Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (50,423)

Search Parameters:
Keywords = toxicities

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1765 KB  
Article
Towards a Comprehensive Understanding of Microplastics and Antifouling Paint Particles from Ship-Hull Derusting Wastewater and Their Emissions into the Marine Environment
by Can Zhang, Yufan Chen, Wenbin Zhao, Jianhua Zhou and Deli Wu
J. Mar. Sci. Eng. 2026, 14(2), 195; https://doi.org/10.3390/jmse14020195 (registering DOI) - 17 Jan 2026
Abstract
Microplastics (MPs) and Antifouling Paint Particles (APPs) are pervasive anthropogenic pollutants that threaten global ecosystems, with distinct yet overlapping environmental behaviors and toxic impacts. MPs disperse widely in aquatic systems via runoff and wastewater; their toxicity stems from physical, chemical, and synergistic effects. [...] Read more.
Microplastics (MPs) and Antifouling Paint Particles (APPs) are pervasive anthropogenic pollutants that threaten global ecosystems, with distinct yet overlapping environmental behaviors and toxic impacts. MPs disperse widely in aquatic systems via runoff and wastewater; their toxicity stems from physical, chemical, and synergistic effects. APPs are concentrated in coastal zones, estuaries, and shipyard areas, and are acutely toxic due to their high metal and biocide content. This study systematically characterized the composition, concentration, and size distribution of common MPs and APPs in ship-hull derusting wastewater produced by ultra-high-pressure water jetting, using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) coupled with particle size analysis. The wastewater exhibited a total suspended solids (TSS) concentration of 20.04 g·L−1, within which six types of MPs were identified at 3.29 mg·L−1 in total and APPs were quantified at 330.25 mg·L−1, representing 1.65% of TSS. The residual fraction primarily consisted of algae, biological debris, and inorganic particles. Particle size distribution ranged from 3.55 to 111.47 μm, with a median size (D50) of 31 μm, while APPs were mainly 5–100 μm, with 81.4% < 50 μm. Extrapolation to the annual treated ship-hull surface area in 2024 indicated the generation of ~57,440 m3 wastewater containing ~0.2 tons of MPs and ~19 tons of APPs. These findings highlight the magnitude of pollutant release from ship maintenance activities and underscore the urgent need for targeted treatment technologies and regulatory policies to mitigate microplastic pollution in marine environments. Full article
(This article belongs to the Section Marine Hazards)
29 pages, 6513 KB  
Article
Hydrochemical Evolution of Groundwater Under Landfill Leachate Influence: Case of the Tangier Municipal Site
by Mohamed-Amine Lahkim-Bennani, Abdelghani Afailal Tribak, Brunella Bonaccorso, Haitam Afilal and Abdelhamid Rossi
Sustainability 2026, 18(2), 965; https://doi.org/10.3390/su18020965 (registering DOI) - 17 Jan 2026
Abstract
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean [...] Read more.
Sustainable groundwater management is critical in semi-arid coastal regions, where municipal landfills pose a severe threat to aquifer integrity and long-term water security. However, there is still a lack of seasonally resolved hydrogeochemical monitoring around newly established landfills, particularly in rapidly urbanizing Mediterranean settings. This study assesses the hydrogeochemical impact of the newly operational Tangier Landfill and Recovery Center on local groundwater resources to inform sustainable remediation strategies. A combined approach was applied to samples collected in dry and wet seasons, using Piper and Stiff diagrams to trace facies evolution together with a dual-index assessment based on the Canadian (CCME-WQI) and Weighted Arithmetic (WAWQI) Water Quality Indices. Results show that upgradient waters remain of Good–Excellent quality and are dominated by Ca–HCO3 facies, whereas downgradient wells display extreme mineralization, with EC up to 15,480 µS/cm and Cl and SO42− exceeding 1834 and 2114 mg/L, respectively. At hotspot sites P4 and P8, As reaches 0.065 mg/L and Cd 0.006 mg/L, far above the WHO drinking-water guidelines. While the CCME-WQI captures the general salinity-driven degradation pattern, the WAWQI pinpoints these acute toxicity zones as Very poor–Unsuitable. The study demonstrates that rainfall intensifies toxicity through a seasonal “Piston Effect” that mobilizes stored contaminants rather than diluting them, underscoring the need for seasonally adaptive monitoring to ensure the environmental sustainability of landfill-adjacent aquifers. Full article
(This article belongs to the Section Sustainable Water Management)
15 pages, 8399 KB  
Article
Magnolol Ameliorates Cisplatin-Induced Acute Kidney Injury with Activation of Nrf2-Associated Antioxidant Responses
by Mi-Gyeong Gwon, Min Hui Park and Jaechan Leem
Curr. Issues Mol. Biol. 2026, 48(1), 96; https://doi.org/10.3390/cimb48010096 (registering DOI) - 17 Jan 2026
Abstract
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. [...] Read more.
Cisplatin (CDDP) is a cornerstone chemotherapeutic drug, yet its efficacy is frequently compromised by renal toxicity, primarily manifesting as acute kidney injury (AKI). Magnolol (MG) is a polyphenol from Magnolia officinalis and has been widely documented for its pronounced antioxidant and anti-inflammatory properties. This study evaluated the renoprotective effects of MG in a murine model of CDDP-induced AKI. Male C57BL/6 mice received MG (20 mg/kg) via daily intraperitoneal injection for four consecutive days, starting one day before a single CDDP injection. MG significantly reduced the serum concentrations of blood urea nitrogen and creatinine. Histopathological assessment revealed attenuated tubular damage and reduced expression of tubular injury markers. MG inhibited pro-inflammatory cytokines at both systemic and renal levels, alleviated endoplasmic reticulum stress, and suppressed activation of mitogen-activated protein kinase signaling pathways. Apoptotic damage was mitigated, as shown by the fewer TUNEL-positive cells and lowered expression of pro-apoptotic markers. In parallel, ferroptotic processes were alleviated through downregulation of pro-ferroptotic proteins and preservation of key antioxidant regulators. Importantly, MG restored nuclear factor erythroid 2-related factor 2 activity and upregulated downstream antioxidant effectors. These findings highlight the multi-targeted renoprotective actions of MG and support its possible utility as a therapeutic agent to prevent CDDP-induced renal injury. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Treatment of Kidney Diseases)
Show Figures

Figure 1

19 pages, 831 KB  
Systematic Review
Assessing Water Reuse Through Life Cycle Assessment: A Systematic Review of Recent Trends, Impacts, and Sustainability Challenges
by Lenise Santos, Isabel Brás, Anna Barreto, Miguel Ferreira, António Ferreira and José Ferreira
Processes 2026, 14(2), 330; https://doi.org/10.3390/pr14020330 (registering DOI) - 17 Jan 2026
Abstract
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse [...] Read more.
Increasing global water scarcity has intensified the adoption of water reuse as a sustainable strategy, particularly in regions affected by drought and pressure on natural resources. This paper presents a systematic review of the application of Life Cycle Assessment (LCA) in water reuse projects, focusing on research trends, methodological approaches, and opportunities for improvement. A systematic search was conducted in Web of Science, ScienceDirect, and Google Scholar for studies published from 2020 onwards using combinations of the keywords “life cycle assessment”, “LCA”, “water reuse”, “water recycling”, and “wastewater recycling”. Twelve studies were selected from 57 records identified, based on predefined eligibility criteria requiring quantitative LCA of water reuse systems. The results reveal a predominance of European research, reflecting regulatory advances and strong academic engagement in this field. The most frequently assessed impact categories were global warming, eutrophication, human toxicity and ecotoxicity, highlighting the environmental relevance of reuse systems. Energy consumption and water transport were identified as critical hotspots, especially in scenarios involving long distances and fossil-based energy sources. Nevertheless, most studies demonstrate that water reuse is environmentally viable, particularly when renewable energy and optimized logistics are applied. The review also emphasizes the need to better integrate economic and social dimensions and to adapt LCA methodologies to local conditions. Overall, the findings confirm LCA as a robust decision-support tool for sustainable planning and management of water reuse systems. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

16 pages, 2923 KB  
Article
Functional and Molecular Characterization of Melamine-Induced Disruption of Human Spermatozoa via Oxidative Stress and Apoptotic Pathways: An In Vitro Study
by Francesca Paola Luongo, Eugenia Annunzi, Rosetta Ponchia, Francesca Girolamo, Giuseppe Morgante, Paola Piomboni and Alice Luddi
Antioxidants 2026, 15(1), 122; https://doi.org/10.3390/antiox15010122 (registering DOI) - 17 Jan 2026
Abstract
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in [...] Read more.
Melamine, a nitrogen-rich industrial chemical, has raised increasing concern as an emerging environmental contaminant with potential reproductive toxicity. While its nephrotoxic effects are well established, the direct impact of melamine on human sperm remains poorly defined. In this study, we investigated the in vitro effects of melamine on human sperm, under both capacitating and non-capacitating conditions. Functional analyses revealed that the exposure to 0.8 mM melamine, the highest non-cytotoxic concentration in vitro, significantly compromised sperm motility and disrupted key capacitation processes, including tyrosine phosphorylation patterns, cholesterol efflux, and the acrosome reaction. Molecular assessments demonstrated melamine-induced mitochondrial dysfunction, characterized by COX4I1 downregulation, reduced mitochondrial membrane potential, and altered reactive oxygen species production. In parallel, gene expression analyses revealed the activation of apoptotic pathways, with the upregulation of BAX and downregulation of BCL2, changes that were more pronounced during capacitation. Furthermore, melamine exposure significantly increased sperm DNA fragmentation and denaturation, indicating genotoxic stress. Collectively, these findings demonstrate that even low, non-cytotoxic concentrations of melamine compromise sperm function by disrupting capacitation, mitochondrial activity, and genomic integrity. This study identifies capacitation as a critical window of vulnerability and underscores the need to consider melamine as a potential environmental risk factor for male reproductive health. Full article
Show Figures

Figure 1

21 pages, 1690 KB  
Article
Hazardous Heritage: From CMP to Hazard-Aware Conservation—A Framework for Polluted Industrial Heritage
by Anna Orchowska and Jakub Szczepański
Sustainability 2026, 18(2), 957; https://doi.org/10.3390/su18020957 (registering DOI) - 17 Jan 2026
Abstract
Industrial heritage sites hold significant historical and architectural value and their attractive urban locations make them frequent targets for adaptive reuse. Yet decades of industrial activity have left hazardous residues embedded in building fabric, posing risks to public health. Current conservation practice rarely [...] Read more.
Industrial heritage sites hold significant historical and architectural value and their attractive urban locations make them frequent targets for adaptive reuse. Yet decades of industrial activity have left hazardous residues embedded in building fabric, posing risks to public health. Current conservation practice rarely incorporates systematic identification and mapping of such contamination, creating a critical gap that can undermine both safety and the authenticity and integrity of historical material layers. This article proposes an interdisciplinary methodological framework for identifying, analysing, and managing contamination in post-industrial heritage. The model extends the Conservation Management Plan (CMP) by integrating chemical and toxicological analyses, GIS-based diagnostics, and ontological data modelling (CIDOC CRM). It supports value-based decision-making by enabling the safe recognition and preservation of historical layers that may contain toxic residues. The framework is being tested at the former Gdańsk Shipyard through integrated historical research, conservation surveys, and laboratory analyses to assess its applicability and scalability. The proposed approach is intended as a transferable tool for managing polluted heritage environments, aligned with SDGs 11 and 12. Full article
(This article belongs to the Section Tourism, Culture, and Heritage)
Show Figures

Figure 1

14 pages, 238 KB  
Review
Amivantamab Plus Lazertinib and Platin-Based Chemotherapy Plus Osimertinib in EGFR-Mutant NSCLC: How to Choose Among Them and When Is Monotherapy with Osimertinib Still the Best Option?
by Paolo Maione, Francesco Jacopo Romano and Cesare Gridelli
Curr. Oncol. 2026, 33(1), 54; https://doi.org/10.3390/curroncol33010054 (registering DOI) - 17 Jan 2026
Abstract
In the last year, great advances in the treatment outcomes of advanced EGFR-mutant NSCLC have been achieved. Two combination regimens, amivantamab plus lazertinib and platin-based chemotherapy plus osimertinib, have yielded, in the phase III randomized trials named MARIPOSA and FLAURA 2, statistically and [...] Read more.
In the last year, great advances in the treatment outcomes of advanced EGFR-mutant NSCLC have been achieved. Two combination regimens, amivantamab plus lazertinib and platin-based chemotherapy plus osimertinib, have yielded, in the phase III randomized trials named MARIPOSA and FLAURA 2, statistically and clinically significant improvements in overall survival compared with monotherapy with osimertinib. However, translation to clinical practice of these relevant results is challenging for two main reasons. The first is that we have no evidence-based tools to choose among the two combinations, except their different safety profiles. The second is that combinations are significantly more toxic than osimertinib alone. Thus, osimertinib remains an effective treatment with an excellent safety profile, perhaps to be considered as still the best option in the majority of elderly patients and in all patients that do not intend to trade-off an excess of toxicity with survival prolongment. The safety and efficacy characteristics of the three treatment options are the basis for a patient-tailored treatment choice, but in a significant proportion of patients, a personal and intimate approach to quality of life and survival prolongment is to be considered the main driver within a well-structured shared decision-making process. Full article
(This article belongs to the Section Thoracic Oncology)
14 pages, 2317 KB  
Article
Shrimp-Derived Chitosan for the Formulation of Active Films with Mexican Propolis: Physicochemical and Functional Evaluation of the Biomaterial
by Alejandra Delgado-Lozano, Pedro Alberto Ledesma-Prado, César Leyva-Porras, Lydia Paulina Loya-Hernández, César Iván Romo-Sáenz, Carlos Arzate-Quintana, Manuel Román-Aguirre, María Alejandra Favila-Pérez, Alva Rocío Castillo-González and Celia María Quiñonez-Flores
Coatings 2026, 16(1), 124; https://doi.org/10.3390/coatings16010124 (registering DOI) - 17 Jan 2026
Abstract
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films [...] Read more.
The development of functional biomaterials based on natural polymers has gained increasing relevance due to the growing demand for sustainable and bioactive alternatives for biomedical and technological applications. In this study, chitosan was obtained from shrimp exoskeletons and used to formulate active films enriched with Mexican propolis, aiming to evaluate the influence of the extract on the physicochemical and functional properties of the resulting biomaterial. Propolis was incorporated into the chitosan film-forming solution at a final concentration of 1.0% (v/v). The propolis employed met the requirements of the Mexican Official Standard NOM-003-SAG/GAN-2017 regarding flavonoid content, total phenolic compounds, and antimicrobial activity; additionally, it was evaluated through antioxidant activity, hemolysis, and acute toxicity (LD50) assays to provide a broader biological and safety assessment. The extracted chitosan exhibited a degree of deacetylation of 74% and characteristic FTIR spectral features comparable to those of commercial chitosan, confirming the quality of the obtained polymer. Chitosan–propolis films exhibited antimicrobial activity against Staphylococcus aureus, Escherichia coli, and Candida albicans, whereas pure chitosan films showed no inhibitory effect. Thermal analyses (TGA/DSC) revealed a slight reduction in thermal stability due to the incorporation of thermolabile polyphenolic compounds, along with increased thermal complexity of the system. SEM observations demonstrated reduced microbial adhesion and marked morphological damage in microorganisms exposed to the functionalized films. Overall, the incorporation of Mexican propolis enabled the development of a hybrid biomaterial with enhanced antimicrobial performance and potential application in wound dressings and bioactive coatings. Full article
(This article belongs to the Special Issue Coatings with Natural Products)
Show Figures

Graphical abstract

22 pages, 2307 KB  
Review
Matrix Metalloproteinases in Hepatocellular Carcinoma: Mechanistic Roles and Emerging Inhibitory Strategies for Therapeutic Intervention
by Alexandra M. Dimesa, Mathew A. Coban and Alireza Shoari
Cancers 2026, 18(2), 288; https://doi.org/10.3390/cancers18020288 (registering DOI) - 17 Jan 2026
Abstract
Liver cancer, also known as hepatocellular carcinoma (HCC), remains a major global health concern, with high mortality driven by late-stage diagnosis, limited treatment efficacy, and frequent therapeutic resistance. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, are central to the biological processes [...] Read more.
Liver cancer, also known as hepatocellular carcinoma (HCC), remains a major global health concern, with high mortality driven by late-stage diagnosis, limited treatment efficacy, and frequent therapeutic resistance. Matrix metalloproteinases (MMPs), a large family of zinc-dependent endopeptidases, are central to the biological processes that drive liver tumor initiation and progression. By degrading and reorganizing extracellular matrix components, MMPs facilitate tumor expansion, tissue invasion, and metastatic dissemination. In addition, these enzymes regulate the availability of growth factors, cytokines, and chemokines, thereby influencing angiogenesis, inflammation, immune cell recruitment, and the development of an immunosuppressive tumor microenvironment. Aberrant expression or activity of multiple MMP family members is consistently associated with aggressive clinicopathologic features, including vascular invasion, increased metastatic potential, and reduced patient survival, highlighting their promise as prognostic markers and actionable therapeutic targets. Past attempts to modulate MMP activity were hindered by broad inhibition profiles and dose-limiting toxicities, underscoring the need for improved specificity and delivery strategies. Recent advances in molecular design, biologics engineering, and nanotechnology have revitalized interest in MMP targeting by enabling more selective, context-dependent modulation of proteolytic activity. Preclinical studies demonstrate that carefully tuned MMP inhibition can limit tumor invasion, enhance anti-angiogenic responses, and potentially improve the efficacy of existing systemic therapies, including immuno-oncology agents. This review synthesizes current knowledge on the multifaceted roles of MMPs in HCC pathobiology and evaluates emerging therapeutic strategies that may finally unlock the clinical potential of targeting these proteases. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

39 pages, 899 KB  
Review
Silver Nanoparticles in Antibacterial Research: Mechanisms, Applications, and Emerging Perspectives
by Hasan Karataş, Furkan Eker, Emir Akdaşçi, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2026, 27(2), 927; https://doi.org/10.3390/ijms27020927 (registering DOI) - 16 Jan 2026
Abstract
Silver nanoparticles (AgNPs) possess distinct physicochemical characteristics and demonstrate high antibacterial potential that highlights them as promising alternatives against a wide range of pathogens. The immense antibacterial potential of AgNPs is primarily attributed to the release of silver ions that lead to the [...] Read more.
Silver nanoparticles (AgNPs) possess distinct physicochemical characteristics and demonstrate high antibacterial potential that highlights them as promising alternatives against a wide range of pathogens. The immense antibacterial potential of AgNPs is primarily attributed to the release of silver ions that lead to the disruption of bacterial cell membrane, generation of reactive oxygen species (ROS), inhibition of protein synthesis and interference with DNA replication. Variations in AgNPs’ shape, size, and surface characteristics are also considered key factors determining their effectivity as well as specificity. AgNPs are considered potent antibacterial agents, including against antibiotic- and drug-resistant strains. However, inappropriate dosages or unoptimized application of may result in potential toxicity, consisting one of the main drawbacks of the AgNPs’ safer administration. This article reviews the recent literature on the antibacterial potential of AgNPs, focusing on their broad mechanisms of action, applicability, especially in agriculture, biomedical and environmental fields, toxicity and future perspectives. Full article
(This article belongs to the Special Issue Innovative Nanomaterials from Functional Molecules)
22 pages, 965 KB  
Article
Effect of Immune Checkpoint Inhibitor Therapy on Biventricular and Biatrial Mechanics in Patients with Advanced Cancer: A Short-Term Follow-Up Study
by Andrea Sonaglioni, Emanuela Fossile, Nicoletta Tartaglia, Gian Luigi Nicolosi, Michele Lombardo, Massimo Baravelli, Paola Muti and Pier Francesco Ferrucci
J. Clin. Med. 2026, 15(2), 762; https://doi.org/10.3390/jcm15020762 (registering DOI) - 16 Jan 2026
Abstract
Background: Immune checkpoint inhibitors (ICIs) improve cancer outcomes but may cause cardiovascular toxicity, including early subclinical myocardial injury. Conventional echocardiography has limited sensitivity, whereas speckle-tracking echocardiography (STE) allows for early detection of myocardial deformation. Data on short-term ICI-related effects on biventricular mechanics are [...] Read more.
Background: Immune checkpoint inhibitors (ICIs) improve cancer outcomes but may cause cardiovascular toxicity, including early subclinical myocardial injury. Conventional echocardiography has limited sensitivity, whereas speckle-tracking echocardiography (STE) allows for early detection of myocardial deformation. Data on short-term ICI-related effects on biventricular mechanics are limited, and atrial function remains poorly characterized. This study evaluated the early impact of ICI therapy on biventricular and biatrial mechanics using STE in patients with advanced cancer. Methods: In this prospective, single-center study, 28 consecutive patients with advanced cancer undergoing ICI therapy were followed for 3 months. Clinical, laboratory, electrocardiographic, and echocardiographic assessments were performed at baseline, 1 month, and 3 months. STE was used to assess left ventricular global longitudinal strain (LV-GLS) and circumferential strain; right ventricular GLS (RV-GLS); and left and right atrial reservoir, conduit, and contractile strain parameters. Subclinical LV dysfunction was defined as a relative LV-GLS reduction >15%. Logistic and Cox regression analyses identified predictors of strain impairment and adverse clinical events. Results: Conventional echocardiographic parameters, including left ventricular ejection fraction, remained stable. In contrast, LV-GLS declined progressively from 20.7 ± 2.1% to 17.6 ± 2.7% at 3 months (p = 0.002), with subclinical LV dysfunction observed in 85.7% of patients. RV-GLS also deteriorated despite preserved TAPSE. Both left and right atrial strain and strain-rate parameters showed an early and marked decline, accompanied by increased left atrial stiffness despite unchanged atrial volumes. Older age and higher neutrophil-to-lymphocyte ratio (NLR) were associated with LV-GLS impairment. Over a mean follow-up of 5.4 ± 3 months, baseline LV-GLS independently predicted adverse clinical events and mortality. Optimal cut-off values were 67 years for age, 4 for NLR, and 19.5% for LV-GLS. Conclusions: Short-term ICI therapy is associated with early, diffuse subclinical myocardial dysfunction involving both ventricles and atria, detectable only by STE. Comprehensive biventricular and biatrial strain assessment may enhance early cardio-oncology surveillance and risk stratification in ICI-treated patients. Full article
14 pages, 3162 KB  
Article
Novel Ultrafast Synthesis of Perovskites via Commercial Laser Engraving
by Pedro Piza-Ruiz, Griselda Mendoza-Gómez, Maria Luisa Camacho-Rios, Guillermo Manuel Herrera-Perez, Luis Carlos Rodriguez Pacheco, Kevin Isaac Contreras-Vargas, Daniel Lardizábal-Gutiérrez, Antonio Ramírez-DelaCruz and Caleb Carreno-Gallardo
Processes 2026, 14(2), 327; https://doi.org/10.3390/pr14020327 - 16 Jan 2026
Abstract
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves [...] Read more.
We present a rapid, energy-efficient, and ecofriendly route for the synthesis of alkaline earth titanate perovskites—CaTiO3, SrTiO3, and BaTiO3—using an affordable, commercially available CO2 laser engraver, commonly found in makerspaces and small-scale workshops. The method involves direct laser irradiation of compacted pellets composed of low-cost, abundant, and non-toxic precursors: TiO2 and alkaline earth carbonates (CaCO3, SrCO3, BaCO3). CaTiO3 and BaTiO3 were synthesized with phase purities exceeding 97%, eliminating the need for conventional high-temperature furnaces or prolonged thermal treatments. X-ray diffraction (XRD) coupled with Rietveld refinement confirmed the formation of orthorhombic CaTiO3 (Pbnm), cubic SrTiO3 (Pm3m), and tetragonal BaTiO3 (P4mm). Raman spectroscopy independently corroborated the perovskite structures, revealing vibrational fingerprints consistent with the expected crystal symmetries and Ti–O bonding environments. All samples contained only small amounts of unreacted anatase TiO2, while BaTiO3 exhibited a partially amorphous fraction, attributed to the sluggish crystallization kinetics of the Ba–Ti system and the rapid quenching inherent to laser processing. Transmission electron microscopy (TEM) revealed nanoparticles with average sizes of 50–150 nm, indicative of localized melting followed by ultrafast solidification. This solvent-free, low-energy, and highly accessible approach, enabled by widely available desktop laser systems, demonstrates exceptional simplicity, scalability, and sustainability. It offers a compelling alternative to conventional ceramic processing, with broad potential for the fabrication of functional oxides in applications ranging from electronics to photocatalysis. Full article
14 pages, 6749 KB  
Article
Innovative Copper-Based Heterogeneous Catalyst for Chan–Lam Cross-Coupling
by Jan Stehlík, Radka Pocklanová, David Profous, Barbora Lapčíková, Petr Cankař, Libor Kvítek and Ľubomír Lapčík
Catalysts 2026, 16(1), 94; https://doi.org/10.3390/catal16010094 - 16 Jan 2026
Abstract
The synthesis, in particular the industrial production, of pharmaceuticals requires a broad arsenal of synthetic reactions capable of selectively forming specific structural motifs and assembling smaller building blocks into complex molecules. The Chan–Evans–Lam cross-coupling reaction, which forms a bond between a N-nucleophile and [...] Read more.
The synthesis, in particular the industrial production, of pharmaceuticals requires a broad arsenal of synthetic reactions capable of selectively forming specific structural motifs and assembling smaller building blocks into complex molecules. The Chan–Evans–Lam cross-coupling reaction, which forms a bond between a N-nucleophile and an aryl group from a boronic acid, catalysed by copper salts, is a typical example of this synthetic route. Considering the toxicity of copper and the stringent regulatory limits for its residues in final pharmaceutical products, a heterogeneous catalytic approach offers a viable alternative for this transformation. In this work, we present a simply and reproducibly synthesized catalyst based on copper nanoparticles supported on reduced graphene oxide (Cu-rGO), with high efficiency in a model Chan–Lam reaction involving benzimidazole and aniline derivatives with substituted boronic acids. Full article
(This article belongs to the Collection Nanotechnology in Catalysis)
Show Figures

Graphical abstract

21 pages, 1284 KB  
Article
Colchicine Suppresses Adipogenic Differentiation of Mesenchymal Stem Cells: Implications for Bone Adiposity Control
by Miriam López-Fagúndez, María Piñeiro-Ramil, Andrés Pazos-Pérez, María Guillán-Fresco, Verónica López, Djedjiga Ait Eldjoudi, Susana Belén Bravo, Alberto Jorge-Mora, Ana Alonso-Pérez and Rodolfo Gómez
Pharmaceutics 2026, 18(1), 119; https://doi.org/10.3390/pharmaceutics18010119 - 16 Jan 2026
Abstract
Background: Gout is an inflammatory arthritis associated with increased bone anabolism and a higher risk of ectopic bone formation. Colchicine, used to prevent and treat acute gouty flares, inhibits microtubule polymerization and has been described to promote osteoblastogenesis. In bone disorders such [...] Read more.
Background: Gout is an inflammatory arthritis associated with increased bone anabolism and a higher risk of ectopic bone formation. Colchicine, used to prevent and treat acute gouty flares, inhibits microtubule polymerization and has been described to promote osteoblastogenesis. In bone disorders such as osteoporosis, disruption of the osteoblast–adipocyte balance contributes to pathology, yet no therapies directly target bone marrow adiposity. Thus, we decided to investigate the impact of colchicine on the osteoblast-adipocyte balance. Methods: C3H10T1/2 mesenchymal stem cells were differentiated to both cell fates in the presence or absence of colchicine. Differentiation was assessed by studying differentiation phenotypes as well as adipocytic and osteoblastic marker genes. Disrupting microtubule homeostasis through stathmin (STMN1) silencing was employed to mimic colchicine effects on differentiation. Proteomic analysis was performed to gain further insight into colchicine’s effects on adipogenesis. Results: Colchicine promoted transcriptional changes consistent with osteoblastogenic commitment and inhibited adipogenesis, as evidenced by reduced intracellular lipid accumulation and downregulation of adipogenic marker genes. These effects were observed following both continuous and transient exposure (median fold change across adipogenic markers 0.41 and 0.59, respectively). Consistent with colchicine-induced microtubule destabilisation, microtubule disruption by STMN1 silencing also suppressed adipogenic differentiation (median fold change = 0.66), suggesting that colchicine’s anti-adipogenic effect may be due to its impact on the cytoskeleton. Conclusions: These findings indicate that colchicine can suppress adipogenic differentiation while favouring osteoblast commitment in mesenchymal stem cells. Although further validation in relevant preclinical models is required, its efficacy following transient exposure supports the exploration of site-specific strategies that limit systemic toxicity. Full article
20 pages, 4104 KB  
Article
Integrated Targeted and Untargeted Metabolomics Reveals the Toxic Mechanisms of Zearalenone in Goat Leydig Cells
by Chunmei Ning, Jinkui Sun, Ying Zhao, Houqiang Xu, Wenxuan Wu and Yi Yang
Animals 2026, 16(2), 283; https://doi.org/10.3390/ani16020283 - 16 Jan 2026
Abstract
Zearalenone (ZEA) is a mycotoxin commonly found in animal feed and is associated with pronounced reproductive toxicity. However, most studies on ZEA’s reproductive effects have focused on female monogastric animals, while research on male ruminants remains limited. This study aimed to investigate the [...] Read more.
Zearalenone (ZEA) is a mycotoxin commonly found in animal feed and is associated with pronounced reproductive toxicity. However, most studies on ZEA’s reproductive effects have focused on female monogastric animals, while research on male ruminants remains limited. This study aimed to investigate the cytotoxic and metabolic mechanisms underlying ZEA-induced damage in goat Leydig cells (LCs). The CCK8 assay was first used to determine the effective ZEA concentration (IC50 ≈ 20 μM), and a cytotoxicity model was subsequently established. The model’s validity was confirmed using qRT-PCR, transmission electron microscopy, flow cytometry, and JC-1 staining. Results showed that ZEA significantly reduced LCs viability in a dose-dependent manner, decreased mitochondrial membrane potential, induced cell cycle arrest, and triggered apoptosis. Targeted and untargeted metabolomics analyses revealed that ZEA disrupts steroidogenic pathways and alters steroid hormone secretion, resulting in elevated levels of progesterone, corticosterone, and androstenedione, and reduced dihydrotestosterone levels. Furthermore, 52 significantly altered metabolites were identified, predominantly enriched in glycerophospholipid metabolism, choline metabolism, and neurotransmitter vesicle pathways, with corresponding changes in gene expression. Collectively, this study has confirmed that ZEA causes harm to the reproductive cells of male goats in multiple aspects, underscoring the link between metabolic dysregulation and reproductive impairment, and offering a foundation for evaluating ZEA’s impact on goat reproductive performance. Full article
(This article belongs to the Section Small Ruminants)
Show Figures

Figure 1

Back to TopTop