Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (730)

Search Parameters:
Keywords = trade volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 8330 KiB  
Article
The Performance of a Novel Automated Algorithm in Estimating Truckload Volume Based on LiDAR Data
by Mihai Daniel Niţă, Cătălin Cucu-Dumitrescu, Bogdan Candrea, Bogdan Grama, Iulian Iuga and Stelian Alexandru Borz
Forests 2025, 16(8), 1281; https://doi.org/10.3390/f16081281 - 5 Aug 2025
Abstract
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different [...] Read more.
Significant improvements in the forest-based industrial sector are expected due to increased digitalization; however, examples of practical implementations remain limited. This study explores the use of an automated algorithm to estimate truckload volumes based on 3D point cloud data acquired using two different LiDAR scanning platforms. This research compares the performance of a professional mobile laser scanning (MLS GeoSLAM) platform and a smartphone-based iPhone LiDAR system. A total of 48 truckloads were measured using a combination of manual, factory-based, and digital approaches. Accuracy was evaluated using standard error metrics, including the mean absolute error (MAE) and root mean square error (RMSE), with manual or factory references used as benchmarks. The results showed a strong correlation and no significant differences between the algorithmic and manual measurements when using the MLS platform (MAE = 2.06 m3; RMSE = 2.46 m3). For the iPhone platform, the results showed higher deviations and significant overestimation compared to the factory reference (MAE = 3.29 m3; RMSE = 3.60 m3). Despite these differences, the iPhone platform offers real-time acquisition and low-cost deployment. These findings highlight the trade-offs between precision and operational efficiency and support the adoption of automated measurement tools in timber supply chains. Full article
(This article belongs to the Section Forest Operations and Engineering)
23 pages, 343 KiB  
Article
How Do China’s OFDI Motivations Affect the Bilateral GVC Relationship and Sustainable Global Economy?
by Min Wang
Sustainability 2025, 17(15), 7049; https://doi.org/10.3390/su17157049 - 3 Aug 2025
Viewed by 251
Abstract
The purpose of this paper is to analyze how China’s outward foreign direct investment (OFDI), driven by different motivations, affects the bilateral global value chain (GVC) relationship between the home country (China) and host countries, evaluating both bilateral GVC trade value and relative [...] Read more.
The purpose of this paper is to analyze how China’s outward foreign direct investment (OFDI), driven by different motivations, affects the bilateral global value chain (GVC) relationship between the home country (China) and host countries, evaluating both bilateral GVC trade value and relative GVC positions. Employing the OECD Trade in Value Added (TiVA) database combined with Chinese listed firm data, we found the following results: (1) Strategic asset-seeking OFDI strengthens the GVC relationship between China and host countries while enhancing China’s GVC position relative to host countries. (2) Efficiency-seeking OFDI increases the domestic value-added exported from host countries to China but does not improve China’s relative GVC position. (3) Natural resource-seeking OFDI enhances bilateral GVC trade volumes but has no significant impact on the relative GVC positions of China and host countries. (4) China’s OFDI, not driven by these motivations, generates a trade substitution effect between home and host countries. We also examined the heterogeneity of these effects. Our findings suggest that China’s OFDI fosters equitable and sustainable international cooperation, supports mutually beneficial GVC trade and host-country economic growth, and therefore, progresses toward Sustainable Development Goal (SDG) 8. Full article
44 pages, 2693 KiB  
Article
Managing Surcharge Risk in Strategic Fleet Deployment: A Partial Relaxed MIP Model Framework with a Case Study on China-Built Ships
by Yanmeng Tao, Ying Yang and Shuaian Wang
Appl. Sci. 2025, 15(15), 8582; https://doi.org/10.3390/app15158582 (registering DOI) - 1 Aug 2025
Viewed by 154
Abstract
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study [...] Read more.
Container liner shipping companies operate within a complex environment where they must balance profitability and service reliability. Meanwhile, evolving regulatory policies, such as surcharges imposed on ships of a particular origin or type on specific trade lanes, introduce new operational challenges. This study addresses the heterogeneous ship routing and demand acceptance problem, aiming to maximize two conflicting objectives: weekly profit and total transport volume. We formulate the problem as a bi-objective mixed-integer programming model and prove that the ship chartering constraint matrix is totally unimodular, enabling the reformulation of the model into a partially relaxed MIP that preserves optimality while improving computational efficiency. We further analyze key mathematical properties showing that the Pareto frontier consists of a finite union of continuous, piecewise linear segments but is generally non-convex with discontinuities. A case study based on a realistic liner shipping network confirms the model’s effectiveness in capturing the trade-off between profit and transport volume. Sensitivity analyses show that increasing freight rates enables higher profits without large losses in volume. Notably, this paper provides a practical risk management framework for shipping companies to enhance their adaptability under shifting regulatory landscapes. Full article
(This article belongs to the Special Issue Risk and Safety of Maritime Transportation)
Show Figures

Figure 1

22 pages, 1788 KiB  
Article
Multi-Market Coupling Mechanism of Offshore Wind Power with Energy Storage Participating in Electricity, Carbon, and Green Certificates
by Wenchuan Meng, Zaimin Yang, Jingyi Yu, Xin Lin, Ming Yu and Yankun Zhu
Energies 2025, 18(15), 4086; https://doi.org/10.3390/en18154086 - 1 Aug 2025
Viewed by 258
Abstract
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To [...] Read more.
With the support of the dual-carbon strategy and related policies, China’s offshore wind power has experienced rapid development. However, constrained by the inherent intermittency and volatility of wind power, large-scale expansion poses significant challenges to grid integration and exacerbates government fiscal burdens. To address these critical issues, this paper proposes a multi-market coupling trading model integrating energy storage-equipped offshore wind power into electricity–carbon–green certificate markets for large-scale grid networks. Firstly, a day-ahead electricity market optimization model that incorporates energy storage is established to maximize power revenue by coordinating offshore wind power generation, thermal power dispatch, and energy storage charging/discharging strategies. Subsequently, carbon market and green certificate market optimization models are developed to quantify Chinese Certified Emission Reduction (CCER) volume, carbon quotas, carbon emissions, market revenues, green certificate quantities, pricing mechanisms, and associated economic benefits. To validate the model’s effectiveness, a gradient ascent-optimized game-theoretic model and a double auction mechanism are introduced as benchmark comparisons. The simulation results demonstrate that the proposed model increases market revenues by 17.13% and 36.18%, respectively, compared to the two benchmark models. It not only improves wind power penetration and comprehensive profitability but also effectively alleviates government subsidy pressures through coordinated carbon–green certificate trading mechanisms. Full article
Show Figures

Figure 1

29 pages, 540 KiB  
Systematic Review
Digital Transformation in International Trade: Opportunities, Challenges, and Policy Implications
by Sina Mirzaye and Muhammad Mohiuddin
J. Risk Financial Manag. 2025, 18(8), 421; https://doi.org/10.3390/jrfm18080421 - 1 Aug 2025
Viewed by 418
Abstract
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) [...] Read more.
This study synthesizes the rapidly expanding evidence on how digital technologies reshape international trade, with a particular focus on small and medium-sized enterprises (SMEs). Guided by two research questions—(RQ1) How do digital tools influence the volume and composition of cross-border trade? and (RQ2) How do these effects vary by countries’ development level and firm size?—we conducted a PRISMA-compliant systematic literature review covering 2010–2024. Searches across eight major databases yielded 1857 records; after duplicate removal, title/abstract screening, full-text assessment, and Mixed Methods Appraisal Tool (MMAT 2018) quality checks, 86 peer-reviewed English-language studies were retained. Findings reveal three dominant technology clusters: (1) e-commerce platforms and cloud services, (2) IoT-enabled supply chain solutions, and (3) emerging AI analytics. E-commerce and cloud adoption consistently raise export intensity—doubling it for digitally mature SMEs—while AI applications are the fastest-growing research strand, particularly in East Asia and Northern Europe. However, benefits are uneven: firms in low-infrastructure settings face higher fixed digital costs, and cybersecurity and regulatory fragmentation remain pervasive obstacles. By integrating trade economics with development and SME internationalization studies, this review offers the first holistic framework that links national digital infrastructure and policy support to firm-level export performance. It shows that the trade-enhancing effects of digitalization are contingent on robust broadband penetration, affordable cloud access, and harmonized data-governance regimes. Policymakers should, therefore, prioritize inclusive digital-readiness programs, while business leaders should invest in complementary capabilities—data analytics, cyber-risk management, and cross-border e-logistics—to fully capture digital trade gains. This balanced perspective advances theory and practice on building resilient, equitable digital trade ecosystems. Full article
(This article belongs to the Special Issue Modern Enterprises/E-Commerce Logistics and Supply Chain Management)
Show Figures

Figure 1

16 pages, 4587 KiB  
Article
FAMNet: A Lightweight Stereo Matching Network for Real-Time Depth Estimation in Autonomous Driving
by Jingyuan Zhang, Qiang Tong, Na Yan and Xiulei Liu
Symmetry 2025, 17(8), 1214; https://doi.org/10.3390/sym17081214 - 1 Aug 2025
Viewed by 236
Abstract
Accurate and efficient stereo matching is fundamental to real-time depth estimation from symmetric stereo cameras in autonomous driving systems. However, existing high-accuracy stereo matching networks typically rely on computationally expensive 3D convolutions, which limit their practicality in real-world environments. In contrast, real-time methods [...] Read more.
Accurate and efficient stereo matching is fundamental to real-time depth estimation from symmetric stereo cameras in autonomous driving systems. However, existing high-accuracy stereo matching networks typically rely on computationally expensive 3D convolutions, which limit their practicality in real-world environments. In contrast, real-time methods often sacrifice accuracy or generalization capability. To address these challenges, we propose FAMNet (Fusion Attention Multi-Scale Network), a lightweight and generalizable stereo matching framework tailored for real-time depth estimation in autonomous driving applications. FAMNet consists of two novel modules: Fusion Attention-based Cost Volume (FACV) and Multi-scale Attention Aggregation (MAA). FACV constructs a compact yet expressive cost volume by integrating multi-scale correlation, attention-guided feature fusion, and channel reweighting, thereby reducing reliance on heavy 3D convolutions. MAA further enhances disparity estimation by fusing multi-scale contextual cues through pyramid-based aggregation and dual-path attention mechanisms. Extensive experiments on the KITTI 2012 and KITTI 2015 benchmarks demonstrate that FAMNet achieves a favorable trade-off between accuracy, efficiency, and generalization. On KITTI 2015, with the incorporation of FACV and MAA, the prediction accuracy of the baseline model is improved by 37% and 38%, respectively, and a total improvement of 42% is achieved by our final model. These results highlight FAMNet’s potential for practical deployment in resource-constrained autonomous driving systems requiring real-time and reliable depth perception. Full article
Show Figures

Figure 1

36 pages, 2981 KiB  
Article
Research on the Characteristics and Influencing Factors of Virtual Water Trade Networks in Chinese Provinces
by Guangyao Deng, Siqian Hou and Keyu Di
Sustainability 2025, 17(15), 6972; https://doi.org/10.3390/su17156972 - 31 Jul 2025
Viewed by 159
Abstract
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, [...] Read more.
Promoting the sustainable development of virtual water trade is of great significance to safeguarding China’s water resource security and balanced regional economic growth. This study analyzes the virtual water trade network among 31 Chinese provinces based on multi-regional input–output tables from 2012, 2015, and 2017, using total trade decomposition, social network analysis, and exponential random graph models. The key findings are as follows: (1) The total virtual water trade volume remains stable, with Xinjiang, Jiangsu, and Guangdong as the core regions, while remote areas such as Shaanxi and Gansu have lower trade volumes. The primary industry dominates, and it is driven by simple value chains. (2) Provinces such as Xinjiang, Heilongjiang, and Jiangsu form the network’s core. Network density and symmetry increased from 2012 to 2015 but declined slightly in 2017, with efficiency peaking and then dropping, and the clustering coefficient decreased annually. Four economic sectors exhibit distinct interactions: frequent two-way flows in Sector 1, significant inflows in Sector 2, prominent net spillovers in Sector 3, and key brokers in Sector 4. (3) The network evolved from a core-periphery structure with weak ties to a stable, heterogeneous, and resilient system. (4) Influencing factors, such asper capita water resources, economic development, and population, significantly impact trade. Similarities in economic levels, population, and water endowments promote trade, while spatial distance has a limited effect, with geographic proximity showing a significant negative impact on long-distance trade. Full article
Show Figures

Figure 1

18 pages, 2429 KiB  
Article
Conserved and Specific Root-Associated Microbiome Reveals Close Correlation Between Fungal Community and Growth Traits of Multiple Chinese Fir Genotypes
by Xuan Chen, Zhanling Wang, Wenjun Du, Junhao Zhang, Yuxin Liu, Liang Hong, Qingao Wang, Chuifan Zhou, Pengfei Wu, Xiangqing Ma and Kai Wang
Microorganisms 2025, 13(8), 1741; https://doi.org/10.3390/microorganisms13081741 - 25 Jul 2025
Viewed by 308
Abstract
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and [...] Read more.
Plant microbiomes are vital for the growth and health of their host. Tree-associated microbiomes are shaped by multiple factors, of which the host is one of the key determinants. Whether different host genotypes affect the structure and diversity of the tissue-associated microbiome and how specific taxa enriched in different tree tissues are not yet well illustrated. Chinese fir (Cunninghamia lanceolata) is an important tree species for both economy and ecosystem in the subtropical regions of Asia. In this study, we investigated the tissue-specific fungal community structure and diversity of nine different Chinese fir genotypes (39 years) grown in the same field. With non-metric multidimensional scaling (NMDS) analysis, we revealed the divergence of the fungal community from rhizosphere soil (RS), fine roots (FRs), and thick roots (TRs). Through analysis with α-diversity metrics (Chao1, Shannon, Pielou, ACE, Good‘s coverage, PD-tree, Simpson, Sob), we confirmed the significant difference of the fungal community in RS, FR, and TR samples. Yet, the overall fungal community difference was not observed among nine genotypes for the same tissues (RS, FR, TR). The most abundant fungal genera were Russula in RS, Scytinostroma in FR, and Subulicystidium in TR. Functional prediction with FUNGuild analysis suggested that ectomycorrhizal fungi were commonly enriched in rhizosphere soil, while saprotroph–parasite and potentially pathogenic fungi were more abundant in root samples. Specifically, genotype N104 holds less ectomycorrhizal and pathogenic fungi in all tissues (RS, FR, TR) compared to other genotypes. Additionally, significant correlations of several endophytic fungal taxa (Scytinostroma, Neonothopanus, Lachnum) with the growth traits (tree height, diameter, stand volume) were observed. This addresses that the interaction between tree roots and the fungal community is a reflection of tree growth, supporting the “trade-off” hypothesis between growth and defense in forest trees. In summary, we revealed tissue-specific, as well as host genotype-specific and genotype-common characters of the structure and functions of their fungal communities. Full article
(This article belongs to the Special Issue Rhizosphere Microbial Community, 4th Edition)
Show Figures

Figure 1

18 pages, 2813 KiB  
Article
Spatiotemporal Differentiation and Driving Factors Analysis of the EU Natural Gas Market Based on Geodetector
by Xin Ren, Qishen Chen, Kun Wang, Yanfei Zhang, Guodong Zheng, Chenghong Shang and Dan Song
Sustainability 2025, 17(15), 6742; https://doi.org/10.3390/su17156742 - 24 Jul 2025
Viewed by 297
Abstract
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving [...] Read more.
In 2022, the Russia–Ukraine conflict has severely impacted the EU’s energy supply chain, and the EU’s natural gas import pattern has begun to reconstruct, and exploring the spatiotemporal differentiation of EU natural gas trade and its driving factors is the basis for improving the resilience of its supply chain and ensuring the stable supply of energy resources. This paper summarizes the law of the change of its import volume by using the complex network method, constructs a multi-dimensional index system such as demand, economy, and security, and uses the geographic detector model to mine the driving factors affecting the spatiotemporal evolution of natural gas imports in EU countries and propose different sustainable development paths. The results show that from 2000 to 2023, Europe’s natural gas imports generally show an upward trend, and the import structure has undergone great changes, from pipeline gas dominance to LNG diversification. After the conflict between Russia and Ukraine, the number of import source countries has increased, the market network has become looser, France has become the core hub of the EU natural gas market, the importance of Russia has declined rapidly, and the status of countries in the United States, North Africa, and the Middle East has increased rapidly; natural gas consumption is the leading factor in the spatiotemporal differentiation of EU natural gas imports, and the influence of import distance and geopolitical risk is gradually expanding, and the proportion of energy consumption is significantly higher than that of other factors in the interaction with other factors. Combined with the driving factors, three different evolutionary directions of natural gas imports in EU countries are identified, and energy security paths such as improving supply chain control capabilities, ensuring export stability, and using location advantages to become hub nodes are proposed for different development trends. Full article
(This article belongs to the Topic Energy Economics and Sustainable Development)
Show Figures

Figure 1

16 pages, 2350 KiB  
Article
The Impact of the Spread of Risks in the Upstream Trade Network of the International Cobalt Industry Chain
by Xiaoxue Wang, Han Sun, Linjie Gu, Zhenghao Meng, Liyi Yang and Jinhua Cheng
Sustainability 2025, 17(15), 6711; https://doi.org/10.3390/su17156711 - 23 Jul 2025
Viewed by 230
Abstract
The intensifying global competition for cobalt resources and the increasing likelihood of trade decoupling and disruption are profoundly impacting the global energy transition. In a globalized trade environment, a decline in cobalt supply from exporting countries can spread through the trade network, negatively [...] Read more.
The intensifying global competition for cobalt resources and the increasing likelihood of trade decoupling and disruption are profoundly impacting the global energy transition. In a globalized trade environment, a decline in cobalt supply from exporting countries can spread through the trade network, negatively affecting demand countries. Quantitative analysis of the negative impacts of export supply declines in various countries can help identify early risks in the global supply chain, providing a scientific basis for energy security, industrial development, and policy responses. This study constructs a trade network using trade data on metal cobalt, cobalt powder, cobalt concentrate, and ore sand from the upstream (mining, selection, and smelting) stages of the cobalt industry chain across 155 countries and regions from 2000 to 2023. Based on this, an impact diffusion model is established, incorporating the trade volumes and production levels of cobalt resources in each country to measure their resilience to shocks and determine their direct or indirect dependencies. The study then simulates the impact on countries (regions) when each country’s supply is completely interrupted or reduced by 50%. The results show that: (1) The global cobalt trade network exhibits a ‘one superpower, multiple strong players’ characteristic. Congo (DRC) has a far greater destructive power than other countries, while South Africa, Zambia, Australia, Russia, and other countries have higher destructive power due to their strong storage and production capabilities, strong smelting capabilities, or as important trade transit countries. (2) The global cobalt trade network primarily consists of three major risk areas. The African continent, the Philippines and Indonesia in Southeast Asia, Australia in Oceania, and Russia, the United States, China, and the United Kingdom in Eurasia and North America form the primary risk zones for global cobalt trade. (3) When there is a complete disruption or a 50% reduction in export supply, China will suffer the greatest average demand loss, far exceeding the second-tier countries such as the United States, South Africa, and Zambia. In contrast, European countries and other regions worldwide will experience the smallest average demand loss. Full article
Show Figures

Figure 1

19 pages, 642 KiB  
Article
A Quantitative Study on the Interactive Changes Between China’s Final Demand Structure and Forestry Industry Production Structure
by Wenting Jia, Fuliang Cao and Xiaofeng Jia
Forests 2025, 16(8), 1212; https://doi.org/10.3390/f16081212 - 23 Jul 2025
Viewed by 186
Abstract
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s [...] Read more.
The effects of changes in China’s final demand structure on its forestry sector and associated supply chains have not been thoroughly examined. This study aims to provide a detailed analysis of the quantitative relationships and underlying mechanisms between these interactive changes. Using China’s 153-sector input–output tables from the National Bureau of Statistics and applying a Leontief-based input–output model, we conducted scenario simulations through three distinct schemes, generating both quantitative and qualitative results. Our findings indicate that (1) For China’s forestry sector and its entire value chain to thrive, policymakers should boost consumer demand. This can better stimulate the development of forestry and the “agriculture-forestry-animal husbandry-fishery services” sector and related service industries; (2) Increased investment demand effectively stimulates the development of tertiary industries and secondary industries within the forestry supply chain and boosts the demand and production of intermediate products; (3) Changes in net exports have a significant impact on forestry and the forestry industry chain. To reduce dependence on foreign timber resources, China should strategically expand commercial plantation development; (4) Regarding intermediate product production, investment has a more pronounced effect on increasing total volume compared to consumption. Additionally, the Sino–US tariff disputes negatively impact the forestry industries of both countries. China needs to accelerate import substitution strategies for timber products, adjust international trade markets, and expand domestic consumption and investment to ensure the healthy and stable development of its forestry sector. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
24 pages, 2151 KiB  
Article
Federated Learning-Based Intrusion Detection in IoT Networks: Performance Evaluation and Data Scaling Study
by Nurtay Albanbay, Yerlan Tursynbek, Kalman Graffi, Raissa Uskenbayeva, Zhuldyz Kalpeyeva, Zhastalap Abilkaiyr and Yerlan Ayapov
J. Sens. Actuator Netw. 2025, 14(4), 78; https://doi.org/10.3390/jsan14040078 - 23 Jul 2025
Viewed by 667
Abstract
This paper presents a large-scale empirical study aimed at identifying the optimal local deep learning model and data volume for deploying intrusion detection systems (IDS) on resource-constrained IoT devices using federated learning (FL). While previous studies on FL-based IDS for IoT have primarily [...] Read more.
This paper presents a large-scale empirical study aimed at identifying the optimal local deep learning model and data volume for deploying intrusion detection systems (IDS) on resource-constrained IoT devices using federated learning (FL). While previous studies on FL-based IDS for IoT have primarily focused on maximizing accuracy, they often overlook the computational limitations of IoT hardware and the feasibility of local model deployment. In this work, three deep learning architectures—a deep neural network (DNN), a convolutional neural network (CNN), and a hybrid CNN+BiLSTM—are trained using the CICIoT2023 dataset within a federated learning environment simulating up to 150 IoT devices. The study evaluates how detection accuracy, convergence speed, and inference costs (latency and model size) vary across different local data scales and model complexities. Results demonstrate that CNN achieves the best trade-off between detection performance and computational efficiency, reaching ~98% accuracy with low latency and a compact model footprint. The more complex CNN+BiLSTM architecture yields slightly higher accuracy (~99%) at a significantly greater computational cost. Deployment tests on Raspberry Pi 5 devices confirm that all three models can be effectively implemented on real-world IoT edge hardware. These findings offer practical guidance for researchers and practitioners in selecting scalable and lightweight IDS models suitable for real-world federated IoT deployments, supporting secure and efficient anomaly detection in urban IoT networks. Full article
(This article belongs to the Special Issue Federated Learning: Applications and Future Directions)
Show Figures

Figure 1

18 pages, 1443 KiB  
Article
Global CO2 Emission Reduction Disparities After and Before COVID-19
by Resham Thapa-Parajuli, Rupesh Neupane, Maya Timsina, Bibek Pokharel, Deepa Poudel, Milan Maharjan, Saman Prakash KC and Suprit Shrestha
Sustainability 2025, 17(14), 6602; https://doi.org/10.3390/su17146602 - 19 Jul 2025
Viewed by 286
Abstract
The relationship between economic progress and environmental quality remains a central focus in global sustainability discourse. This study examines the link between per capita economic growth and CO2 emissions across 128 countries from 1996 to 2022, controlling for energy consumption, trade volume, [...] Read more.
The relationship between economic progress and environmental quality remains a central focus in global sustainability discourse. This study examines the link between per capita economic growth and CO2 emissions across 128 countries from 1996 to 2022, controlling for energy consumption, trade volume, and foreign direct investment (FDI) inflows. It also evaluates the role of governance quality—measured by regulatory quality and its volatility—while considering the globalization index as a confounding factor influencing CO2 emissions. We test the Environmental Kuznets Curve (EKC) hypothesis, which suggests that emissions initially rise with income but decline after reaching a certain economic threshold. Our findings confirm the global presence of the EKC. The analysis further shows that trade openness, governance, and globalization significantly influence FDI inflows, with FDI, in turn, reinforcing institutional quality through improved governance and globalization indicators. However, in countries with weaker governance and regulatory frameworks, FDI tends to promote pollution-intensive industrial growth, lending support to aspects of the Pollution Haven Hypothesis (PHH). We find a significant departure in EKC explained by post-COVID governance and globalization compromises, which induced the environment towards the PHH phenomenon. These results highlight the need for context-specific policy measures that align economic development with environmental constraints. Full article
Show Figures

Figure 1

19 pages, 1065 KiB  
Review
Recovery of Nutrients from the Aqueous Phase of Hydrothermal Liquefaction—A Review
by Barbara Camila Bogarin Cantero, Yalin Li, Prasanta Kalita, Yuanhui Zhang and Paul Davidson
Water 2025, 17(14), 2099; https://doi.org/10.3390/w17142099 - 14 Jul 2025
Viewed by 586
Abstract
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the [...] Read more.
Hydrothermal liquefaction (HTL) is a thermochemical conversion process that converts wet biomass into biocrude oil, a gas phase, a solid phase, and an aqueous phase (HTL-AP). An obstacle to the development and scaling of HTL is the volume of HTL-AP produced during the process, which has high concentrations of nitrogen and carbon and cannot be disposed of in the environment without treatment. The HTL-AP is enriched with organic compounds, particularly light polar organics and nitrogenous compounds, which are inhibitory to microbial treatment in wastewater treatment plants. For this reason, the valorization of the HTL-AP is significant for the circular economy of HTL. This review synthesizes published findings on different types of treatment of the HTL-AP for the recovery of valuable nutrients and the removal of toxic compounds. This work outlines the trade-offs of the treatments to serve as a guide for future research to address these weaknesses and improve the valorization of the HTL-AP. Furthermore, this work uniquely focuses on HTL-AP treatment for recovering plant-available nitrogen, targeting its potential use as a fertilizer. The literature highlights the importance of increasing nitrogen bioavailability in HTL-AP through two-step treatments and by selecting HTL-AP derived from protein-rich feedstocks, which offer higher initial nitrogen content. According to the current state of research, further work is needed to optimize chemical and biological treatments for nutrient recovery from HTL-AP, particularly regarding treatment scale and duration. Additionally, economic analyses across different treatment types are currently lacking, but are essential to evaluate their feasibility and practicality. Full article
(This article belongs to the Special Issue Emerging Technologies for Nutrient Recovery and Wastewater Treatment)
Show Figures

Figure 1

29 pages, 1474 KiB  
Review
Berth Allocation and Quay Crane Scheduling in Port Operations: A Systematic Review
by Ndifelani Makhado, Thulane Paepae, Matthews Sejeso and Charis Harley
J. Mar. Sci. Eng. 2025, 13(7), 1339; https://doi.org/10.3390/jmse13071339 - 13 Jul 2025
Viewed by 477
Abstract
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling [...] Read more.
Container terminals are facing significant challenges in meeting the increasing demands for volume and throughput, with limited space often presenting as a critical constraint. Key areas of concern at the quayside include the berth allocation problem, the quay crane assignment, and the scheduling problem. Effectively managing these issues is essential for optimizing port operations; failure to do so can lead to substantial operational and economic ramifications, ultimately affecting competitiveness within the global shipping industry. Optimization models, encompassing both mathematical frameworks and metaheuristic approaches, offer promising solutions. Additionally, the application of machine learning and reinforcement learning enables real-time solutions, while robust optimization and stochastic models present effective strategies, particularly in scenarios involving uncertainties. This study expands upon earlier foundational analyses of berth allocation, quay crane assignment, and scheduling issues, which have laid the groundwork for port optimization. Recent developments in uncertainty management, automation, real-time decision-making approaches, and environmentally sustainable objectives have prompted this review of the literature from 2015 to 2024, exploring emerging challenges and opportunities in container terminal operations. Recent research has increasingly shifted toward integrated approaches and the utilization of continuous berthing for better wharf utilization. Additionally, emerging trends, such as sustainability and green infrastructure in port operations, and policy trade-offs are gaining traction. In this review, we critically analyze and discuss various aspects, including spatial and temporal attributes, crane handling, sustainability, model formulation, policy trade-offs, solution approaches, and model performance evaluation, drawing on a review of 94 papers published between 2015 and 2024. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop