Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (14)

Search Parameters:
Keywords = total suspended solids (TSSs)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 2481 KiB  
Article
Assessment of Water Quality in the Tributaries of the Rega River (Northwestern Poland) as a Fish Habitat
by Małgorzata Bonisławska, Arkadiusz Nędzarek, Adam Tański, Agnieszka Tórz and Krzysztof Formicki
Appl. Sci. 2025, 15(14), 7846; https://doi.org/10.3390/app15147846 - 14 Jul 2025
Viewed by 311
Abstract
The effective assessment and improvement of water quality require analysis not only of the main river flowing into the sea but also of its tributaries, which may contribute to significant pollution. This study aimed to evaluate the physicochemical conditions of water in nine [...] Read more.
The effective assessment and improvement of water quality require analysis not only of the main river flowing into the sea but also of its tributaries, which may contribute to significant pollution. This study aimed to evaluate the physicochemical conditions of water in nine streams flowing into the Rega River between 2018 and 2022. It also sought to determine whether the water quality in these tributaries meets the standards defined by EU regulations for inland waters that serve as habitats for fish. The parameters analyzed included water temperature, dissolved oxygen (DO), pH, total suspended solids (TSSs), electrical conductivity (EC), alkalinity, total hardness (TH), biochemical oxygen demand (BOD5), nitrite nitrogen (NO2-N), ammonium nitrogen (NH4+-N), and total phosphorus (TP). The results indicated that most indicators met the requirements for waters suitable for salmonid species. Elevated concentrations of NO2-N observed across all sites were still within acceptable limits for cyprinid species. Among the parameters studied, TSSs was identified as the main factor that downgraded water quality over the study period. Principal component analysis (PCA) showed that the dominant variables influencing water chemistry were NH4+-N, NO2-N, TP, EC, and chloride (Cl), all of which are associated with anthropogenic sources. Full article
Show Figures

Figure 1

20 pages, 22795 KiB  
Article
Runoff Control Performance of Three Typical Low-Impact Development Facilities: A Case Study of a Community in Beijing
by Jiayi Xiao, Zhiwei Zhou, Zhiyu Yang, Zhili Li, Xiaolong Li, Jinjun Zhou and Hao Wang
Water 2024, 16(17), 2373; https://doi.org/10.3390/w16172373 - 23 Aug 2024
Viewed by 1369
Abstract
The development of sponge cities advocates for sustainable urban rainwater management, effectively alleviating urban flood disasters, reducing non-point-source pollution, and promoting the recycling of rainwater resources. Low-Impact Development (LID) serves as a key strategy in this context, providing essential support for urban rainwater [...] Read more.
The development of sponge cities advocates for sustainable urban rainwater management, effectively alleviating urban flood disasters, reducing non-point-source pollution, and promoting the recycling of rainwater resources. Low-Impact Development (LID) serves as a key strategy in this context, providing essential support for urban rainwater control and pollution reduction. To investigate the runoff control effects of LID measures and to reveal the relationship between facility runoff control performance and installation scale, this study focuses on a sponge community in Beijing. A SWMM model was constructed to analyze the rainwater flood control and pollutant load reduction effects of different LID facilities, including bio-retention cells, green roofs, and permeable pavements. Using evaluation indicators such as surface runoff, node overflow, and pollutant control rates, this study examined how facility performance varies with installation scale under different rainfall conditions. The combination scheme of LID equipment optimal configuration is designed by using multiple criteria decision analysis (MCDA) and cost–benefit theory. The results indicate significant differences in performance among the various LID facilities across different rainfall scenarios. Specifically, the optimal installation proportion for runoff and overflow control of permeable pavements were found to be between 30% and 70%. Green roofs demonstrate superior performance in handling extreme rainfall events, while bio-retention cells exhibit significant effectiveness in controlling Total Suspended Solids (TSSs). Through comprehensive performance evaluation, this study identified the optimal combination scale under a 3-year rainfall recurrence interval as 30% permeable pavements, 20% green roof, and 60% bio-retention cells. This combination effectively leverages the strengths of each facility, ensuring system stability and efficiency while also demonstrating optimal management efficiency in cost–benefit analyses. The findings of this research provide valuable insights for future urban water management and infrastructure development. Full article
(This article belongs to the Special Issue Urban Flood Frequency Analysis and Risk Assessment)
Show Figures

Figure 1

17 pages, 4086 KiB  
Article
Using Surrogate Parameters to Enhance Monitoring of Community Wastewater Management System Performance for Sustainable Operations
by Zhining Shi, Christopher W. K. Chow, Jing Gao, Ke Xing, Jixue Liu and Jiuyong Li
Sensors 2024, 24(6), 1857; https://doi.org/10.3390/s24061857 - 14 Mar 2024
Cited by 3 | Viewed by 1593
Abstract
Community wastewater management systems (CWMS) are small-scale wastewater treatment systems typically in regional and rural areas with less sophisticated treatment processes and often managed by local governments or communities. Research and industrial applications have demonstrated that online UV-Vis sensors have great potential for [...] Read more.
Community wastewater management systems (CWMS) are small-scale wastewater treatment systems typically in regional and rural areas with less sophisticated treatment processes and often managed by local governments or communities. Research and industrial applications have demonstrated that online UV-Vis sensors have great potential for improving wastewater monitoring and treatment processes. Existing studies on the development of surrogate parameters with models from spectral data for wastewater were largely limited to lab-based. In contrast, industrial applications of these sensors have primarily targeted large wastewater treatment plants (WWTPs), leaving a gap in research for small-scale WWTPs. This paper demonstrates the suitability of using a field-based online UV-Vis sensor combined with advanced data analytics for CWMSs as an early warning for process upset to support sustainable operations. An industry case study is provided to demonstrate the development of surrogate monitoring parameters for total suspended solids (TSSs) and chemical oxygen demand (COD) using the UV-Vis spectral data from an online UV-Vis sensor. Absorbances at a wavelength of 625 nm (UV625) and absorbances at a wavelength of 265 nm (UV265) were identified as surrogate parameters to measure TSSs and COD, respectively. This study contributes to the improvement of WWTP performance with a continuous monitoring system by developing a process monitoring framework and optimization strategy. Full article
(This article belongs to the Special Issue Sensors for Smart Environments)
Show Figures

Figure 1

12 pages, 1827 KiB  
Article
Characteristics of Phytoplankton Productivity in Three Typical Lake Zones of Taihu, China
by Jin Wei, Xiaonan Ji and Wei Hu
Sustainability 2024, 16(6), 2376; https://doi.org/10.3390/su16062376 - 13 Mar 2024
Cited by 2 | Viewed by 1367
Abstract
In lake aquatic ecosystems, which form the material and energy base of lakes, primary production is critical. The present study addresses the characteristics of primary phytoplankton productivity and its relationship with environmental physicochemical factors in three typical zones (algae-type, transition, and grass-type) of [...] Read more.
In lake aquatic ecosystems, which form the material and energy base of lakes, primary production is critical. The present study addresses the characteristics of primary phytoplankton productivity and its relationship with environmental physicochemical factors in three typical zones (algae-type, transition, and grass-type) of the eutrophic Lake Taihu. Seasonal sampling was conducted, and black–white bottle oxygen measurement was used to determine the primary productivity in different water layers in the lake. The results show obvious temporal and spatial differences in the physicochemical factors and phytoplankton productivity in Lake Taihu. The water column productivity and respiration conformed to the following seasonal descending order, summer > fall > spring > winter, and the following regional descending order, algae-type zone > transition zone > grass-type zone. The seasonal proportions of primary productivity were approximately 40% in the summer, 25% in the fall, 20% in the spring, and less than 15% in the winter. The highest values of water layer productivity and respiration were mainly at a depth of 0.2 m and decreased with the water depth. The percentage of productivity at different water layers was 23% (0 m), 31% (0.2 m), 23% (0.4 m), 11% (0.6 m), 7% (0.8 m), and 5% (1 m). The optical compensation depth for Lake Taihu was about 0.8 times the transparency (SD). Spearman correlation indicated that the temperature (T) and water depth (D) had an obvious impact on productivity in all three lake zones. Multiple stepwise regression suggested that T, D, SD, and chlorophyll-a (Chl-a) can be used to estimate productivity in different seasons/regions. The main influencing factors on phytoplankton productivity are T, D, Chl-a, and SD in the algae-type and transition zones and T, D, and total suspended solids (TSSs) in the grass-type zone. Full article
Show Figures

Figure 1

14 pages, 3792 KiB  
Article
Beyond Microplastics: Implementation of a Two-Stage Removal Process for Microplastics and Chemical Oxygen Demand in Industrial Wastewater Streams
by Michael Toni Sturm, Erika Myers, Dennis Schober, Anika Korzin and Katrin Schuhen
Water 2024, 16(2), 268; https://doi.org/10.3390/w16020268 - 12 Jan 2024
Cited by 10 | Viewed by 3397
Abstract
Wastewater from plastic manufacturing or processing industries is often highly polluted with microplastics (MPs) and high levels of oxidizable organic matter, which results in a high chemical oxygen demand (COD). When industrial wastewater enters wastewater streams, the high microplastic load is a high [...] Read more.
Wastewater from plastic manufacturing or processing industries is often highly polluted with microplastics (MPs) and high levels of oxidizable organic matter, which results in a high chemical oxygen demand (COD). When industrial wastewater enters wastewater streams, the high microplastic load is a high burden for municipal wastewater treatment plants (WWTPs), as they are not sufficiently removed. To prevent MP from entering the WWTPs, an upstream prevention method is essential. This paper presents a pilot-scale plant study for the removal of MP and COD from industrial wastewater that was tested on-site at a plastic manufacturer in Germany. Eight test phases were performed over 3 months, with each test phase processing 1 m3 wastewater and four treatments. Per test phase, 12 samples were analyzed for 5 parameters: COD, total suspended solids (TSSs), particle count, pH, and turbidity. The results showed an average decrease in MP by 98.26 ± 2.15% measured by TSSs and 97.92 ± 2.31% measured by particle count. This prevents the emission of 1.1 kg MP/m3 water and an estimated 2.7 t MP/year. The COD was reduced efficiently by 94.3 ± 8.9%. Besides MP and COD, this treatment allows reuse of water and agglomerates, resulting in a reduction in the CO2 footprint. Full article
Show Figures

Graphical abstract

14 pages, 3356 KiB  
Article
Possible Pollution of Surface Water Bodies with Tequila Vinasses
by Allan Tejeda, Arturo Montoya, Belkis Sulbarán-Rangel and Florentina Zurita
Water 2023, 15(21), 3773; https://doi.org/10.3390/w15213773 - 28 Oct 2023
Cited by 5 | Viewed by 3100
Abstract
The aim of this study was to evaluate the water quality in two streams of the Valles region of Jalisco, Mexico and fully determine if they are being used as tequila vinasse disposal sites. Three sampling campaigns were carried out at eight different [...] Read more.
The aim of this study was to evaluate the water quality in two streams of the Valles region of Jalisco, Mexico and fully determine if they are being used as tequila vinasse disposal sites. Three sampling campaigns were carried out at eight different points of the two streams that run near tequila factories (TFs). Different physicochemical parameters of water quality were measured: chemical oxygen demand (COD); biochemical oxygen demand (BOD5); total suspended solids (TSSs); total phosphates; fats, oils, and grease (FOG); Kjeldal nitrogen; nitrite; nitrate; pH; conductivity; temperature; dissolved oxygen (DO); and turbidity. Also, the analysis of samples of tequila vinasses (TVs) diluted with tap water were carried out to have a reference for the level of pollution in the streams. Furthermore, due to the fact that COD could be considered the main indicator of pollution with TVs, a linear regression was performed between COD concentrations and the percentage of dilution of TVs (with tap water). A positive correlation was found between these two variables, and based on this analysis, the vinasse content was estimated at each sampling point of the streams. It was found that on average, a volume of 8.5 ± 6.3% and 11.5 ± 4.9% of TVs were present in each sampling point of the Atizcoa and Jarritos Streams, respectively. Additionally, it was found that, in general, the concentration of pollutants increased as the streams passed through the TFs, particularly the Atizcoa Stream. According to the Water National Commission criteria, most of the points would be classified as highly polluted, since they reach concentrations of COD and BOD5 up to 6590 mg/L and 3775 mg/L, respectively, temperature values up to 37 °C, and DO values of 0.5 mg/L. Therefore, it was confirmed that the streams are being used as tequila vinasse disposal sites. Due to the above, there is an urgent need for tequila companies to implement treatment systems for the vinasse generated, since under current conditions, the monitored streams are practically devoid of aquatic life. Full article
(This article belongs to the Special Issue Water Quality, Water Security and Risk Assessment)
Show Figures

Figure 1

23 pages, 2080 KiB  
Article
Bioremediation of Metal-Polluted Industrial Wastewater with Algal-Bacterial Consortia: A Sustainable Strategy
by Kashif Bashir, Sara Khan, Ramzan Ali, Humaira Yasmin, Abdel-Rhman Z. Gaafar, Fazal E. Azeem Khilgee, Sadia Butt and Amin Ullah
Sustainability 2023, 15(19), 14056; https://doi.org/10.3390/su151914056 - 22 Sep 2023
Cited by 4 | Viewed by 2804
Abstract
Aquatic pollution is a burning issue nowadays due to urbanization and industrialization. Industrial wastewater (IWW) contains pollutants that pose a great risk to the environment and human beings and is a big challenge for industries. The remediation of IWW by microorganisms is an [...] Read more.
Aquatic pollution is a burning issue nowadays due to urbanization and industrialization. Industrial wastewater (IWW) contains pollutants that pose a great risk to the environment and human beings and is a big challenge for industries. The remediation of IWW by microorganisms is an environmentally friendly technique. This study was carried out to evaluate the pollution of IWW and to use consortia of Bacillus pakistanensis, Lysinibacillus composti, and Cladophora glomerata for bioremediation. The IWW was obtained from the Hayatabad Industrial Estate and was evaluated for physicochemical parameters and metal concentration. A pot experiment was carried out for two weeks to assess the efficiency of the developed consortia. The IWW and tap water (control) were treated with three different consortia (Bacillus pakistanensis-Cladophora glomerata (CT1, E1), Lysinibacillus composti-Cladophora glomerata (CT2, E2), and Bacillus pakistanensis-Lysinibacillus composti-Cladophora glomerata (CT3, E3). The three pots (CT1, CT2, and CT3) serving as the control were provided with tap water, and the three experimental pots (E1, E2, and E3) were provided with IWW. After treatment, substantial reductions were obtained in the following parameters and percentages: colour 85.7%, electrical conductivity (EC) 40.8%, turbidity 69.6%, sulphide 78.5%, fluoride 38.8%, chloride 62.9%, biological oxygen demand (BOD) 66%, chemical oxygen demand (COD) 81.8%, total suspended solids (TSSs) 82.7%, total dissolved solids (TDSs) 24.6%, Ca hardness 37.2%, Mg hardness 50%, and total hardness 39%. The samples of water were also examined for metal concentrations using atomic absorption spectrophotometry. The selected species removed 98.2% of Mn, 94% of Cu, 97.7% of Cr, 91.6% of Cd, 92.8% of Co, 79.6% of Ag, 82.6% of Ni, 98% of Ca, 90% of Mg, and 82.1% of Pb. The BCF values showed by the consortia for Mn, Cu, Cr, Cd, Co, Ag, Ni, Ca, Mg, and Pb were 91.8, 67, 97.5, 83.3, 85.7, 48.1, 80.4, 84.3, 82.5, and 80.3%, respectively. The t-test analysis showed that the treatment with the selected species significantly decreased the metal concentrations in the IWW (p ≤ 0.05). Overall, the study concludes that metal concentration in the water was decreased significantly by the consortia of algae-bacteria. Full article
Show Figures

Figure 1

27 pages, 3954 KiB  
Article
Spatiotemporal Variability in Total Dissolved Solids and Total Suspended Solids along the Colorado River
by Godson Ebenezer Adjovu, Haroon Stephen and Sajjad Ahmad
Hydrology 2023, 10(6), 125; https://doi.org/10.3390/hydrology10060125 - 2 Jun 2023
Cited by 16 | Viewed by 5646
Abstract
The Colorado River is a principal source of water for 40 million people and farmlands in seven states in the western US and the Republic of Mexico. The river has been under intense pressure from the effects of climate change and anthropogenic activities [...] Read more.
The Colorado River is a principal source of water for 40 million people and farmlands in seven states in the western US and the Republic of Mexico. The river has been under intense pressure from the effects of climate change and anthropogenic activities associated with population growth leading to elevated total dissolved solid (TDS) and total suspended solid (TSS) concentrations. Elevated TDS- and TSS-related issues in the basin have a direct negative impact on the water usage and the ecological health of aquatic organisms. This study, therefore, analyzed the spatiotemporal variability in the TDS and TSS concentrations along the river. Results from our analysis show that TDS concentration was significantly higher in the Upper Colorado River Basin while the Lower Colorado River Basin shows a generally high level of TSSs. We found that the activities in these two basins are distinctive and may be a factor in these variations. Results from the Kruskal–Wallis significance test show there are statistically significant differences in TDSs and TSSs from month to month, season to season, and year to year. These significant variations are largely due to seasonal rises in consumptive use, agriculture practices, snowmelts runoffs, and evaporate rates exacerbated by increased temperature in the summer months. The findings from this study will aid in understanding the river’s water quality, detecting the sources and hotspots of pollutions to the river, and guiding legislative actions. The knowledge obtained forms a strong basis for management and conservation efforts and consequently helps to reduce the economic damage caused by these water quality parameters including the over USD 300 million associated with TDS damages. Full article
Show Figures

Figure 1

17 pages, 11434 KiB  
Article
From Domestic Sewage to Potable Water Quality: New Approach in Organic Matter Removal Using Natural Treatment Systems for Wastewater
by Wojciech Halicki and Michał Halicki
Water 2022, 14(12), 1909; https://doi.org/10.3390/w14121909 - 14 Jun 2022
Cited by 9 | Viewed by 5062
Abstract
Natural treatment systems for wastewater (NTSW) allow us to not only reduce environmental pollution with sewage, but also to facilitate the reuse of water. This study presents almost 2.5 years of operation of a NTSW pilot plant, where the purpose of which was [...] Read more.
Natural treatment systems for wastewater (NTSW) allow us to not only reduce environmental pollution with sewage, but also to facilitate the reuse of water. This study presents almost 2.5 years of operation of a NTSW pilot plant, where the purpose of which was to purify domestic sewage from the building of the Institute of Applied Ecology (with three permanent residents and up to five employees) to the quality of drinking water. The NTSW consists of a septic tank, compost beds, and denitrification, phosphorus, and active carbon beds. With an active area of 3 m2 per person and a hydraulic residence time (HRT) of 6 days (excluding the HRT of the tank of 8 days), the NTSW allowed for a mean reduction of 99%, 95%, and 98% for the biological oxygen demand (BOD), chemical oxygen demand (COD), and total suspended solids (TSSs), respectively. The renewed water was characterized by average concentrations of 2.2 mg O2/dm3, 17.8 mg O2/dm3, 2.1 mg/dm3, 4.9 mg O2/dm3, and 0.6 nephelometric turbidity units for BOD, COD, TSS, oxidation, and turbidity, respectively. Thus, it met Polish and European drinking water requirements in terms of oxidation and turbidity. This water can be reused for toilet flushing and irrigation. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

16 pages, 42498 KiB  
Article
Landsat Image-Based Retrieval and Analysis of Spatiotemporal Variation of Total Suspended Solid Concentration in Jiaozhou Bay, China
by Xiang Zhang, Yu Song, Junjie Chen and Jue Huang
Remote Sens. 2021, 13(23), 4796; https://doi.org/10.3390/rs13234796 - 26 Nov 2021
Cited by 8 | Viewed by 2617
Abstract
The total suspended solid (TSS) concentration (mg/L) is an important parameter of water quality in coastal waters. It is of great significance to monitor the spatiotemporal distribution and variation of TSS as well as its influencing factors. In this study, a quantitative retrieval [...] Read more.
The total suspended solid (TSS) concentration (mg/L) is an important parameter of water quality in coastal waters. It is of great significance to monitor the spatiotemporal distribution and variation of TSS as well as its influencing factors. In this study, a quantitative retrieval model of TSS in Jiaozhou Bay (JZB) was established based on Landsat images from 1984 to 2020 (coefficient of determination (R2) = 0.77, root mean square error (RMSE) = 1.82 mg/L). In this paper, first, the long-term spatiotemporal variation of TSSs in JZB is revealed and, next, its influencing factors are further analyzed. The results show that the annual average TSSs in JZB reached their highest level in 1993 and their lowest level in 2016, showing a decreasing trend during the past decades. The TSSs were high in spring and winter and low in summer and autumn. The spatial distribution of the TSSs in JZB was similar at different timepoints, i.e., high in the northwest and gradually decreasing to the southeast. Tidal elevation exerted a significant influence on the daily variation of TSSs, and wind speed had a significant influence on the seasonal variation of TSSs. The Dagu River’s discharge only affected the TSSs at the river mouth. Tidal elevation, river discharge, and wind speed were major influence factors for TSSs’ variation in JZB. The results showed that the empirical model based on Landsat satellite data could be used to effectively monitor the long-term variation of TSSs in JZB. Full article
Show Figures

Figure 1

16 pages, 1471 KiB  
Article
Raman Spectrometry as a Tool for an Online Control of a Phototrophic Biological Nutrient Removal Process
by Rita D. G. Franca, Virgínia C. F. Carvalho, Joana C. Fradinho, Maria A. M. Reis and Nídia D. Lourenço
Appl. Sci. 2021, 11(14), 6600; https://doi.org/10.3390/app11146600 - 18 Jul 2021
Cited by 6 | Viewed by 3207
Abstract
Real-time bioprocess monitoring is crucial for efficient operation and effective bioprocess control. Aiming to develop an online monitoring strategy for facilitating optimization, fault detection and decision-making during wastewater treatment in a photo-biological nutrient removal (photo-BNR) process, this study investigated the application of Raman [...] Read more.
Real-time bioprocess monitoring is crucial for efficient operation and effective bioprocess control. Aiming to develop an online monitoring strategy for facilitating optimization, fault detection and decision-making during wastewater treatment in a photo-biological nutrient removal (photo-BNR) process, this study investigated the application of Raman spectroscopy for the quantification of total organic content (TOC), volatile fatty acids (VFAs), carbon dioxide (CO2), ammonia (NH3), nitrate (NO3), phosphate (PO4), total phosphorus (total P), polyhydroxyalkanoates (PHAs), total carbohydrates, total and volatile suspended solids (TSSs and VSSs, respectively). Specifically, partial least squares (PLS) regression models were developed to predict these parameters based on Raman spectra, and evaluated based on a full cross-validation. Through the optimization of spectral pre-processing, Raman shift regions and latent variables, 8 out of the 11 parameters that were investigated—namely TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and VSSs—could be predicted with good quality by the respective Raman-based PLS calibration models, as shown by the high coefficient of determination (R2 > 90.0%) and residual prediction deviation (RPD > 5.0), and relatively low root mean square error of cross-validation. This study showed for the first time the high potential of Raman spectroscopy for the online monitoring of TOC, VFAs, CO2, NO3, total P, PHAs, TSSs and VSSs in a photo-BNR reactor. Full article
(This article belongs to the Special Issue Novel Technologies for Pollutants Removal from Water and Wastewater)
Show Figures

Figure 1

20 pages, 7869 KiB  
Article
Performance Evaluation of a Biological Pre-Treatment Coupled with the Down-Flow Expanded Granular Bed Reactor (DEGBR) for Treatment of Poultry Slaughterhouse Wastewater
by Derrick Njabuliso Dlamini, Moses Basitere, Mahomet Njoya, Seteno Karabo Obed Ntwampe and Ephraim Kaskote
Appl. Sci. 2021, 11(14), 6536; https://doi.org/10.3390/app11146536 - 16 Jul 2021
Cited by 8 | Viewed by 2887
Abstract
Poultry slaughterhouse wastewater contains high concentrations of chemical oxygen demand (COD), total suspended solids (TSSs), fats, oil and grease (FOG), proteins and carbohydrates. It is important that the wastewater is treated to acceptable environmental discharge standards. In this study, the poultry slaughterhouse wastewater [...] Read more.
Poultry slaughterhouse wastewater contains high concentrations of chemical oxygen demand (COD), total suspended solids (TSSs), fats, oil and grease (FOG), proteins and carbohydrates. It is important that the wastewater is treated to acceptable environmental discharge standards. In this study, the poultry slaughterhouse wastewater (PSW) was treated using two-stage processes consisting of a biological pre-treatment using a biodegrading agent (Eco-flushTM) coupled with a down-flow expanded granular bed reactor (DEGBR). The results showed that the biological pre-treatment was observed to be highly effective for removal of FOG, COD and TSS with a removal efficiency of 80 ± 6.3%, 38 ± 8.4% and 56 ± 7.2%, respectively. The DEGBR showed a stable performance in terms FOG, COD and, TSS removal, with average removal efficiencies of 89 ± 2.8%, 87 ± 9.5%, and 94 ± 3.7%, respectively. The overall removal rate performance of the integrated system of pre-treatment and DEGBR in terms FOG, COD and TSS, was 97 ± 0.8%, 92 ± 6.3% and 97 ± 1.2%. Furthermore, the average volatile fatty acid/alkalinity (VFA/Alkalinity) ratio of 0.2 was reported, which indicated that the DEGBR was stable throughout the operation. Full article
(This article belongs to the Special Issue Sustainable Wastewater Treatment, Theory, Methods and Applications)
Show Figures

Figure 1

15 pages, 3702 KiB  
Article
Spatial Modeling of Potential Lobster Harvest Grounds in Palabuhanratu Bay, West Java, Indonesia
by Mutia Kamalia Mukhtar, Masita Dwi Mandini Manessa, Supriatna Supriatna and Liya Tri Khikmawati
Fishes 2021, 6(2), 16; https://doi.org/10.3390/fishes6020016 - 21 Apr 2021
Cited by 4 | Viewed by 4197
Abstract
Palabuhanratu Bay is a location in the southern part of Java Island with a high lobster population. Based on field observation, the lobster population in Palabuhanratu Bay is dominated by Panulirus homarus (green sand lobster), Panulirus versicolor (bamboo lobster), Panulirus penicillatus (black lobster), [...] Read more.
Palabuhanratu Bay is a location in the southern part of Java Island with a high lobster population. Based on field observation, the lobster population in Palabuhanratu Bay is dominated by Panulirus homarus (green sand lobster), Panulirus versicolor (bamboo lobster), Panulirus penicillatus (black lobster), and Panulirus ornatus (pearl lobster). This study aimed to develop a spatial model using satellite-derived data to predict potential lobster harvest grounds in Palabuhanratu Bay. The Earth observational satellite data used were multispectral Landsat 8-SR imagery, and information about chlorophyll-a, salinity, total suspended solids (TSSs), sea surface temperature (SST), and distance from the coastline was extracted. Multiple linear regression was applied to build the prediction model, which was validated using 10-fold cross-validation. The result of the lobster harvest prediction model agreed with the root-mean-square error (RMSE) and adjusted R2 values of 0.326 and 0.708, respectively. The distribution of lobsters was strong at the following preferred ranges: chlorophyll-a: 1.1–1.7 mg/m3; salinity: 20.2–23.7 ppt; TSS: 40–56.4 mg/L; SST: 29.5–29.9 °C; and distance from the coastline: 500–4700 m. In this study, the habitats of four species of lobsters and their relationships with satellite-derived parameters were evaluated. Full article
Show Figures

Figure 1

31 pages, 12093 KiB  
Article
High-Spatial Resolution Monitoring of Phycocyanin and Chlorophyll-a Using Airborne Hyperspectral Imagery
by Jong Cheol Pyo, Mayzonee Ligaray, Yong Sung Kwon, Myoung-Hwan Ahn, Kyunghyun Kim, Hyuk Lee, Taegu Kang, Seong Been Cho, Yongeun Park and Kyung Hwa Cho
Remote Sens. 2018, 10(8), 1180; https://doi.org/10.3390/rs10081180 - 26 Jul 2018
Cited by 47 | Viewed by 6386
Abstract
Hyperspectral imagery (HSI) provides substantial information on optical features of water bodies that is usually applicable to water quality monitoring. However, it generates considerable uncertainties in assessments of spatial and temporal variation in water quality. Thus, this study explored the influence of different [...] Read more.
Hyperspectral imagery (HSI) provides substantial information on optical features of water bodies that is usually applicable to water quality monitoring. However, it generates considerable uncertainties in assessments of spatial and temporal variation in water quality. Thus, this study explored the influence of different optical methods on the spatial distribution and concentration of phycocyanin (PC), chlorophyll-a (Chl-a), and total suspended solids (TSSs) and evaluated the dependence of algal distribution on flow velocity. Four ground-based and airborne monitoring campaigns were conducted to measure water surface reflectance. The actual concentrations of PC, Chl-a, and TSSs were also determined, while four bio-optical algorithms were calibrated to estimate the PC and Chl-a concentrations. Artificial neural network atmospheric correction achieved Nash-Sutcliffe Efficiency (NSE) values of 0.80 and 0.76 for the training and validation steps, respectively. Moderate resolution atmospheric transmission 6 (MODTRAN 6) showed an NSE value >0.8; whereas, atmospheric and topographic correction 4 (ATCOR 4) yielded a negative NSE value. The MODTRAN 6 correction led to the highest R2 values and lowest root mean square error values for all algorithms in terms of PC and Chl-a. The PC:Chl-a distribution generated using HSI proved to be negatively dependent on flow velocity (p-value = 0.003) and successfully indicated cyanobacteria risk regions in the study area. Full article
Show Figures

Graphical abstract

Back to TopTop