Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
- Aquaculture-dominated lakes: Historically intensive aquaculture zones (Xueluoyang Lake and Yangjiadang Lake);
- Urban lakes: Proximate to built-up areas with intense anthropogenic pressures (Caodang Marsh and Yingdouhu Lake);
- Suburban lakes: Non-aquacultural systems distal from urban centers (Fenhu Lake).
- Xueluoyang Lake: Former 4-hectare net-enclosed aquaculture zone, now undergoing fishery withdrawal and ecological restoration;
- Caodang Marsh and Yingdouhu Lake: Subject to dense urban populations in surrounding areas;
- Yangjiadang Lake: Northern embankment adjacent to 60 hectares of fishponds created using dredged sediments from Taipu River, bordered by agricultural lands and aquaculture ponds with high eutrophication risks;
- Fenhu Lake: Transects the lower Taipu River reach through direct hydrological connectivity.
2.2. Sample Collection and Analytical Methods
2.2.1. Sample Collection and Pretreatment
2.2.2. Analytical Methods
2.3. Water Quality Index Method
2.4. The Organic Index (OI) Method
2.5. Data Analysis
3. Results and Discussion
3.1. River and Lake Water Quality Analysis
3.2. River and Lake Surface Sediment Analysis
3.2.1. Analysis of Surface Sediment TOC and Nitrogen Content
3.2.2. Evaluation of Organic Pollution Degree in Surface Sediments
3.2.3. Spatiotemporal Distribution Characteristics of TN, NH4+-N, and NO3−-N in Surface Sediments
3.3. Influence of Nitrogen in the Surface Sediments of Connected Lakes on the Taipu River
3.3.1. Influence of Nitrogen in the Surface Sediments of Connected Lakes on the Surface Sediments of the Taipu River
- Category 1: Yingdouhu Lake, Fenhu Lake, Yangjiadang Lake, Caodang Marsh, TP1, TP5–TP10;
- Category 2: TP4;
- Category 3: TP2, TP3;
- Category 4: Xueluoyang Lake.
3.3.2. Influence of Nitrogen in Surface Sediments of Connected Rivers and Lakes on Water Quality
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TN | Total nitrogen |
NH4+-N | Ammonium nitrogen |
NO3−-N | Nitrate nitrogen |
PCA | Principal component analysis |
DO | Dissolved oxygen |
fDOM | Fluorescent dissolved organic matter |
ORP | Oxidation-reduction potential |
Chl-a | Chlorophyll-a |
TOC | Total organic carbon |
KMO | Kaiser–Meyer–Olkin |
ANOVA | Analysis of variance |
PC | Principal component |
AOB | Ammonia-oxidizing bacteria |
NOB | Nitrite-oxidizing bacteria |
RTM | Reactive transport model |
Appendix A
Indicator | Taipu River | Xueluoyang Lake | Caodang Marsh | Yingdouhu Lake | Yangjiadang Lake | Fenhu Lake | |
---|---|---|---|---|---|---|---|
Water Temperature (°C) | Normal Season | 19.6 (19.4~19.9) | 19.8 (19.7~19.9) | 19.7 (19.3~20.3) | 22.8 (20.5~20.9) | 20.0 (19.9~20.1) | 20 (19.7~20.6) |
Wet Season | 29.8 (29.1~30.5) | 29.3 (29.3~29.4) | 29.9 (29.8~30.1) | 30.53 (30.0~30.9) | 30.2 (30~30.6) | 30.3 (30.1~30.4) | |
pH | Normal Season | 8.0 (7.8~8.3) | 8.54 (8.29~8.79) | 8.2 (7.9~8.6) | 7.8 (7.7~7.8) | 7.7 (7.7~7.7) | 7.9 (7.9~8.1) |
Wet Season | 7.8 (7.7~7.9) | 7.9 (7.8~8.0) | 7.7 (7.6~8.0) | 7.6 (7.5~7.9) | 7.7 (7.7~7.8) | 7.7 (7.6~7.7) | |
DO (mg/L) | Normal Season | 7.2 (6.8~8.4) | 9.2 (8.4~10.1) | 8.2 (7.2~9.5) | 6.9 (6.7~7.1) | 6.6 (6.5~6.7) | 7.5 (7.2~8.1) |
Wet Season | 5.2 (4.7~6.1) | 6.4 (6.2~6.6) | 5.8 (4.3~7.6) | 5.4 (4.0~7.3) | 5.3 (4.8~6.1) | 5.0 (4.9~5.0) | |
Chl-a (µg/L) | Normal Season | 7.0 (4.5~12.7) | 23.4 (12.7~34.1) | 10.7 (4.2~19.6) | 7.1 (6.4~7.8) | 5.9 (5.2~6.9) | 7.2 (6.6~7.7) |
Wet Season | 4.7 (3.4~6.3) | 5.4 (4.7~6.1) | 5.7 (4.4~7.0) | 6.2 (3.8~10.9) | 4.1 (3.6~4.7) | 5.9 (5.3~6.4) | |
Turbidity (NTU) | Normal Season | 38.2 (21.0~60.0) | 19.4 (15.0~23.9) | 84.1 (16.8~168.3) | 107.0 (95.4~126.6) | 82.8 (75.7~89.3) | 31.6 (28.0~35.9) |
Wet Season | 24.4 (12.3~31.9) | 23.5 (18.7~28.2) | 42.7 (9.3~81.1) | 49.0 (36.0~68.6) | 30.6 (27.9~36.0) | 33.0 (24.9~41.2) | |
fDOM (rfu) | Normal Season | 20.3 (17.9~23.2) | 31.6 (20.9 ~42.3) | 39.5 (26.1~51.3) | 45.5 (40.9~47.7) | 54.1 (52.7~56.9) | 25.4 (23.0~28.8) |
Wet Season | 45.1 (36.0~51.2) | 51.2 (37.9~64.4) | 71.6 (67.5~77.0) | 83.6 (79.7~88.7) | 58.2 (53.0~61.6) | 49.3 (47.2~50.6) | |
Electrical Conductivity (μs/cm) | Normal Season | 502.9 (450.9~545) | 461.5 (461.0~462.0) | 602.5 (569.0~632.0) | 700.1 (687.4~718.9) | 672.3 (666.9~679.1) | 530.3 (522.1~546.5) |
Wet Season | 404.7 (377.5~429.4) | 391.7 (388.5~394.9) | 455.5 (433.6~476.7) | 503.9 (471.0~544.0) | 435.4 (420.3~455.4) | 419.9 (416.0~422.8) | |
ORP (mV) | Normal Season | 172.1 (114.8~233.4) | 173.7 (158.3~189.1) | 175.4 (121.7~226.5) | 180.9 (167.1~189) | 190.5 (129.9~251.6) | 172.0 (122.9~229.9) |
Wet Season | 273.7 (189.1~452.4) | 255.8 (247.4~264.2) | 231.0 (152.9~281.5) | 162.7 (68.6~276) | 262.4 (258.4~265) | 248.8 (236.2~256.7) |
Indicator | Study Area | Mean | Median | Standard Deviation | Coefficient of Variation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry | Normal | Wet | Dry | Normal | Wet | Dry | Normal | Wet | Dry | Normal | Wet | ||
NH4+-N (mg/L) | Taipu River | 0.48 | 0.13 | 0.33 | 0.55 | 0.09 | 0.33 | 0.31 | 0.13 | 0.23 | 65% | 97% | 69% |
Xueluoyang Lake | 0.26 | 0.16 | 0.42 | 0.26 | 0.19 | 0.31 | 0.12 | 0.09 | 0.21 | 47% | 57% | 49% | |
Caodang Marsh | 0.53 | 0.15 | 0.63 | 0.51 | 0.16 | 0.54 | 0.37 | 0.11 | 0.29 | 71% | 73% | 46% | |
Yingdouhu Lake | 0.67 | 0.13 | 0.49 | 0.67 | 0.13 | 0.43 | 0.06 | 0.12 | 0.28 | 9% | 91% | 58% | |
Yangjiadang Lake | 0.70 | 0.24 | 0.76 | 0.64 | 0.02 | 0.67 | 0.16 | 0.04 | 0.26 | 22% | 80% | 35% | |
Fenhu Lake | 0.56 | 0.30 | 0.66 | 0.52 | 0.39 | 0.61 | 0.15 | 0.26 | 0.20 | 27% | 86% | 30% | |
TN (mg/L) | Taipu River | 2.64 | 1.72 | 1.35 | 2.40 | 1.77 | 1.28 | 1.08 | 0.66 | 0.57 | 41% | 38% | 42% |
Xueluoyang Lake | 2.02 | 1.69 | 1.54 | 2.02 | 1.77 | 1.41 | 0.38 | 0.41 | 0.65 | 19% | 24% | 42% | |
Caodang Marsh | 2.79 | 1.90 | 2.16 | 2.79 | 1.86 | 2.52 | 1.27 | 0.60 | 0.97 | 45% | 31% | 45% | |
Yingdouhu Lake | 4.21 | 1.32 | 2.68 | 4.22 | 1.59 | 2.76 | 0.20 | 0.79 | 0.22 | 5% | 60% | 8% | |
Yangjiadang Lake | 3.11 | 2.31 | 2.18 | 3.21 | 2.29 | 1.98 | 0.93 | 0.27 | 0.72 | 30% | 12% | 33% | |
Fenhu Lake | 2.60 | 2.10 | 1.48 | 2.15 | 1.98 | 1.51 | 1.55 | 0.29 | 0.22 | 60% | 14% | 15% |
Study Area | Statistical Value | Dry | Normal | Wet | Statistical Value | Dry | Normal | Wet |
---|---|---|---|---|---|---|---|---|
Taipu River | Maximum | 1.99% | 1.67% | 2.95% | Minimum | 0.31% | 0.24% | 0.64% |
Xueluoyang Lake | 2.18% | 2.16% | 2.79% | 0.05% | 0.20% | 0.10% | ||
Caodang Marsh | 2.76% | 1.97% | 2.57% | 1.20% | 0.77% | 0.63% | ||
Yingdouhu Lake | 1.81% | 1.44% | 2.21% | 0.37% | 0.25% | 0.52% | ||
Yangjiadang Lake | 1.60% | 1.65% | 2.54% | 0.11% | 0.30% | 0.68% | ||
Fenhu Lake | 2.37% | 1.69% | 0.95% | 0.76% | 0.39% | 0.01% | ||
Taipu River | Mean | 1.04% | 0.86% | 0.95% | Median | 1.49% | 1.22% | 1.76% |
Xueluoyang Lake | 2.11% | 1.87% | 2.60% | 2.15% | 2.01% | 2.71% | ||
Caodang Marsh | 0.52% | 0.54% | 1.31% | 1.67% | 1.21% | 1.94% | ||
Yingdouhu Lake | 0.95% | 0.87% | 1.15% | 1.31% | 1.09% | 1.79% | ||
Yangjiadang Lake | 1.40% | 1.05% | 1.30% | 1.53% | 1.36% | 2.08% | ||
Fenhu Lake | 0.88% | 0.98% | 0.94% | 1.54% | 1.24% | 0.94% | ||
Taipu River | Deviation | 1.44% | 1.18% | 1.61% | Coefficient of Variation | 21% | 20% | 37% |
Xueluoyang Lake | 2.15% | 2.01% | 2.74% | 2% | 10% | 4% | ||
Caodang Marsh | 1.71% | 1.16% | 1.93% | 72% | 64% | 33% | ||
Yingdouhu Lake | 1.23% | 1.02% | 1.91% | 28% | 23% | 29% | ||
Yangjiadang Lake | 1.59% | 1.38% | 2.39% | 7% | 22% | 33% | ||
Fenhu Lake | 1.37% | 1.05% | 0.95% | 49% | 31% | 1% |
Indicator | Study Area | Mean | Median | Standard Deviation | Coefficient of Variation | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dry | Normal | Wet | Dry | Normal | Wet | Dry | Normal | Wet | Dry | Normal | Wet | ||
TN (mg/kg) | Taipu River | 579.9 | 502.6 | 586.1 | 507.4 | 500.7 | 520.4 | 103.6 | 167.0 | 162.8 | 18% | 35% | 27% |
Xueluoyang Lake | 1101.3 | 688.6 | 1322.2 | 1101.3 | 672.1 | 1302.4 | 113.2 | 34.6 | 90.6 | 10% | 5% | 7% | |
Caodang Marsh | 654.9 | 553.2 | 680.5 | 635.2 | 532.2 | 646.7 | 409.3 | 423.7 | 305.4 | 62% | 77% | 45% | |
Yingdouhu Lake | 375.8 | 406.2 | 553.3 | 326.3 | 392.2 | 567.3 | 143.0 | 71.3 | 88.8 | 38% | 18% | 16% | |
Yangjiadang Lake | 485.0 | 434.2 | 639.4 | 485.0 | 476.0 | 644.0 | 13.5 | 98.1 | 21.4 | 3% | 23% | 3% | |
Fenhu Lake | 544.7 | 415.5 | 639.5 | 556.3 | 406.3 | 504.3 | 295.6 | 56.7 | 246.5 | 54% | 14% | 39% | |
NH4+-N (mg/kg) | Taipu River | 50.5 | 38.6 | 74.5 | 49.7 | 38.5 | 62.8 | 15.4 | 15.5 | 33.8 | 30% | 40% | 45% |
Xueluoyang Lake | 56.3 | 35.9 | 145.0 | 56.3 | 37.1 | 134.8 | 9.2 | 3.0 | 32.0 | 16% | 8% | 22% | |
Caodang Marsh | 75.8 | 32.7 | 93.4 | 78.0 | 34.9 | 90.0 | 8.7 | 6.9 | 22.3 | 12% | 21% | 24% | |
Yingdouhu Lake | 69.1 | 23.5 | 64.9 | 61.7 | 23.0 | 59.0 | 18.4 | 5.3 | 33.5 | 27% | 22% | 52% | |
Yangjiadang Lake | 63.0 | 24.0 | 117.5 | 63.0 | 22.4 | 119.8 | 37.4 | 5.4 | 4.5 | 59% | 23% | 4% | |
Fenhu Lake | 39.1 | 23.0 | 100.0 | 46.9 | 21.7 | 92.0 | 16.5 | 5.7 | 67.2 | 42% | 25% | 67% | |
NO3−-N (mg/kg) | Taipu River | 10.3 | 5.3 | 11.7 | 10.4 | 4.4 | 11.6 | 4.1 | 2.6 | 2.4 | 40% | 48% | 20% |
Xueluoyang Lake | 4.8 | 4.4 | 9.2 | 4.8 | 4.2 | 9.7 | 1.2 | 0.5 | 2.8 | 26% | 11% | 30% | |
Caodang Marsh | 8.0 | 3.6 | 9.8 | 8.6 | 3.7 | 8.8 | 2.3 | 0.6 | 2.7 | 29% | 17% | 28% | |
Yingdouhu Lake | 5.6 | 10.9 | 9.1 | 5.3 | 10.1 | 9.1 | 1.6 | 6.6 | 3.8 | 29% | 61% | 42% | |
Yangjiadang Lake | 8.3 | 3.9 | 8.9 | 8.3 | 3.9 | 8.2 | 1.8 | 0.8 | 1.8 | 21% | 21% | 20% | |
Fenhu Lake | 7.0 | 4.4 | 11.3 | 4.5 | 4.4 | 11.2 | 4.5 | 0.2 | 0.6 | 65% | 5% | 5% |
Study Area | Taihu Zhushan Bay | Poyang Lake | Dongting Lake | Yangcheng Lake | Dianshan Lake |
---|---|---|---|---|---|
TOC Content | 0.80% | 1.15% | 1.3% | 2.8% | 0.79% |
Appendix B
References
- Song, K.; Adams, C.J.; Burgin, A.J. Relative importance of external and internal phosphorus loadings on affecting lake water quality in agricultural landscapes. Ecol. Eng. 2017, 108, 482–488. [Google Scholar] [CrossRef]
- Ma, L.Y.; Qi, X.; Zhou, S.Q.; Niu, H.F.; Zhang, T.X. Spatiotemporal distribution of phosphorus fractions and the potential release risks in sediments in a Yangtze River connected lake: New insights into the influence of water-level fluctuation. J. Soils Sediments 2023, 23, 496–511. [Google Scholar] [CrossRef]
- Yang, Z.W.; Chen, H.T.; Ma, C.; Gao, X.; Yang, C.; Sun, W.C.; Wang, Y.Q. A novel framework reveals anthropogenic stressors of phosphorus polluted river-lake connection water system in Poyang lake basin of China. J. Environ. Manag. 2024, 370, 122794. [Google Scholar] [CrossRef] [PubMed]
- Le, F.; Ruan, X.H.; Wei, Z.; Wu, K.D.; Wei, H.Z.; Liu, C.Q. Tracing phosphorus sources in the river-lake system using the oxygen isotope of phosphate. Sci. Total Environ. 2024, 949, 175022. [Google Scholar] [CrossRef]
- Liu, H.L.; Huang, S.H.; Chen, H.; Zuo, M.B.; He, G.Y.; Wang, M.; Bai, S.Y.; Zhang, Q.; Xu, D.D.; Ding, Y.L.; et al. Study on the Effect of Water System Connection on the Improvement of Water Quality of Inner Lakes in Town-Taking Seven Lakes in Yangshuo Urban Area of Guilin as an Example. Water 2025, 17, 1398. [Google Scholar] [CrossRef]
- Janicka, E.; Kanclerz, J.; Wiatrowska, K.; Budka, A. Variability of Nitrogen and Phosphorus Content and Their Forms in Waters of a River-Lake System. Front. Environ. Sci. 2022, 10, 874754. [Google Scholar] [CrossRef]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A. Influence of Cascading River-Lake Systems on the Dynamics of Nutrient Circulation in Catchment Areas. Water 2020, 12, 1144. [Google Scholar] [CrossRef]
- Yan, X.; Xia, Y.Q.; Ti, C.P.; Shan, J.; Wu, Y.H.; Yan, X.Y. Thirty years of experience in water pollution control in Taihu Lake: A review. Sci. Total Environ. 2024, 914, 169821. [Google Scholar] [CrossRef]
- Li, X.M.; Li, K.X.; Li, S.Q.; Li, Z.H.; Wan, L.L.; Guo, W. Source tracing analysis of the exceedance of NH3-N and CODMn in shallow groundwater in the central typical area of the Yangtze river delta. Sci. Rep. 2024, 14, 28544. [Google Scholar] [CrossRef]
- Li, D.; Jiang, X.; Zheng, B.H. Using δ15N and δ18O Signatures to Evaluate Nitrate Sources and Transformations in Four Inflowing Rivers, North of Taihu Lake. Water 2017, 9, 345. [Google Scholar] [CrossRef]
- Li, Z.-Y.; Zhou, M.-H.; Xu, P.; Chen, L.; Liu, X.-L.; Lin, H.-Y.; Jiang, N.; Ren, B.; Zhang, B.-W. Spatial Distribution of Nitrogen and Phosphorus Nutrients in the Main Stream and Typical Tributaries of Tuojiang River and Fujiang River. Huan Jing Ke Xue= Huanjing Kexue 2023, 44, 3933–3944. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Wang, X.Y.; Zhu, C.; Li, F.; Li, S.Y. Estimation on Emission of Nonpoint Source Pollution of Nitrogen and Phosphorus in Different Catchments of the Chaohu Lake Basin, China. In Proceedings of the 1st International Conference on Energy and Environmental Protection (ICEEP 2012), Hohhot, China, 23–24 June 2012; Volume 518–523, p. 1530. [Google Scholar] [CrossRef]
- Dai, J.Y.; Wu, S.Q.; Wu, X.F.; Xue, W.Y.; Yang, Q.Q.; Zhu, S.L.; Wang, F.F.; Chen, D. Effects of Water Diversion from Yangtze River to Lake Taihu on the Phytoplankton Habitat of the Wangyu River Channel. Water 2018, 10, 759. [Google Scholar] [CrossRef]
- Fan, C.X. (Ed.) Specification for Lake Sediment Survey; Science Press: Beijing, China, 2018. (In Chinese) [Google Scholar]
- HJ 535-2009; Water Quality—Determination of Ammonia Nitrogen—Nessler’s Reagent Spectrophotometry. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2009.
- HJ 636-2012; Water Quality—Determination of Total Nitrogen—Alkaline Potassium Persulfate Digestion UV Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2012.
- HJ 717-2014; Soil Quality—Determination of Total Nitrogen—Modified Kjeldahl Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2014.
- HJ 615-2011; Soil—Determination of Organic Carbon—Potassium Dichromate Oxidation Spectrophotometric Method. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2011.
- Xu, Z. Study on the Single-Factor Water Quality Identification Index Method for Rivers in China. J. Tongji Univ. (Nat. Sci.) 2005, 33, 321–325. (In Chinese) [Google Scholar]
- Xu, Z. Comprehensive water quality identification index for environmental quality assessment of surface water. J. Tongji Univ. (Nat. Sci.) 2005, 33, 482–488. [Google Scholar]
- Sui, G. Status and Evaluation of OM, TN, and TP in Surface Sediments of Lake Taihu. J. Lake Sci. 1996, 8, 319–324. (In Chinese) [Google Scholar]
- Pearson, K. Mathematical Contributions to the Theory of Evolution. III. Regression, Heredity, and Panmixia. Philos. Trans. R. Soc. Lond. Ser. A 1896, 187, 253–318. [Google Scholar]
- GB 3838-2002; Environmental Quality Standards for Surface Water. Ministry of Ecology and Environment of the People’s Republic of China: Beijing, China, 2002.
- Makuwa, S.; Tlou, M.; Fosso-Kankeu, E.; Green, E. The effects of dry versus wet season on the performance of a wastewater treatment plant in North West Province, South Africa. Water SA 2022, 48, 40–49. [Google Scholar] [CrossRef]
- Ren, X.H.; Yu, R.H.; Kang, J.F.; Lü, C.W.; Wang, R.; Li, Y.; Zhang, Z.H. Water pollution characteristics and influencing factors of closed lake in a semiarid area: A case study of Daihai Lake, China. Environ. Earth Sci. 2022, 81, 393. [Google Scholar] [CrossRef]
- Jin, W.; Li, Y.; Lu, L.; Zhang, D.; He, S.Y.; Shentu, J.L.; Chai, Q.W.; Huang, L. Water quality assessment of east Tiaoxi River, China, based on a comprehensive water quality index model and Monte-Carlo simulation. Sci. Rep. 2022, 12, 10042. [Google Scholar] [CrossRef]
- Hou, K.; Zhang, Y.T.; Qian, H. Water quality assessment in China Ningxia Section of the Yellow River using water quality identification index method. In Proceedings of the 4th International Conference on Energy Engineering and Environmental Protection (EEEP), Xiamen, China, 19–21 November 2019; Volume 467. [Google Scholar] [CrossRef]
- Zhang, L. Different Methods for the Evaluation of Surface Water Quality: The Case of the Liao River, Liaoning Province, China. Int. Rev. Spat. Plan. Sustain. Dev. 2017, 5, 4–18. [Google Scholar] [CrossRef]
- Varol, M. Temporal and spatial dynamics of nitrogen and phosphorus in surface water and sediments of a transboundary river located in the semi-arid region of Turkey. Catena 2013, 100, 1–9. [Google Scholar] [CrossRef]
- Maar, M.; Larsen, J.; Dahl, K.; Riemann, B. Modelling the environmental impacts of future offshore fish farms in the inner Danish waters. Aquac. Environ. Interact. 2018, 10, 115–133. [Google Scholar] [CrossRef]
- Khirul, M.A.; Cho, D.; Kwon, S.H. Behaviors of nitrogen, iron and sulfur compounds in contaminated marine sediment. Environ. Eng. Res. 2020, 25, 274–280. [Google Scholar] [CrossRef]
- Xiao, L.; Yang, J.-Y. Water Bloom Modified Sediment Nitrogen Transformation and Removal. Huan Jing Ke Xue = Huanjing Kexue 2019, 40, 4018–4022. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Han, Y.P.; Pan, L.D. Spatial-temporal variation of nitrogen and diffusion flux across the water-sediment interface at the hydro-fluctuation belt of Danjiangkou reservoir in China. Water Supply 2020, 20, 1241–1252. [Google Scholar] [CrossRef]
- Arce, M.I.; Sánchez-Montoya, M.D.; Vidal-Abarca, M.R.; Suárez, M.L.; Gómez, R. Implications of flow intermittency on sediment nitrogen availability and processing rates in a Mediterranean headwater stream. Aquat. Sci. 2014, 76, 173–186. [Google Scholar] [CrossRef]
- Yang, Z.P.; Wang, L.Q.; Liang, T.; Huang, M.X. Nitrogen distribution and ammonia release from the overlying water and sediments of Poyang Lake, China. Environ. Earth Sci. 2015, 74, 771–778. [Google Scholar] [CrossRef]
- Zhu, Z.; Zhou, H.; Li, Q.; Zou, J.; Liu, M. Research On the Characteristics of Sediment and the Release Law of Nitrogen and Phosphorus Pollutants in Landscape Lake. J. Phys. Conf. Ser. 2022, 2186, 012026. [Google Scholar] [CrossRef]
- Ukpatu, J.; Udoinyang, E.; Udoh, J.P. The Use of Agglomerative Hierarchical Cluster Analysis for the Assessment of Mangrove Water Quality of Okoro River Estuary, Southeastern Nigeria. Int. J. Geol. Agric. Environ. Sci. 2015, 3, 17–24. [Google Scholar]
- Wang, X.; Yang, J.; Wang, F.; Xu, N.; Li, P.; Wang, A. Numerical Modeling of the Dispersion Characteristics of Pollutants in the Confluence Area of an Asymmetrical River. Water 2023, 15, 3766. [Google Scholar] [CrossRef]
- Ritter, W.F. Reducing Impacts of Nonpoint Source Pollution from Agriculture: A Review. J. Environ. Sci. Health Part A 1988, 23, 645–667. [Google Scholar] [CrossRef]
- Lu, N.; Liu, Z. A Review on the Agriculture Non-Point Source Pollution Research. Sci. J. Technol. 2023, 5, 7–11. [Google Scholar] [CrossRef]
- Cardiff, M.; Schachter, L.; Krause, J.; Gotkowitz, M.; Austin, B. Quantifying Annual Nitrogen Loss to Groundwater Via Edge-of-Field Monitoring: Method and Application. Groundwater 2023, 61, 21–34. [Google Scholar] [CrossRef] [PubMed]
- Jing, L.D.; Wu, C.X.; Liu, J.T.; Wang, H.G.; Ao, H.Y. The effects of dredging on nitrogen balance in sediment-water microcosms and implications to dredging projects. Ecol. Eng. 2013, 52, 167–174. [Google Scholar] [CrossRef]
- Alejandra, P.S.; Clara, D.; Anja, W.; Bernhard, M.; Stefanie, S.; Schloter, M.; Florian, E. Seasonal dynamics of anaerobic oxidation of ammonium and denitrification in a dimictic lake during the stratified spring-summer period. Limnol. Oceanogr. 2022, 67, 1194–1210. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wei, Z.M.; Zhao, Y.; Xi, B.D.; Wang, X.Q.; Zhao, T.Z.; Zhang, X.; Wei, Y.Q. Environmental factors influencing the distribution of ammonifying and denitrifying bacteria and water qualities in 10 lakes and reservoirs of the Northeast, China. Microb. Biotechnol. 2015, 8, 541–548. [Google Scholar] [CrossRef]
- Roland, F.A.E.; Darchambeau, F.; Borges, A.V.; Morana, C.; De Brabandere, L.; Thamdrup, B.; Crowe, S.A. Denitrification, anaerobic ammonium oxidation, and dissimilatory nitrate reduction to ammonium in an East African Great Lake (Lake Kivu). Limnol. Oceanogr. 2018, 63, 687–701. [Google Scholar] [CrossRef]
- Canavan, R.W.; Laverman, A.M.; Slomp, C.P. Modeling nitrogen cycling in a coastal fresh water sediment. Hydrobiologia 2007, 584, 27–36. [Google Scholar] [CrossRef]
- Koomklang, J.; Yamaguchi, H.; Ichimi, K.; Tada, K. A role for a superficial sediment layer in upward nutrient fluxes across the overlying water-sediment interface. J. Oceanogr. 2018, 74, 13–21. [Google Scholar] [CrossRef]
- Seitzinger, S.; Harrison, J.A.; Böhlke, J.K.; Bouwman, A.F.; Lowrance, R.; Peterson, B.; Tobias, C.; Van Drecht, G. Denitrification across landscapes and waterscapes:: A synthesis. Ecol. Appl. 2006, 16, 2064–2090. [Google Scholar] [CrossRef]
- Upreti, K.; Rivera-Monroy, V.H.; Maiti, K.; Giblin, A.E.; Castañeda-Moya, E. Dissimilatory nitrate reduction to ammonium (DNRA) is marginal relative to denitrification in emerging-eroding wetlands in a subtropical oligohaline and eutrophic coastal delta. Sci. Total Environ. 2022, 819, 152942. [Google Scholar] [CrossRef]
- Jetten, M.S.M.; Wagner, M.; Fuerst, J.; van Loosdrecht, M.; Kuenen, G.; Strous, M. Microbiology and application of the anaerobic ammonium oxidation (‘anammox’) process. Curr. Opin. Biotechnol. 2001, 12, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Caranto, J.D.; Vilbert, A.C.; Lancaster, K.M. Nitrosomonas europaea cytochrome P460 is a direct link between nitrification and nitrous oxide emission. Proc. Natl. Acad. Sci. USA 2016, 113, 14704–14709. [Google Scholar] [CrossRef] [PubMed]
- Yuan, J.; Zhong, X.L. Sediment pollution and nitrogen release at the sediment-water interface in Changjiang River and its tributary, the lower Han River Basin. Water Environ. J. 2020, 34, 672–682. [Google Scholar] [CrossRef]
- Yang, L.; Cai, Q.; Qin, B.; Zheng, X. Preliminary Study on Nitrogen Migration Characteristics at the Sediment–Water Interface in Meiliang Bay, Lake Taihu. J. Lake Sci. 1998, 10, 41–47. (In Chinese) [Google Scholar]
- den Heyer, C.E. Organic Matter Mineralization in Lake Sediments: A Within and Among Lake Study. Master’s Thesis, McGill University, Montréal, QC, Canada, 1996. [Google Scholar]
- Xu, S.Y.; Lu, J.; Chen, L.C.; Luo, W.G.; Zhu, S.L. Experiment on Sediment Ammonia Nitrogen Release of Chaohu Lake in Varying Hydrodynamic Disturbance. Sustainability 2023, 15, 1581. [Google Scholar] [CrossRef]
- Xu, C.R. Research on nitrogen and phosphorus release from sediments in small inland freshwater lakes. In Proceedings of the 3rd International Conference on Energy, Environment and Sustainable Development (EESD 2013), Shanghai, China, 12–13 November 2013; Volume 864–867, pp. 248–255. [Google Scholar] [CrossRef]
- Xu, X.G.; Wu, C.; Xie, D.Y.; Ma, J. Sources, Migration, Transformation, and Environmental Effects of Organic Carbon in Eutrophic Lakes: A Critical Review. Int. J. Environ. Res. Public Health 2023, 20, 860. [Google Scholar] [CrossRef]
- Jiang, X.Y.; Liu, C.Q.; Cai, J.; Hu, Y.; Shao, K.Q.; Tang, X.M.; Gong, Y.; Yao, X.L.; Xu, Q.J.; Gao, G. Relationships between environmental factors and N-cycling microbes reveal the indirect effect of further eutrophication on denitrification and DNRA in shallow lakes. Water Res. 2023, 245, 120572. [Google Scholar] [CrossRef]
Water Quality Category | P (NH4+-N) Dry/Normal/Wet | P (TN) Dry/Normal/Wet | P (DO) Dry/Normal/Wet | Iwq Dry/Normal/Wet | |
---|---|---|---|---|---|
Taipu River | Class III | 2.94/1.00/2.51 | 6.32/5.44/4.70 | —/2.20/3.80 | 4.621/2.910/3.720 |
Xueluoyang Lake | Class IV | 2.31/2.03/2.77 | 6.01/5.38/5.08 | —/1.00/2.73 | 4.220/2.830/3.530 |
Caodang Marsh | Class IV | 3.06/1.00/3.26 | 6.40/5.80/6.08 | —/1.00/3.20 | 4.720/2.620/4.120 |
Yingdouhu Lake | Class IV | 3.34/1.00/2.97 | 7.10/4.64/6.34 | —/2.40/3.60 | 5.221/2.720/4.320 |
Yangjiadang Lake | Class IV | 3.40/2.26/3.52 | 6.56/6.15/6.09 | —/2.60/3.70 | 4.920/3.630/4.420 |
Fenhu Lake | Class III | 3.12/2.43/3.32 | 6.30/6.05/4.96 | —/1.00/3.10 | 4.721/3.130/3.830 |
Indicator | TN (S) | NH4+-N (S) | NO3−-N (S) | NH4+-N (W) | TN (W) | ORP (W) | DO (W) | fDOM (W) |
---|---|---|---|---|---|---|---|---|
TN(S) | 1 | 0.443 ** | 0.201 | −0.097 | −0.251 * | 0.257 | 0.091 | 0.238 |
NH4+-N(S) | 1 | 0.868 ** | 0.356 ** | −0.030 | 0.411 ** | 0.457 ** | 0.314 * | |
NO3−-N (S) | 1 | 0.167 | −0.196 | 0.361 * | 0.473 ** | 0.334 * | ||
NH4+-N(W) | 1 | 0.514 ** | 0.301 * | −0.568 ** | 0.422 ** | |||
TN(W) | 1 | −0.165 | 0.091 | 0.333 * | ||||
ORP(W) | 1 | −0.415 ** | 0.117 | |||||
DO(W) | 1 | −0.454 ** | ||||||
fDOM (W) | 1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Tian, F.; Huang, Y.; Tao, H.; Li, F. Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System. Water 2025, 17, 2000. https://doi.org/10.3390/w17132000
Huang J, Tian F, Huang Y, Tao H, Li F. Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System. Water. 2025; 17(13):2000. https://doi.org/10.3390/w17132000
Chicago/Turabian StyleHuang, Jingyi, Fengyan Tian, Yuanxing Huang, Hong Tao, and Feipeng Li. 2025. "Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System" Water 17, no. 13: 2000. https://doi.org/10.3390/w17132000
APA StyleHuang, J., Tian, F., Huang, Y., Tao, H., & Li, F. (2025). Sediment Legacy of Aquaculture Drives Endogenous Nitrogen Pollution and Water Quality Decline in the Taipu River–Lake System. Water, 17(13), 2000. https://doi.org/10.3390/w17132000