accounting for individual variability and temporal autocorrelation in the sample. The results suggest that variations in the NDVI influence grazing behavior, with sheep in areas of lower vegetation density exhibiting increased movement during foraging. These findings provide valuable insights for optimizing grazing practices and promoting sustainable land use. Full article
Show Figures

Graphical abstract

16 pages, 4559 KiB  
Article
Subsurface Cavity Imaging Based on UNET and Cross–Hole Radar Travel–Time Fingerprint Construction
by Hui Cheng, Yonghui Zhao and Kunwei Feng
Remote Sens. 2025, 17(12), 1986; https://doi.org/10.3390/rs17121986 - 8 Jun 2025
Viewed by 546
Abstract
As a significant geological hazard in large–scale engineering construction, deep subsurface voids demand effective and precise detection methods. Cross–hole radar tomography overcomes depth limitations by transmitting/receiving electromagnetic (EM) waves between boreholes, enabling the accurate determination of the spatial distribution and EM properties of [...] Read more.
As a significant geological hazard in large–scale engineering construction, deep subsurface voids demand effective and precise detection methods. Cross–hole radar tomography overcomes depth limitations by transmitting/receiving electromagnetic (EM) waves between boreholes, enabling the accurate determination of the spatial distribution and EM properties of subsurface cavities. However, conventional inversion approaches, such as travel–time/attenuation tomography and full–waveform inversion, still face challenges in terms of their stability, accuracy, and computational efficiency. To address these limitations, this study proposes a deep learning–based imaging method that introduces the concept of travel–time fingerprints, which compress raw radar data into structured, low–dimensional inputs that retain key spatial features. A large synthetic dataset of irregular subsurface cavity models is used to pre–train a UNET model, enabling it to learn nonlinear mapping, from fingerprints to velocity structures. To enhance real–world applicability, transfer learning (TL) is employed to fine–tune the model using a small amount of field data. The refined model is then tested on cross–hole radar datasets collected from a highway construction site in Guizhou Province, China. The results demonstrate that the method can accurately recover the shape, location, and extent of underground cavities, outperforming traditional tomography in terms of clarity and interpretability. This approach offers a high–precision, computationally efficient solution for subsurface void detection, with strong engineering applicability in complex geological environments. Full article
(This article belongs to the Special Issue Advanced Ground-Penetrating Radar (GPR) Technologies and Applications)
Show Figures

Figure 1

Back to TopTop