Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,974)

Search Parameters:
Keywords = trade-off strategy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 541 KiB  
Article
Patent Licensing Strategy for Supply Chain Reshaping Under Sudden Disruptive Events
by Jianxin Zhu, Xinying Wang, Nengmin Zeng and Huijian Zhong
Systems 2025, 13(8), 672; https://doi.org/10.3390/systems13080672 (registering DOI) - 7 Aug 2025
Abstract
Supply chains are increasingly exposed to sudden disruptive events (SDEs) such as natural disasters and trade wars. We develop a multi-stage game-theoretical model to investigate a novel coping mechanism: when a firm is forced to exit the market because of SDEs, the firm [...] Read more.
Supply chains are increasingly exposed to sudden disruptive events (SDEs) such as natural disasters and trade wars. We develop a multi-stage game-theoretical model to investigate a novel coping mechanism: when a firm is forced to exit the market because of SDEs, the firm can regain profits by licensing its proprietary production tech to a competitor. We find that, compared with the scenario before SDEs, such events can even increase the profit of each manufacturer under certain conditions. Under certain conditions, the cooperative strategy (i.e., supply chain reshaping) yields a higher supply chain system profit than the non-cooperative strategy. After SDEs, the common manufacturer may either accept or reject cooperation, depending on the customer transfer rate and the cooperation cost. Notably, under the cooperation strategy, the high-tech manufacturer extracts part of the common manufacturer’s profit through patent licensing, and the existence of cooperation cost further contributes to a misalignment between the common manufacturer’s optimal decision and the supply chain system optimum. These findings contribute to the literature by identifying a novel supply chain reshaping mechanism driven by patent licensing and offer strategic guidance for firms and policymakers navigating SDE-induced market exits. Full article
(This article belongs to the Special Issue Operation and Supply Chain Risk Management)
18 pages, 1567 KiB  
Article
A Distributed Multi-Microgrid Cooperative Energy Sharing Strategy Based on Nash Bargaining
by Shi Su, Qian Zhang and Qingyang Xie
Electronics 2025, 14(15), 3155; https://doi.org/10.3390/electronics14153155 (registering DOI) - 7 Aug 2025
Abstract
With the rapid development of energy transformation, the proportion of new energy is increasing, and the efficient trading mechanism of multi-microgrids can realize energy sharing to improve the consumption rate of new energy. A distributed multi-microgrid cooperative energy sharing strategy is proposed based [...] Read more.
With the rapid development of energy transformation, the proportion of new energy is increasing, and the efficient trading mechanism of multi-microgrids can realize energy sharing to improve the consumption rate of new energy. A distributed multi-microgrid cooperative energy sharing strategy is proposed based on Nash bargaining. Firstly, by comprehensively considering the adjustable heat-to-electrical ratio, ladder-type positive and negative carbon trading, peak–valley electricity price and demand response, a multi-microgrid system with wind–solar-storage-load and combined heat and power is constructed. Then, a multi-microgrid cooperative game optimization framework is established based on Nash bargaining, and the complex nonlinear problem is decomposed into two stages to be solved. In the first stage, the cost minimization problem of multi-microgrids is solved based on the alternating direction multiplier method to maximize consumption rate and protect privacy. In the second stage, through the established contribution quantification model, Nash bargaining theory is used to fairly distribute the benefits of cooperation. The simulation results of three typical microgrids verify that the proposed strategy has good convergence properties and computational efficiency. Compared with the independent operation, the proposed strategy reduces the cost by 41% and the carbon emission by 18490kg, thus realizing low-carbon operation and optimal economic dispatch. Meanwhile, the power supply pressure of the main grid is reduced through energy interaction, thus improving the utilization rate of renewable energy. Full article
16 pages, 4330 KiB  
Article
Scaling Relationships Among the Floral Organs of Rosa chinensis var. minima: Implications for Reproductive Allocation and Floral Proportionalities
by Zhe Wen, Karl J. Niklas, Yunfeng Yang, Wen Gu, Zhongqin Li and Peijian Shi
Plants 2025, 14(15), 2446; https://doi.org/10.3390/plants14152446 - 7 Aug 2025
Abstract
Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral organs (i.e., sepals, petals, [...] Read more.
Although the allocation of biomass among floral organs reflects critical trade-offs in plant reproductive strategies, the scaling relationships governing biomass allocations remain poorly resolved, particularly in flowers. Here, we report the fresh mass scaling allocation patterns among four floral organs (i.e., sepals, petals, stamens, and carpels), and the two subtending structural components (i.e., the pedicel and receptacle) of 497 flowers of the hypogynous Rosa chinensis var. minima (miniature rose) using reduced major axis protocols. The two-parameter Weibull probability density function was also applied to characterize the distributions of floral organ mass, and revealed skewed tendencies in all six measured traits. The results show that the numerical values of the scaling exponents (α) for all pairwise power-law relationships significantly exceeded unity (α > 1), indicating disproportionate investments in larger floral structures with increasing overall flower size. Specifically, the scaling exponent of corolla fresh mass vs. calyx fresh mass was α = 1.131 (95% confidence interval [CI]: 1.086, 1.175), indicating that petal investment outpaces sepal investment as flower size increases. Reproductive organs also exhibited significant disproportionate investments (i.e., allometry): the collective carpel (gynoecium) fresh mass scaled allometrically with respect to the collective stamen (androecium) mass (α = 1.062, CI: 1.028, 1.098). Subtending axial structures (pedicel and receptacle) also had hyperallometric patterns, with pedicel mass scaling at α = 1.167 (CI: 1.106, 1.235) with respect to receptacle mass. Likewise, the combined fresh mass of all four foliar homologues (sepals, petals, androecium, and gynoecium) scaled disproportionately with respect to the biomass of the two subtending axial structures (α = 1.169, CI: 1.126, 1.214), indicating a prioritized resource allocation to reproductive and display organs. These findings are in accord with hypotheses positing that floral display traits, such as corolla size, primarily enhance pollen export by attracting pollinators, while maintaining fruit setting success through coordinated investment in gynoecium development. The consistent hyperallometry across all organ pairwise comparisons underscores the role of developmental integration in shaping floral architecture in Rosaceae, as predicted by scaling theory. By integrating morphometric and scaling analyses, this study proposes a tractable methodology for investigating floral resource allocation in monomorphic-flowering species and provides empirical evidence consistent with the adaptive patterns of floral traits within this ecologically and horticulturally significant lineage. Full article
(This article belongs to the Section Plant Modeling)
Show Figures

Figure 1

21 pages, 3488 KiB  
Article
Effects of Continuous Saline Water Irrigation on Soil Salinization Characteristics and Dryland Jujube Tree
by Qiao Zhao, Mingliang Xin, Pengrui Ai and Yingjie Ma
Agronomy 2025, 15(8), 1898; https://doi.org/10.3390/agronomy15081898 - 7 Aug 2025
Abstract
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the [...] Read more.
The sustainable utilization of saline water resources represents an effective strategy for alleviating water scarcity in arid regions. However, the mechanisms by which prolonged saline water irrigation influences soil salinization and dryland crop growth are not yet fully understood. This study examined the effects of six irrigation water salinity levels (CK: 0.87 g·L−1, S1: 2 g·L−1, S2: 4 g·L−1, S3: 6 g·L−1, S4: 8 g·L−1, S5: 10 g·L−1) on soil salinization dynamics and jujube growth during a three-year field experiment (2020–2022). The results showed that soil salinity within the 0–1 m profile significantly increased with rising irrigation water salinity and prolonged irrigation duration, with the 0–0.4 m layer accounting for 50.27–74.95% of the total salt accumulation. A distinct unimodal salt distribution was observed in the 0.3–0.6 m soil zone, with the salinity peak shifting downward from 0.4 to 0.5 m over time. Meanwhile, soil pH and sodium adsorption ratio (SAR) increased steadily over the study period. The dominant hydrochemical type shifted from SO42−-Ca2+·Mg2+ to Cl-Na+·Mg2+. Crop performance exhibited a nonlinear response to irrigation salinity levels. Low salinity (2 g·L−1) significantly enhanced plant height, stem diameter, leaf area index (LAI), vitamin C content, and yield, with improvements of up to 12.11%, 3.96%, 16.67%, 16.24%, and 16.52% in the early years. However, prolonged exposure to saline irrigation led to significant declines in both plant growth and water productivity (WP) by 2022. Under high-salinity conditions (S5), yield decreased by 16.75%, while WP declined by more than 30%. To comprehensively evaluate the trade-off between economic effects and soil environment, the entropy weight TOPSIS method was employed to identify S1 as the optimal irrigation treatment for the 2020–2021 period and control (CK) as the optimal treatment for 2022. Through fitting analysis, the optimal irrigation water salinity levels over 3 years were determined to be 2.75 g·L−1, 2.49 g·L−1, and 0.87 g·L−1, respectively. These findings suggest that short-term irrigation of jujube trees with saline water at concentrations ≤ 3 g·L−1 is agronomically feasible. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

12 pages, 5474 KiB  
Article
Flexible Sensor with Material–Microstructure Synergistic Optimization for Wearable Physiological Monitoring
by Yaojia Mou, Cong Wang, Xiaohu Jiang, Jingxiang Wang, Changchao Zhang, Linpeng Liu and Ji’an Duan
Materials 2025, 18(15), 3707; https://doi.org/10.3390/ma18153707 - 7 Aug 2025
Abstract
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection [...] Read more.
Flexible sensors have emerged as essential components in next-generation technologies such as wearable electronics, smart healthcare, soft robotics, and human–machine interfaces, owing to their outstanding mechanical flexibility and multifunctional sensing capabilities. Despite significant advancements, challenges such as the trade-off between sensitivity and detection range, and poor signal stability under cyclic deformation remain unresolved. To overcome the aforementioned limitations, this work introduces a high-performance soft sensor featuring a dual-layered electrode system, comprising silver nanoparticles (AgNPs) and a composite of multi-walled carbon nanotubes (MWCNTs) with carbon black (CB), coupled with a laser-engraved crack-gradient microstructure. This structural strategy facilitates progressive crack formation under applied strain, thereby achieving enhanced sensitivity (1.56 kPa−1), broad operational bandwidth (50–600 Hz), fine frequency resolution (0.5 Hz), and a rapid signal response. The synergistic structure also improves signal repeatability, durability, and noise immunity. The sensor demonstrates strong applicability in health monitoring, motion tracking, and intelligent interfaces, offering a promising pathway for reliable, multifunctional sensing in wearable health monitoring, motion tracking, and soft robotic systems. Full article
(This article belongs to the Special Issue Advanced Materials for Flexible Sensing Applications and Electronics)
Show Figures

Figure 1

28 pages, 2599 KiB  
Article
Optimal Scheduling of a Hydropower–Wind–Solar Multi-Objective System Based on an Improved Strength Pareto Algorithm
by Haodong Huang, Qin Shen, Wan Liu, Ying Peng, Shuli Zhu, Rungang Bao and Li Mo
Sustainability 2025, 17(15), 7140; https://doi.org/10.3390/su17157140 - 6 Aug 2025
Abstract
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling [...] Read more.
Under the current context of the large-scale integration of wind and solar power, the coupling of hydropower with wind and solar energy brings significant impacts on grid stability. To fully leverage the regulatory capacity of hydropower, this paper develops a multi-objective optimization scheduling model for hydropower, wind, and solar that balances generation-side power generation benefit and grid-side peak-regulation requirements, with the latter quantified by the mean square error of the residual load. To efficiently solve this model, Latin hypercube initialization, hybrid distance framework, and adaptive mutation mechanism are introduced into the Strength Pareto Evolutionary Algorithm II (SPEAII), yielding an improved algorithm named LHS-Mutate Strength Pareto Evolutionary Algorithm II (LMSPEAII). Its efficiency is validated on benchmark test functions and a reservoir model. Typical extreme scenarios—months with strong wind and solar in the dry season and months with weak wind and solar in the flood season—are selected to derive scheduling strategies and to further verify the effectiveness of the proposed model and algorithm. Finally, K-medoids clustering is applied to the Pareto front solutions; from the perspective of representative solutions, this reveals the evolutionary trends of different objective trade-off schemes and overall distribution characteristics, providing deeper insight into the solution set’s distribution features. Full article
Show Figures

Figure 1

23 pages, 3036 KiB  
Article
Research on the Synergistic Mechanism Design of Electricity-CET-TGC Markets and Transaction Strategies for Multiple Entities
by Zhenjiang Shi, Mengmeng Zhang, Lei An, Yan Lu, Daoshun Zha, Lili Liu and Tiantian Feng
Sustainability 2025, 17(15), 7130; https://doi.org/10.3390/su17157130 - 6 Aug 2025
Abstract
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the [...] Read more.
In the context of the global response to climate change and the active promotion of energy transformation, a number of low-carbon policies coupled with the development of synergies to help power system transformation is an important initiative. However, the insufficient articulation of the green power market, tradable green certificate (TGC) market, and carbon emission trading (CET) mechanism, and the ambiguous policy boundaries affect the trading decisions made by its market participants. Therefore, this paper systematically analyses the composition of the main players in the electricity-CET-TGC markets and their relationship with each other, and designs the synergistic mechanism of the electricity-CET-TGC markets, based on which, it constructs the optimal profit model of the thermal power plant operators, renewable energy manufacturers, power grid enterprises, power users and load aggregators under the electricity-CET-TGC markets synergy, and analyses the behavioural decision-making of the main players in the electricity-CET-TGC markets as well as the electric power system to optimise the trading strategy of each player. The results of the study show that: (1) The synergistic mechanism of electricity-CET-TGC markets can increase the proportion of green power grid-connected in the new type of power system. (2) In the selection of different environmental rights and benefits products, the direct participation of green power in the market-oriented trading is the main way, followed by applying for conversion of green power into China certified emission reduction (CCER). (3) The development of independent energy storage technology can produce greater economic and environmental benefits. This study provides policy support to promote the synergistic development of the electricity-CET-TGC markets and assist the low-carbon transformation of the power industry. Full article
Show Figures

Figure 1

21 pages, 1827 KiB  
Article
System Dynamics Modeling of Cement Industry Decarbonization Pathways: An Analysis of Carbon Reduction Strategies
by Vikram Mittal and Logan Dosan
Sustainability 2025, 17(15), 7128; https://doi.org/10.3390/su17157128 - 6 Aug 2025
Abstract
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption [...] Read more.
The cement industry is a significant contributor to global carbon dioxide emissions, primarily due to the energy demands of its production process and its reliance on clinker, a material formed through the high-temperature calcination of limestone. Strategies to reduce emissions include the adoption of low-carbon fuels, the use of carbon capture and storage (CCS) technologies, and the integration of supplementary cementitious materials (SCMs) to reduce the clinker content. The effectiveness of these measures depends on a complex set of interactions involving technological feasibility, market dynamics, and regulatory frameworks. This study presents a system dynamics model designed to assess how various decarbonization approaches influence long-term emission trends within the cement industry. The model accounts for supply chains, production technologies, market adoption rates, and changes in cement production costs. This study then analyzes a number of scenarios where there is large-scale sustained investment in each of three carbon mitigation strategies. The results show that CCS by itself allows the cement industry to achieve carbon neutrality, but the high capital investment results in a large cost increase for cement. A combined approach using alternative fuels and SCMs was found to achieve a large carbon reduction without a sustained increase in cement prices, highlighting the trade-offs between cost, effectiveness, and system-wide interactions. Full article
Show Figures

Figure 1

32 pages, 2377 KiB  
Review
Antiplatelet Monotherapies for Long-Term Secondary Prevention Following Percutaneous Coronary Intervention
by Claudio Laudani, Daniele Giacoppo, Antonio Greco, Luis Ortega-Paz, Georges El Khoury, Davide Capodanno and Dominick J. Angiolillo
J. Clin. Med. 2025, 14(15), 5536; https://doi.org/10.3390/jcm14155536 - 6 Aug 2025
Abstract
In patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI), antiplatelet therapy is the cornerstone of treatment for secondary prevention. Although dual antiplatelet therapy (DAPT) consisting of aspirin and a P2Y12 inhibitor is the current standard of care, being, respectively, [...] Read more.
In patients with coronary artery disease (CAD) undergoing percutaneous coronary intervention (PCI), antiplatelet therapy is the cornerstone of treatment for secondary prevention. Although dual antiplatelet therapy (DAPT) consisting of aspirin and a P2Y12 inhibitor is the current standard of care, being, respectively, recommended for 6 and 12 months in patients with chronic and acute coronary syndrome without a need for oral anticoagulation, the continuous improvement in PCI technology and pharmacology have significantly reduced the need for long-term DAPT. Mounting evidence supports the administration of P2Y12 inhibitor monotherapy, particularly ticagrelor, after a short period of DAPT following PCI as a strategy to reduce bleeding without a trade-off in ischemic events compared to standard DAPT. In addition, there is a growing literature supporting P2Y12 inhibitor monotherapy also for long-term secondary prevention of ischemic events. However, the data to this extent are not as robust as compared to the first-year post-PCI period, with aspirin monotherapy still remaining the mainstay of treatment for most patients. This review aims to summarize the rationale for long-term antiplatelet therapy, the pharmacology of current antiplatelet drugs tested for long-term administration as monotherapy, and current evidence on the available comparisons between different long-term antiplatelet monotherapies in patients with CAD. Full article
Show Figures

Figure 1

27 pages, 1062 KiB  
Article
Dynamic Supply Chain Decision-Making of Live E-Commerce Considering Netflix Marketing Under Different Power Structures
by Yawen Liu, Mohammed Gadafi Tamimu and Junwu Chai
J. Theor. Appl. Electron. Commer. Res. 2025, 20(3), 202; https://doi.org/10.3390/jtaer20030202 - 6 Aug 2025
Abstract
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This [...] Read more.
The rapid growth of live e-commerce, a sector valued at over USD 100 billion worldwide, demonstrates its transformative impact on the retail industry, especially in markets like China, where platforms such as Taobao Live and TikTok Shop have markedly altered consumer interaction. This transition is further expedited by Netflix-like entertainment marketing methods, which have demonstrated the capacity to enhance consumer retention by as much as 40%. As organizations adjust to this evolving landscape, it is essential to optimize supply chain strategies to align with these dynamic, consumer-centric environments. This paper examines the complexity of decision-making in live e-commerce supply chains, specifically regarding Netflix-inspired marketing strategies. The primary aim of this study is to design a game-theoretic framework that examines the interactions between producers and online celebrity retailers (OCRs) across different power dynamics. As live commerce integrates digital retail with immersive experiences, businesses must optimize pricing, quality, and marketing strategies in real-time. We present engagement-driven marketing as a strategic variable and incorporate consumer regret and switching costs into the demand function. To illustrate practical trade-offs in strategy, we incorporate a multi-criteria decision-making (MCDM) layer with AHP-TOPSIS, assessing profit, consumer surplus, engagement score, and channel efficiency. The experiment results indicate that Netflix-style marketing markedly increases demand and profit in retailer-led frameworks, whereas centralized tactics enhance overall channel performance. TOPSIS analysis prioritizes high-effort, high-engagement methods, whereas the Stackelberg experiment underscores the influence of power dynamics on profit distribution. This study presents an innovative integrative decision-making methodology for enhancing live-streaming commerce tactics in data-driven and consumer-focused markets. Full article
Show Figures

Figure 1

28 pages, 2129 KiB  
Article
Research on Pricing Strategies of Knowledge Payment Products Considering the Impact of Embedded Advertising Under the User-Generated Content Model
by Xiubin Gu, Yi Qu and Minhe Wu
Systems 2025, 13(8), 665; https://doi.org/10.3390/systems13080665 - 6 Aug 2025
Abstract
In UGC-based knowledge trading platforms, the abundance of personalized content often leads to varying quality levels. By incorporating embedded advertising, platforms can incentivize knowledge producers to produce high-quality content; however, the uncertainty in managing embedded advertisements increases the complexity of pricing knowledge products. [...] Read more.
In UGC-based knowledge trading platforms, the abundance of personalized content often leads to varying quality levels. By incorporating embedded advertising, platforms can incentivize knowledge producers to produce high-quality content; however, the uncertainty in managing embedded advertisements increases the complexity of pricing knowledge products. This paper examines the impact of embedded advertising on the pricing of knowledge products, aims to maximize the profits of both knowledge producer and the platform. Based on Stackelberg game theory, two pricing decision models are developed under different advertising management modes: the platform-managed mode (where the platform determines the advertising intensity) and the advertiser-managed mode (where the advertiser determines the advertising intensity). The study analyzes the effects of UGC product quality, consumer sensitivity to advertising, and power structure on knowledge product pricing, and derives threshold conditions for optimal pricing. The results indicate that (1) When the quality of UGC knowledge product exceeds a certain threshold, platform-managed advertising becomes profitable. (2) Under the platform-managed mode, both the platform and knowledge producer can adopt price-increasing strategies to enhance profits. (3) Under the advertiser-managed mode, the platform can leverage differences in power structure to optimize revenue, while knowledge producer can actively enhance his pricing power to achieve mutual benefits with the platform. This study provides theoretical support and practical guidance for advertising cooperation mechanisms and pricing strategies for knowledge products in UGC-based knowledge trading platforms. Full article
Show Figures

Figure 1

30 pages, 3996 KiB  
Article
Incentive-Compatible Mechanism Design for Medium- and Long-Term/Spot Market Coordination in High-Penetration Renewable Energy Systems
by Sicong Wang, Weiqing Wang, Sizhe Yan and Qiuying Li
Processes 2025, 13(8), 2478; https://doi.org/10.3390/pr13082478 - 6 Aug 2025
Abstract
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems [...] Read more.
In line with the goals of “peak carbon emissions and carbon neutrality”, this study aims to develop a market-coordinated operation mechanism to promote renewable energy adoption and consumption, addressing the challenges of integrating medium- and long-term trading with spot markets in power systems with high renewable energy penetration. A three-stage joint operation framework is proposed. First, a medium- and long-term trading game model is established, considering multiple energy types to optimize the benefits of market participants. Second, machine learning algorithms are employed to predict renewable energy output, and a contract decomposition mechanism is developed to ensure a smooth transition from medium- and long-term contracts to real-time market operations. Finally, a day-ahead market-clearing strategy and an incentive-compatible settlement mechanism, incorporating the constraints from contract decomposition, are proposed to link the two markets effectively. Simulation results demonstrate that the proposed mechanism effectively enhances resource allocation and stabilizes market operations, leading to significant revenue improvements across various generation units and increased renewable energy utilization. Specifically, thermal power units achieve a 19.12% increase in revenue, while wind and photovoltaic units show more substantial gains of 38.76% and 47.52%, respectively. Concurrently, the mechanism drives a 10.61% increase in renewable energy absorption capacity and yields a 13.47% improvement in Tradable Green Certificate (TGC) utilization efficiency, confirming its overall effectiveness. This research shows that coordinated optimization between medium- and long-term/spot markets, combined with a well-designed settlement mechanism, significantly strengthens the market competitiveness of renewable energy, providing theoretical support for the market-based operation of the new power system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

35 pages, 3601 KiB  
Article
Carbon Emissions and Influencing Factors in the Areas Along the Belt and Road Initiative in Africa: A Spatial Spillover Perspective
by Suxin Yang and Miguel Ángel Benedicto Solsona
Sustainability 2025, 17(15), 7098; https://doi.org/10.3390/su17157098 - 5 Aug 2025
Abstract
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel [...] Read more.
The carbon dioxide spillover effects and influencing factors of the “Belt and Road Initiative” (BRI) in African countries must be assessed to evaluate the effectiveness, promote low-carbon transmissions in African countries, and provide recommendations for achieving the 2030 Sustainable Development Goals. This novel study employs carbon dioxide emission intensity (CEI) and per capita carbon dioxide emissions (PCE) as dual indicators to evaluate the spatial spillover effects of 54 BRI African countries on their neighboring countries’ carbon emissions from 2007 to 2023. It identifies the key factors and mechanisms affecting these spillover effects using the spatial differences-in-differences (SDID) model. Results indicate that since the launch of the BRI, the CEI and PCE of BRI African countries have significantly increased, largely due to trade patterns and industrialization structures. Greater trade openness has further boosted local economic development, thereby increasing carbon dioxide’s spatial spillover. Government management and corruption control levels show some heterogeneity in the spillover effects, which may be attributed to long-standing issues of weak institutional enforcement in Africa. Overall, this study reveals the complex relationship between BRI African economic development and environmental outcomes, highlighting the importance of developing sustainable development strategies and establishing strong differentiated regulatory regimes to effectively address environmental challenges. Full article
Show Figures

Figure 1

88 pages, 15313 KiB  
Review
Research and Developments of Heterogeneous Catalytic Technologies
by Milan Králik, Peter Koóš, Martin Markovič and Pavol Lopatka
Molecules 2025, 30(15), 3279; https://doi.org/10.3390/molecules30153279 - 5 Aug 2025
Abstract
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation [...] Read more.
This review outlines a comprehensive methodology for the research and development of heterogeneous catalytic technologies (R&D_HeCaTe). Emphasis is placed on the fundamental interactions between reactants, solvents, and heterogeneous catalysts—specifically the roles of catalytic centers and support materials (e.g., functional groups) in modulating activation energies and stabilizing catalytic functionality. Particular attention is given to catalyst deactivation mechanisms and potential regeneration strategies. The application of molecular modeling and chemical engineering analyses, including reaction kinetics, thermal effects, and mass and heat transport phenomena, is identified as essential for R&D_HeCaTe. Reactor configuration is discussed in relation to key physicochemical parameters such as molecular diffusivity, reaction exothermicity, operating temperature and pressure, and the phase and “aggressiveness” of the reaction system. Suitable reactor types—such as suspension reactors, fixed-bed reactors, and flow microreactors—are evaluated accordingly. Economic and environmental considerations are also addressed, with a focus on the complexity of reactions, selectivity versus conversion trade-offs, catalyst disposal, and separation challenges. To illustrate the breadth and applicability of the proposed framework, representative industrial processes are discussed, including ammonia synthesis, fluid catalytic cracking, methanol production, alkyl tert-butyl ethers, and aniline. Full article
(This article belongs to the Special Issue Heterogeneous Catalysts: From Synthesis to Application)
Show Figures

Figure 1

20 pages, 4989 KiB  
Article
Analysis of the Trade-Off/Synergy Effect and Driving Factors of Ecosystem Services in Hulunbuir City, China
by Shimin Wei, Jian Hou, Yan Zhang, Yang Tai, Xiaohui Huang and Xiaochen Guo
Agronomy 2025, 15(8), 1883; https://doi.org/10.3390/agronomy15081883 - 4 Aug 2025
Viewed by 182
Abstract
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical [...] Read more.
An in-depth understanding of the spatiotemporal heterogeneity of ecosystem service (ES) trade-offs and synergies, along with their driving factors, is crucial for formulating key ecological restoration strategies and effectively allocating ecological environmental resources in the Hulunbuir region. This study employed an integrated analytical approach combining the InVEST model, ArcGIS geospatial processing, R software environment, and Optimal Parameter Geographical Detector (OPGD). The spatiotemporal patterns and driving factors of the interaction of four major ES functions in Hulunbuir area from 2000 to 2020 were studied. The research findings are as follows: (1) carbon storage (CS) and soil conservation (SC) services in the Hulunbuir region mainly show a distribution pattern of high values in the central and northeast areas, with low values in the west and southeast. Water yield (WY) exhibits a distribution pattern characterized by high values in the central–western transition zone and southeast and low values in the west. For forage supply (FS), the overall pattern is higher in the west and lower in the east. (2) The trade-off relationships between CS and WY, CS and SC, and SC and WY are primarily concentrated in the western part of Hulunbuir, while the synergistic relationships are mainly observed in the central and eastern regions. In contrast, the trade-off relationships between CS and FS, as well as FS and WY, are predominantly located in the central and eastern parts of Hulunbuir, with the intensity of these trade-offs steadily increasing. The trade-off relationship between SC and FS is almost widespread throughout HulunBuir. (3) Fractional vegetation cover, mean annual precipitation, and land use type were the primary drivers affecting ESs. Among these factors, fractional vegetation cover demonstrates the highest explanatory power, with a q-value between 0.6 and 0.9. The slope and population density exhibit relatively weak explanatory power, with q-values ranging from 0.001 to 0.2. (4) The interactions between factors have a greater impact on the inter-relationships of ESs in the Hulunbuir region than individual factors alone. The research findings have facilitated the optimization and sustainable development of regional ES, providing a foundation for ecological conservation and restoration in Hulunbuir. Full article
Show Figures

Figure 1

Back to TopTop