Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (798)

Search Parameters:
Keywords = total sediment concentration

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 553 KiB  
Article
Biorefinery-Based Energy Recovery from Algae: Comparative Evaluation of Liquid and Gaseous Biofuels
by Panagiotis Fotios Chatzimaliakas, Dimitrios Malamis, Sofia Mai and Elli Maria Barampouti
Fermentation 2025, 11(8), 448; https://doi.org/10.3390/fermentation11080448 - 1 Aug 2025
Viewed by 210
Abstract
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested [...] Read more.
In recent years, biofuels and bioenergy derived from algae have gained increasing attention, fueled by the growing demand for renewable energy sources and the urgent need to lower CO2 emissions. This research examines the generation of bioethanol and biomethane using freshly harvested and sedimented algal biomass. Employing a factorial experimental design, various trials were conducted, with ethanol yield as the primary optimization target. The findings indicated that the sodium hydroxide concentration during pretreatment and the amylase dosage in enzymatic hydrolysis were key parameters influencing the ethanol production efficiency. Under optimized conditions—using 0.3 M NaOH, 25 μL/g starch, and 250 μL/g cellulose—fermentation yielded ethanol concentrations as high as 2.75 ± 0.18 g/L (45.13 ± 2.90%), underscoring the significance of both enzyme loading and alkali treatment. Biomethane potential tests on the residues of fermentation revealed reduced methane yields in comparison with the raw algal feedstock, with a peak value of 198.50 ± 25.57 mL/g volatile solids. The integrated process resulted in a total energy recovery of up to 809.58 kWh per tonne of algal biomass, with biomethane accounting for 87.16% of the total energy output. However, the energy recovered from unprocessed biomass alone was nearly double, indicating a trade-off between sequential valorization steps. A comparison between fresh and dried feedstocks also demonstrated marked differences, largely due to variations in moisture content and biomass composition. Overall, this study highlights the promise of integrated algal biomass utilization as a viable and energy-efficient route for sustainable biofuel production. Full article
(This article belongs to the Special Issue Algae Biotechnology for Biofuel Production and Bioremediation)
Show Figures

Figure 1

17 pages, 2032 KiB  
Article
The Impact of Hydrological Streamflow Drought on Pollutant Concentration and Its Implications for Sustainability in a Small River in Poland
by Leszek Hejduk, Ewa Kaznowska, Michał Wasilewicz and Agnieszka Hejduk
Sustainability 2025, 17(15), 6995; https://doi.org/10.3390/su17156995 - 1 Aug 2025
Viewed by 166
Abstract
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the [...] Read more.
The paper presents the results of investigations into the relationship between selected water quality parameters and hydrological streamflow drought in a small river situated in the Mazovian Lowlands in Poland. As hydrological streamflow drought periods become more frequent in Poland, investigations about the relationship between flow and water quality parameters can be an essential contribution to a better understanding of the impact of low flow on the status of water rivers. Data from a three-year study of a small lowland river along with significant agricultural land management was used to analyze the connection between low flows and specific water quality indicators. The separation of low-flow data from water discharge records was achieved using two criteria: Q90% (the discharge value from a flow duration curve) and a minimum low-flow duration of 10 days. During these periods, the concentration of water quality indicators was determined based on collected water samples. In total, 30 samples were gathered and examined for pH, suspended sediments, dissolved substances, hardness, ammonium, nitrates, nitrites, phosphates, total phosphorus, chloride, sulfate, calcium, magnesium, and water temperature during sampling. The study’s main aim was to describe the relation between hydrological streamflow droughts and chosen water quality parameters. The analysis results demonstrate an inverse statistically significant relationship between concentration and low-flow values for total hardness and sulfate. In contrast, there was a direct relationship between nutrient indicators, suspended sediment concentration, and river hydrological streamflow drought. Statistical tests were applied to compare the datasets between years, revealing statistical differences only for nutrient indicators. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

17 pages, 2292 KiB  
Article
Employing Cover Crops and No-Till in Southern Great Plains Cotton Production to Manage Runoff Water Quantity and Quality
by Jack L. Edwards, Kevin L. Wagner, Lucas F. Gregory, Scott H. Stoodley, Tyson E. Ochsner and Josephus F. Borsuah
Water 2025, 17(15), 2283; https://doi.org/10.3390/w17152283 - 31 Jul 2025
Viewed by 186
Abstract
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage [...] Read more.
Conventional tillage and monocropping are common practices employed for cotton production in the Southern Great Plains (SGP) region, but they can be detrimental to soil health, crop yield, and water resources when improperly managed. Regenerative practices such as cover crops and conservation tillage have been suggested as an alternative. The proposed shift in management practices originates from the need to make agriculture resilient to extreme weather events including intense rainfall and drought. The objective of this study is to test the effects of these regenerative practices in an environment with limited rainfall. Runoff volume, nutrient and sediment concentrations and loadings, and surface soil moisture levels were compared on twelve half-acre (0.2 hectare) cotton plots that employed different cotton seeding rates and variable winter wheat cover crop presence. A winter cover implemented on plots with a high cotton seeding rate significantly reduced runoff when compared to other treatments (p = 0.032). Cover cropped treatments did not show significant effects on nutrient or sediment loadings, although slight reductions were observed in the concentrations and loadings of total Kjeldahl nitrogen, total phosphorus, total solids, and Escherichia coli. The limitations of this study included a short timeframe, mechanical failures, and drought. These factors potentially reduced the statistical differences in several findings. More efficient methods of crop production must continue to be developed for agriculture in the SGP to conserve soil and water resources, improve soil health and crop yields, and enhance resiliency to climate change. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

27 pages, 3711 KiB  
Article
Human Health Risk and Bioaccessibility of Arsenic in Wadis and Marine Sediments in a Coastal Lagoon (Mar Menor, Spain)
by Salvadora Martínez López, Carmen Pérez Sirvent, María José Martínez Sánchez and María Ángeles Esteban Abad
Toxics 2025, 13(8), 647; https://doi.org/10.3390/toxics13080647 - 30 Jul 2025
Viewed by 198
Abstract
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics [...] Read more.
This study evaluates the potential health risks posed by geogenic arsenic in environments suitable for leisure activities, such as walking, bathing, and playing, for adults and children alike, as well as in neighbouring agricultural areas. The study includes an analysis of environmental characteristics and the main stream originating in the adjacent mining area, with water and sediment samples taken. The study area is representative of other areas in the vicinity of the Mar Menor Lagoon, which is one of the largest and most biodiverse coastal lagoons in the Mediterranean Sea. The general characteristics of the soil and water were determined for this study, as was the concentration of As in the soil and water samples. A granulometric separation was carried out into four different fractions (<2 mm, <250 µm, <100 µm, and <65 µm). The mineralogical composition, total As content, and bioaccessible As content are analysed in each of these fractions. This provides data with which to calculate the danger of arsenic (As) to human health by ingestion and to contribute to As bioaccessibility studies and the role played by the mineralogical composition and particle size of soil ingestion. The conclusions rule out residential use of this environment, although they allow for eventual tourist use and traditional agricultural use of the surrounding soils. Full article
Show Figures

Figure 1

27 pages, 18566 KiB  
Article
Geochemical Characteristics and Controlling Factors of Lower Cretaceous Lacustrine Hydrocarbon Source Rocks in the Erdengsumu Sag, Erlian Basin, NE China
by Juwen Yao, Zhanli Ren, Kai Qi, Jian Liu, Sasa Guo, Guangyuan Xing, Yanzhao Liu and Mingxing Jia
Processes 2025, 13(8), 2412; https://doi.org/10.3390/pr13082412 - 29 Jul 2025
Viewed by 201
Abstract
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, [...] Read more.
This study analyzes the lacustrine hydrocarbon source rocks of the Lower Cretaceous in the Erdengsumu sag of the Erlian Basin, evaluating their characteristics and identifying areas with oil resource potential, while also investigating the ancient lake environment, material source input, and controlling factors, ultimately developing a sedimentary model for lacustrine hydrocarbon source rocks. The findings suggest the following: (1) The lower Tengger Member (K1bt1) and the Aershan Formation (K1ba) are the primary oil-producing strata, with an effective hydrocarbon source rock exhibiting a lower limit of total organic carbon (TOC) at 0.95%. The Ro value typically remains below 0.8%, indicating that high-maturity oil production has not yet been attained. (2) The oil generation threshold depths for the Dalestai and Sayinhutuge sub-sags are 1500 m and 1214 m, respectively. The thickness of the effective hydrocarbon source rock surpasses 200 m, covering areas of 42.48 km2 and 88.71 km2, respectively. The cumulative hydrocarbon generation intensity of wells Y1 and Y2 is 486 × 104 t/km2 and 26 × 104 t/km2, respectively, suggesting that the Dalestai sub-sag possesses considerable petroleum potential. The Aershan Formation in the Chagantala sub-sag has a maximum burial depth of merely 1800 m, insufficient to attain the oil generation threshold depth. (3) The research area’s productive hydrocarbon source rocks consist of organic matter types I and II1. The Pr/Ph range is extensive (0.33–2.07), signifying a reducing to slightly oxidizing sedimentary environment. This aligns with the attributes of small fault lake basins, characterized by shallow water and robust hydrodynamics. (4) The low ratio of ∑nC21−/∑nC22+ (0.36–0.81), high CPI values (>1.49), and high C29 sterane concentration suggest a substantial terrestrial contribution, with negligible input from aquatic algae–bacterial organic matter. Moreover, as sedimentation duration extends, the contribution from higher plants progressively increases. (5) The ratio of the width of the deep depression zone to the width of the depression in the Erdengsumu sag is less than 0.25. The boundary fault scale is small, its activity is low, and there is not much input from the ground. Most of the source rocks are in the reducing sedimentary environment of the near-lying gently sloping zone. Full article
(This article belongs to the Topic Petroleum and Gas Engineering, 2nd edition)
Show Figures

Figure 1

23 pages, 2483 KiB  
Article
A Unionid Mussel Biodiversity Hotspot Experiencing Unexplained Declines: Evaluating the Influence of Chemical Stressors Using Caged Juveniles
by W. Aaron Wilson, Christine Bergeron, Jennifer Archambault, Jason Unrine, Jess Jones, Braven Beaty, Damian Shea, Peter R. Lazaro, Jody L. Callihan, Jennifer J. Rogers and W. Gregory Cope
Diversity 2025, 17(8), 503; https://doi.org/10.3390/d17080503 - 22 Jul 2025
Viewed by 300
Abstract
Unionid mussel populations in a section of the Clinch River in Virginia, USA, has declined substantially, but the causes of the decline remain unknown. To investigate this zone of decline (ZOD), we deployed juvenile freshwater mussels (Villosa iris in 2012 and Lampsilis [...] Read more.
Unionid mussel populations in a section of the Clinch River in Virginia, USA, has declined substantially, but the causes of the decline remain unknown. To investigate this zone of decline (ZOD), we deployed juvenile freshwater mussels (Villosa iris in 2012 and Lampsilis fasciola in 2013) in both cages and silos at sites within the Clinch River System. We analyzed mussel tissues for trace element and organic contaminant concentrations, shells for trace elements, and environmental media (total water, dissolved water, particulate sediment, and bedload sediment) for both inorganic and organic contaminants. We found a few differences between mussels deployed in cages and those deployed in silos: survival was slightly lower in cages due to periodic sedimentation. Our results identified the ZOD based on the accumulation of trace elements (notably As, Cu, Fe, Mn, Ni, and Sr), polycyclic aromatic hydrocarbons (PAHs), and δ15N enrichment, with especially high concentrations found in the human-impacted tributaries, Dumps Creek and Guest River. Some correlations were found between environmental media and both mussel tissues and shells. In particular, PAHs and Mn had several significant relationships between bioaccumulated concentrations and environmental concentrations. Finally, Co, Cu, Fe, and V in soft tissues negatively correlated with mussel growth, whereas bioaccumulated PAH concentrations correlated negatively with resident mussel densities. Full article
(This article belongs to the Special Issue Freshwater Biodiversity Hotspots in 2025)
Show Figures

Figure 1

12 pages, 485 KiB  
Article
Experimental Study on the Treatment of Printing and Dyeing Wastewater by Iron–Carbon Micro-Electrolysis and Combined Processes
by Xiaoxu Sun, Jin Xu, Xiaorong Kang, Bing Li and Yuanyan Zhang
Processes 2025, 13(7), 2147; https://doi.org/10.3390/pr13072147 - 6 Jul 2025
Viewed by 303
Abstract
Iron–carbon micro-electrolysis and combined processes were used to treat simulated dyeing wastewater containing direct Big Red 4BE dye (concentration of 1500 mg/L, chromaticity of 80,000 times, and salt content of 20 g/L). Through single-factor experiments, the optimal reaction conditions were determined as follows: [...] Read more.
Iron–carbon micro-electrolysis and combined processes were used to treat simulated dyeing wastewater containing direct Big Red 4BE dye (concentration of 1500 mg/L, chromaticity of 80,000 times, and salt content of 20 g/L). Through single-factor experiments, the optimal reaction conditions were determined as follows: reaction time of 110 min, initial pH of 5, and iron and carbon mass ratio of 1:2. Under the optimal conditions, the concentration was reduced to 14.51 mg/L, the chromaticity was reduced to 3000 times, and the decolorization rate reached 99.03%. In order to further decrease the wastewater chromaticity, coagulation and Fenton oxidation were respectively employed for in-depth treatment after iron–carbon micro-electrolysis. The total decolorization rate of the dye wastewater exceeded 99.7%, with the treated effluent meeting the specified chromaticity discharge standard (80-fold). The integrated processes of iron–carbon micro-electrolysis combined with either coagulation sedimentation or Fenton oxidation demonstrated superior performance in treating direct Big Red 4BE dye wastewater. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

26 pages, 1724 KiB  
Article
Phosphorus Pools Associated with Fish in the Archipelago Sea
by Harri Helminen
Fishes 2025, 10(7), 328; https://doi.org/10.3390/fishes10070328 - 3 Jul 2025
Viewed by 347
Abstract
This study compiles and updates data to construct the phosphorus budget of the Archipelago Sea (northern Baltic Sea, Europe), with a particular focus on estimating phosphorus pools associated with fish populations. Biomass data and species-specific phosphorus content were utilized, and a bioenergetic modeling [...] Read more.
This study compiles and updates data to construct the phosphorus budget of the Archipelago Sea (northern Baltic Sea, Europe), with a particular focus on estimating phosphorus pools associated with fish populations. Biomass data and species-specific phosphorus content were utilized, and a bioenergetic modeling approach was applied to Baltic herring (Clupea harengus membras) and European perch (Perca fluviatilis) to estimate species-specific food consumption and nutrient excretion. Between 2001 and 2024, average total phosphorus concentrations were 28% higher than during the baseline period of 1983–1989. From 1998 to 2023, the annual average fish catch in the Archipelago Sea was 15,516.5 tons (16.3 kg/ha), with 73.1% consisting of commercially harvested herring. Other abundant catch species included, for example, pikeperch (Sander lucioperca), northern pike (Esox lucius), and European smelt (Osmerus eperlanus). On average, the annual catch contained 83.4 tons of phosphorus. Fishing may have annually removed an amount of phosphorus equivalent to approximately 0.6% of the total phosphorus pool in the water column and surface sediment, or 1.4% of the estimated total phosphorus load to the Archipelago Sea. The contribution of fish to phosphorus turnover is minor, as nutrient recycling is dominated by plankton. Planktivorous fish and their prey recycle nutrients already present in the water column and are therefore not the primary drivers of eutrophication. Full article
(This article belongs to the Section Biology and Ecology)
Show Figures

Figure 1

16 pages, 9182 KiB  
Article
Analysis of the Energy Loss Characteristics of a Francis Turbine Under Off-Design Conditions with Sand-Laden Flow Based on Entropy Generation Theory
by Xudong Lu, Kang Xu, Zhongquan Wang, Yu Xiao, Yaogang Xu, Changjiu Huang, Jiayang Pang and Xiaobing Liu
Water 2025, 17(13), 2002; https://doi.org/10.3390/w17132002 - 3 Jul 2025
Viewed by 283
Abstract
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid [...] Read more.
To investigate the impact of sand-laden flow on energy loss in Francis turbines, this study integrates entropy generation theory with numerical simulations conducted using ANSYS CFX. The mixture multiphase flow model and the SST k-ω turbulence model are employed to simulate the solid–liquid two-phase flow throughout the entire flow passage of the turbine at the Gengda Hydropower Station (Minjiang River Basin section, 103°17′ E and 31°06′ N). The energy loss characteristics under different off-design conditions are analyzed on the basis of the average sediment concentration during the flood season (2.9 kg/m3) and a median particle diameter of 0.058 mm. The results indicate that indirect entropy generation and wall entropy generation are the primary contributors to total energy loss, while direct entropy generation accounts for less than 1%. As the guide vane opening increases, the proportion of wall entropy generation initially rises and then decreases, while the total indirect entropy generation exhibits a non-monotonic trend dominated by the flow pattern in the draft tube. Entropy generation on the runner walls increases steadily with larger openings, whereas entropy generation on the draft tube walls first decreases and then increases. The variation in entropy generation on the guide vanes remains relatively small. These findings provide technical support for the optimal design and operation of turbines in sediment-rich rivers. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

25 pages, 3581 KiB  
Article
Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System
by Jingyi Huang, Fengyan Tian, Yuanxing Huang, Hong Tao and Feipeng Li
Water 2025, 17(13), 2000; https://doi.org/10.3390/w17132000 - 3 Jul 2025
Viewed by 376
Abstract
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment [...] Read more.
Excessive nitrogen accumulation from aquaculture poses a significant threat to water quality in river–lake systems. This study investigated the Taipu River and five interconnected lakes to analyze the forms, spatial distribution, and ecological impact of nitrogen in both water and surface sediments. Sediment total nitrogen (TN), ammonium nitrogen (NH4+-N), and nitrate nitrogen (NO3-N) were measured, with aquaculture-dominated lakes such as Xueluoyang Lake and Caodang Marsh exhibiting significantly higher sedimentary TN concentrations than the Taipu River. In Xueluoyang Lake, the average TN content reached 1037.3 mg/kg—1.87 times higher than in the river—highlighting the legacy effect of historical intensive aquaculture. Correlation analyses showed strong associations between sediment NH4+-N and NO3-N and nitrogen levels in overlying water, confirming sediments as a major endogenous nitrogen source. Multivariate statistical methods, including Pearson’s correlation, hierarchical clustering, and principal component analysis, were applied to elucidate spatial patterns and key influencing factors. Water quality evaluation indices and sediment organic pollution assessments revealed widespread TN exceedance, particularly in dry seasons, with water quality deteriorating to Class V or worse. These results underscore the need for strengthened control of sedimentary nitrogen release and effective management of agricultural non-point source pollution to restore and protect water quality in river–lake systems. Full article
(This article belongs to the Special Issue Sources, Transport, and Fate of Contaminants in Waters and Sediment)
Show Figures

Figure 1

20 pages, 723 KiB  
Article
Changes in Subcellular Responses in the Digestive Gland of the Freshwater Mussel Unio crassus from a Historically Contaminated Environment
by Zoran Kiralj, Zrinka Dragun, Jasna Lajtner, Krešimira Trgovčić, Tatjana Mijošek Pavin, Bruno Bušić and Dušica Ivanković
Fishes 2025, 10(7), 317; https://doi.org/10.3390/fishes10070317 - 2 Jul 2025
Viewed by 275
Abstract
Utilizing a multi-biomarker approach, we assessed the potential adverse effects of pollutants on subcellular responses in the digestive gland of the freshwater mussel Unio crassus from a historically contaminated lowland section (KIZ) of the river Mrežnica compared to its less impacted upstream karstic [...] Read more.
Utilizing a multi-biomarker approach, we assessed the potential adverse effects of pollutants on subcellular responses in the digestive gland of the freshwater mussel Unio crassus from a historically contaminated lowland section (KIZ) of the river Mrežnica compared to its less impacted upstream karstic section (REF) and their seasonality (spring vs. autumn). This approach accounted for the diverse modes of action of pollutants by including biomarkers of metal exposure (metallothioneins, MT), general stress (total cytosolic proteins, TP), antioxidative capacity (catalase, CAT; glutathione, GSH; glutathione-S-transferase, GST), oxidative damage (malondialdehyde, MDA), and neurotoxicity (acetylcholinesterase, AChE). Only in spring, MT concentrations were 15% higher at the REF site (4.38 ± 1.06 µg mg proteins−1) compared to the KIZ site (3.69 ± 0.63 µg mg proteins−1), likely related to elevated Cd bioaccumulation due to the karstic substrate. Regardless of the season, mussels from KIZ showed consistently lower TP and GSH, with significantly higher CAT, GST, and MDA levels, indicating elevated stress, activation of antioxidant defenses, and oxidative damage from chronic exposure to pro-oxidant pollutants, including metal(loid)s and organic contaminants (e.g., ibuprofen, nicotine). Compared to the REF site, AChE activity at the KIZ site was higher in late spring and lower in early autumn, indicating seasonal variability in AChE activity at the contamination-impacted location driven by fluctuating exposure to neurotoxicants, such as drugs and insecticides. Overall, biomarker responses indicated that mild historical pollution, reinforced by current low-capacity sources, has an observable impact on mussel health, posing long-term risks to sediment-dwelling aquatic organisms. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

22 pages, 2784 KiB  
Article
Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia
by Mayra De la Rosa-Mendoza, Mario Viña-Pico and José Marrugo-Negrete
Soil Syst. 2025, 9(3), 68; https://doi.org/10.3390/soilsystems9030068 - 1 Jul 2025
Viewed by 587
Abstract
The main problem associated with mining is the release of heavy metals into the environment, impacting the soil and overall environment. Mercury is one of the most contaminating heavy metals. It is present in soils, sediments, surface water, and groundwater. The objective of [...] Read more.
The main problem associated with mining is the release of heavy metals into the environment, impacting the soil and overall environment. Mercury is one of the most contaminating heavy metals. It is present in soils, sediments, surface water, and groundwater. The objective of this research was to evaluate the phytoremediation carried out by the native plant Piper marginatum, in soils contaminated by mercury in an experimental lot in the municipality of Ayapel, where artisanal and small-scale gold mining is carried out. A soil phytoremediation process was carried out at a field scale using the plant species Piper marginatum in a 2.4 ha plot historically contaminated by gold mining, located in Ayapel, Colombia. A completely randomized experimental design was used with nine experimental plots, which were planted with Piper marginatum, and three controls, without planting. Through an initial soil sampling, the physicochemical characteristics and total mercury content in this matrix were determined. Piper marginatum seedlings were planted in the experimental plots and remained in the field for a period of six months. The plant biomass was collected and a final soil sampling was performed for total mercury analysis to determine the total percentage of mercury removal. The results obtained indicated mercury concentrations in soils ranging from 40.80 to 52,044.4 µg kg−1 in the experimental plots and ranged from 55.9 to 2587.4 µg kg−1 in the controls. In the plots planted with Piper marginatum, a 37.3% decrease in total mercury was achieved, while in the plots without planting there was a 23.5% increase. In plants, the average T Hg concentrations in the roots, stems, and leaves were 109.2 µg kg−1, 80.6 µg kg−1, and 122.6 µg kg−1, respectively. An average BCF < 1 and an average TF > 1 were obtained. Full article
Show Figures

Figure 1

13 pages, 1875 KiB  
Article
Quantitative Characterization of Carbonate Mineralogy in Lake Yangzong Sediments Using XRF-Derived Calcium Signatures and Inorganic Carbon Measurements
by Huayong Li, Lizeng Duan, Junhui Mo, Jungang Lin, Huayu Li, Han Wang, Jingwen Wu, Qifa Sun and Hucai Zhang
Water 2025, 17(13), 1949; https://doi.org/10.3390/w17131949 - 29 Jun 2025
Viewed by 291
Abstract
The carbonate content serves as a fundamental proxy in lacustrine sediments for reconstructing palaeoclimate and environmental changes. Although multiple analytical techniques exist for its quantification, systematic comparisons between different methodologies and the precise identification of carbonate mineralogy are still needed. In this study, [...] Read more.
The carbonate content serves as a fundamental proxy in lacustrine sediments for reconstructing palaeoclimate and environmental changes. Although multiple analytical techniques exist for its quantification, systematic comparisons between different methodologies and the precise identification of carbonate mineralogy are still needed. In this study, a 1020 cm continuous sediment core (YZH-1) from Lake Yangzong in Yunnan Province was employed. Initially, the semi-quantitative calcium (Ca) concentration was obtained via X-ray fluorescence (XRF) core scanning. Subsequently, the total inorganic carbon (TIC) content was determined using both the loss on ignition (LOI) and gasometric (GM) methods to evaluate methodological discrepancies and potential biases. Furthermore, a quantitative regression model was developed to estimate carbonate abundance based on the relationship between XRF-derived Ca data and the analytically determined carbonate content. A comparative analysis revealed a strong positive correlation (r = 0.97) between LOI and GM measurements, though LOI-derived values are systematically elevated by 2.6% on average. This overestimation likely stems from the thermal decomposition of non-carbonate minerals during LOI analysis. Conversely, GM measurements exhibit a ~5% underestimation relative to certified reference materials, attributable to instrumental limitations such as gas leakage. Strong covariation (r = 0.92) between XRF-Ca intensities and the TIC content indicates that carbonate minerals in Lake Yangzong sediments predominantly consist of calcite. A transfer function was established to convert XRF-Ca scanning data into absolute Ca concentrations, leveraging the robust Ca-TIC relationship. The proposed quantification model demonstrates high reliability when applied to standardized XRF-Ca datasets, offering a practical tool for paleolimnological studies in similar geological settings. Full article
(This article belongs to the Section Hydrology)
Show Figures

Figure 1

29 pages, 9360 KiB  
Article
Modeling Metal(loid)s Transport in Arid Mountain Headwater Andean Basin: A WASP-Based Approach
by Daniela Castillo, Ricardo Oyarzún, Pablo Pastén, Christopher D. Knightes, Denisse Duhalde, José Luis Arumí, Jorge Núñez and José Antonio Díaz
Water 2025, 17(13), 1905; https://doi.org/10.3390/w17131905 - 26 Jun 2025
Viewed by 367
Abstract
The occurrence of toxic metal(loid)s in surface freshwater is a global concern due to its impacts on human and ecosystem health. Conceptual and quantitative metal(loid) models are needed to assess the impact of metal(loid)s in watersheds affected by acid rock drainage. Few case [...] Read more.
The occurrence of toxic metal(loid)s in surface freshwater is a global concern due to its impacts on human and ecosystem health. Conceptual and quantitative metal(loid) models are needed to assess the impact of metal(loid)s in watersheds affected by acid rock drainage. Few case studies have focused on arid and semiarid headwaters, with scarce hydrological and hydrochemical information. This work reports the use of WASP8 (US EPA) to model Al, Fe, As, Cu, and SO42− concentrations in the Upper Elqui River watershed in north–central Chile. Calibrated model performance for total concentrations was “good” (25.9, RRMSE; 0.7, R2-d) to “very good” (0.8–0.9, R2-d). The dissolved concentrations ranged between “acceptable” (56.3, RRMSE), “good” (28.6, RRMSE; 0.7 d), and “very good” (0.9, R2-d). While the model validation achieved mainly “very good” (0.8–0.9, R2-d) predictions for total concentrations, the predicted dissolved concentrations were less accurate for all indicators. Sensitivity analysis showed that the partition coefficient is a sensitive constant for estimating dissolved concentrations, and that integrating sorption and sediment interaction reduces the model error. This work highlights the need for detailed and site-specific information on the reactive and hydrodynamic properties of suspended solids, which directly impact the partition coefficient, sedimentation, and resuspension velocity calibration. Full article
(This article belongs to the Special Issue Monitoring and Modelling of Contaminants in Water Environment)
Show Figures

Graphical abstract

23 pages, 3522 KiB  
Article
Chlorophyll-a in the Chesapeake Bay Estimated by Extra-Trees Machine Learning Modeling
by Nikolay P. Nezlin, SeungHyun Son, Salem I. Salem and Michael E. Ondrusek
Remote Sens. 2025, 17(13), 2151; https://doi.org/10.3390/rs17132151 - 23 Jun 2025
Viewed by 427
Abstract
Monitoring chlorophyll-a concentration (Chl-a) is essential for assessing aquatic ecosystem health, yet its retrieval using remote sensing remains challenging in turbid coastal waters because of the intricate optical characteristics of these environments. Elevated levels of colored (chromophoric) dissolved organic matter (CDOM) [...] Read more.
Monitoring chlorophyll-a concentration (Chl-a) is essential for assessing aquatic ecosystem health, yet its retrieval using remote sensing remains challenging in turbid coastal waters because of the intricate optical characteristics of these environments. Elevated levels of colored (chromophoric) dissolved organic matter (CDOM) and suspended sediments (aka total suspended solids, TSS) interfere with satellite-based Chl-a estimates, necessitating alternative approaches. One potential solution is machine learning, indirectly including non-Chl-a signals into the models. In this research, we develop machine learning models to predict Chl-a concentrations in the Chesapeake Bay, one of the largest estuaries on North America’s East Coast. Our approach leverages the Extra-Trees (ET) algorithm, a tree-based ensemble method that offers predictive accuracy comparable to that of other ensemble models, while significantly improving computational efficiency. Using the entire ocean color datasets acquired by the satellite sensors MODIS-Aqua (>20 years) and VIIRS-SNPP (>10 years), we generated long-term Chl-a estimates covering the entire Chesapeake Bay area. The models achieve a multiplicative absolute error of approximately 1.40, demonstrating reliable performance. The predicted spatiotemporal Chl-a patterns align with known ecological processes in the Chesapeake Bay, particularly those influenced by riverine inputs and seasonal variability. This research emphasizes the potential of machine learning to enhance satellite-based water quality monitoring in optically complex coastal waters, providing valuable insights for ecosystem management and conservation. Full article
Show Figures

Figure 1

Back to TopTop