Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Soil Sampling
2.3. Physicochemical Analysis of Soils
2.4. Seedling Production
2.5. Sampling of Contaminated Plant Biomass
2.6. Processing and Analysis of Total Mercury in Soil Samples and Plant Biomass
2.7. Phytoremediation Indices in Plants and Mercury Removal in Soils
2.8. Statistical Analysis
3. Results and Discussion
3.1. Soil Characterization
3.2. Total Mercury Content in Soils
3.3. Relationship Between Soil Parameters and Mercury Content
3.4. Evaluation of the Phytoremediation Process
3.4.1. Chemical Parameters After the Phytoremediation Process
3.4.2. Total Mercury Content After Phytoremediation Process
3.5. Hg Concentration in Plant Tissues of Piper marginatum and Phytoremediation Indexes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BCF | Bioconcentration factor |
TF | Translocation factor |
CEC | Cation exchange capacity |
OM | Organic matter |
OC | Organic carbon |
References
- Yevugah, L.L.; Darko, G.; Bak, J. Does mercury emission from small-scale gold mining cause widespread soil pollution in Ghana? Environ. Pollut. 2021, 284, 116945. [Google Scholar] [CrossRef] [PubMed]
- Ansah, E.; Bak, J.L.; Sørensen, P.; Darko, G. Modelling mercury concentration in Ghanaian soil. Chemosphere 2022, 307, 135553. [Google Scholar] [CrossRef] [PubMed]
- Liu, S.; Wang, X.; Guo, G.; Yan, Z. Status and environmental management of soil mercury pollution in China: A review. J. Environ. Manag. 2021, 277, 111442. [Google Scholar] [CrossRef] [PubMed]
- MME/Unicor. Concentraciones de Mercurio en Aire y en Suelo, en las Zonas de Influencia Minera de los Diez Principales Departamentos productores de oro en Colombia; Convenio GGC 524. Informe Ejecutivo; Ministerio de Minas y Energía: Bogotá, Colombia, 2017; 33p. [Google Scholar]
- Marrugo-Negrete, J.; Benitez, L.N.; Olivero-Verbel, J.; Lans, E.; Gutierrez, F.V. Spatial and seasonal mercury distribution in the Ayapel Marsh, Mojana region, Colombia. Int. J. Environ. Health Res. 2010, 20, 451–459. [Google Scholar] [CrossRef]
- Pinedo-Hernández, J.; Marrugo-Negrete, J.; Díez, S. Speciation and bioavailability of mercury in sediments impacted by gold mining in Colombia. Chemosphere 2015, 119, 1289–1295. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Geochemistry of mercury in tropical swamps impacted by gold mining. Chemosphere 2015, 134, 44–51. [Google Scholar] [CrossRef]
- CVS/INGEOMINAS. Inventario y Diagnóstico Minero Ambiental del Departamento de Córdoba; Monografía municipio Ayapel; Convenio interadministrativo 029–2003; Ministerio De Minas y Energía: Bogotá, Colombia, 2005. [Google Scholar]
- MME/UPME/Unicor. Estudio de la Cadena de Mercurio en Colombia con Énfasis en la Actividad Minera de Oro; Ministerio De Minas y Energía: Bogotá, Colombia, 2014; Volume 3, 253p. [Google Scholar]
- MME/UPME/Unicor. Incidencia Real de la Minería del Carbón, del oro y del Uso del Mercurio en la Calidad Ambiental con Énfasis Especial en el Recurso Hídrico—Diseño de Herramientas para la Planeación Sectorial; Ministerio De Minas y Energía: Bogotá, Colombia, 2015; 663p. [Google Scholar]
- Negrete, J.M.; Pinedo-Hernández, J.; Paternina–Uribe, R.; Quiroz-Aguas, L.; Pacheco-Florez, S. Distribución espacial y evaluación de la contaminación ambiental por mercurio en la región de la Mojana, Colombia. Rev. Mvz Cordoba 2018, 23, 7062–7075. [Google Scholar] [CrossRef]
- Gracia, L.; Marrugo, J.L.; Alvis, E. Contaminación por mercurio en humanos y peces en el municipio de Ayapel, Córdoba, Colombia 2009. Rev. Fac. Nac. Salud Pública 2010, 28, 118–124. [Google Scholar] [CrossRef]
- Marrugo, J.; Lans, E.; Benítez, L. Hallazgo de mercurio en peces de la Ciénaga de Ayapel, Córdoba, Colombia. Rev. MVZ Cordoba 2007, 12, 878–886. Available online: http://www.redalyc.org/articulo.oa?id=69312103 (accessed on 21 March 2025). [CrossRef]
- Marrugo-Negrete, J.L.; Urango-Cardenas, I.D.; Núñez, S.M.B.; Díez, S. Atmospheric deposition of heavy metals in the mining area of the San Jorge river basin, Colombia. Air Qual. Atmosphere Health 2014, 7, 577–588. [Google Scholar] [CrossRef]
- Salazar-Camacho, C.; Salas-Moreno, M.; Marrugo-Madrid, S.; Marrugo-Negrete, J.; Díez, S. Dietary human exposure to mercury in two artisanal small-scale gold mining communities of northwestern Colombia. Environ. Int. 2017, 107, 47–54. [Google Scholar] [CrossRef] [PubMed]
- Marrugo-Negrete, J.; Marrugo-Madrid, S.; Pinedo-Hernández, J.; Durango-Hernández, J.; Díez, S. Screening of native plant species for phytoremediation potential at a Hg-contaminated mining site. Sci. Total. Environ. 2016, 542, 809–816. [Google Scholar] [CrossRef] [PubMed]
- Agudelo, A.M.Z. Diagnóstico Ambiental de la Ciénaga de Ayapel a Través de la Variación Temporal de los Aspectos Morfo Funcionales del Fitoplancton y un Indicador de Calidad Ecológica. Master’s Thesis, Universidad de Antioquia, Medellín, Columbia, 2017. Available online: http://hdl.handle.net/10495/9074 (accessed on 3 May 2025).
- Guimaraes, J.R.; Meili, M.; Hylander, L.D.; de Castro e Silva, E.; Roulet, M.; Mauro, J.B.; de Lemos, R. Mercury net methylation in five tropical flood plain regions of Brazil: High in the root zone of floating macrophyte mats but low in surface sediments and flooded soils. Sci. Total. Environ. 2000, 261, 99–107. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Dai, M.; Yang, J.; Sun, L.; Tan, X.; Peng, C.; Ali, I.; Naz, I. A critical review on the phytoremediation of heavy metals from environment: Performance and challenges. Chemosphere 2022, 291, 132979. [Google Scholar] [CrossRef]
- Liu, Z.; Chen, B.; Wang, L.-A.; Urbanovich, O.; Nagorskaya, L.; Li, X.; Tang, L. A review on phytoremediation of mercury contaminated soils. J. Hazard. Mater. 2020, 400, 123138. [Google Scholar] [CrossRef]
- Palacios-Torres, Y.; Caballero-Gallardo, K.; Olivero-Verbel, J. Mercury pollution by gold mining in a global biodiversity hotspot, the Choco biogeographic region, Colombia. Chemosphere 2018, 193, 421–430. [Google Scholar] [CrossRef]
- Brú, J.; Guzman, J.D. Folk medicine, phytochemistry and pharmacological application of Piper marginatum. Rev. Bras. de Farm. 2016, 26, 767–779. [Google Scholar] [CrossRef]
- Chaves, M.d.O.; Santos, B.d.O. Constituents from Piper marginatum fruits. Fitoterapia 2002, 73, 547–549. [Google Scholar] [CrossRef]
- Durant-Archibold, A.A.; Santana, A.I.; Gupta, M.P. Ethnomedical uses and pharmacological activities of most prevalent species of genus Piper in Panama: A review. J. Ethnopharmacol. 2018, 217, 63–82. [Google Scholar] [CrossRef]
- Environmental Protection Agency (USEPA). Method 3050B: Acid Digestion of Sediments, Sludges, And Soils; Revision 2; Environmental Protection Agency (USEPA): Washington, DC, USA, 1998. [Google Scholar]
- Ali, H.; Khan, E.; Sajad, M.A. Phytoremediation of heavy metals—Concepts and applications. Chemosphere 2013, 91, 869–881. [Google Scholar] [CrossRef] [PubMed]
- Macci, C.; Doni, S.; Peruzzi, E.; Bardella, S.; Filippis, G.; Ceccanti, B.; Masciandaro, G. A real-scale soil phytoremediation. Biodegradation 2013, 24, 521–538. [Google Scholar] [CrossRef] [PubMed]
- Weis, J.S.; Weis, P. Metal uptake, transport and release by wetland plants: Implications for phytoremediation and restoration. Environ. Int. 2004, 30, 685–700. [Google Scholar] [CrossRef] [PubMed]
- Pilon-Smits, E. Phytoremediation. Annu. Rev. Plant Biol. 2005, 56, 15–39. [Google Scholar] [CrossRef]
- Instituto Geográfico Agustín Codazzi. Métodos Analíticos del Laboratorio de Suelos, Sexta Edición; IGAC: Bogotá, Colombia, 2006. [Google Scholar]
- NTC 5264:2018; Calidad del Suelo. Determinación del pH. Segunda actualización, Numeral 5, Instituto Colombiano de Normas Técnicas y Certificación—ICONTEC: Bogotá, Colombia, 2018.
- Barrezueta-Unda, S.; Cervantes-Alava, A.; Ullauri-Espinoza, M.; Barrera-Leon, J.; Condoy-Gorotiza, A. Evaluación del Método de Ignición para Determinar Materia Orgánica en Suelos de la Provincia El Oro-Ecuador. FAVE Sección Cienc. Agrar. 2020, 19, 25–36. [Google Scholar] [CrossRef]
- NTC 5402:2006; Calidad del Suelo, determinación del azufre disponible. 2 numeral 4.4.1. Instituto Colombiano de Normas Técnicas y Certificación—ICONTEC: Bogotá, Colombia, 2006.
- NTC 5350:2020; Calidad del suelo. Determinación de fósforo disponible. Segunda actualización Numerales 5.4. y 5.5; Instituto Colombiano de Normas Técnicas y Certificación—ICONTEC: Bogotá, Colombia, 2020.
- NTC 5349:2016; Calidad de suelo. Determinación de las bases cambiables: Método del acetato de amonio 1M pH 7.0. Instituto Colombiano de Normas Técnicas y Certificación—ICONTEC: Bogotá, Colombia, 2016.
- SW-846Method 7473: Mercury in Solids and Solutions by Thermal Decomposition, Amalgamation, and Atomic Absorption Spectrophotometry, Revision 0 ed; EPA: Washington, DC, USA, 1998; pp. 1–17. Available online: https://www.epa.gov/sites/production/files/2015-07/documents/epa-7473.pdf (accessed on 20 March 2025).
- Wang, Z.; Liu, X.; Qin, H. Bioconcentration and translocation of heavy metals in the soil-plants system in Machangqing copper mine, Yunnan Province, China. J. Geochem. Explor. 2019, 200, 159–166. [Google Scholar] [CrossRef]
- Durante-Yánez, E.V.; Martínez-Macea, M.A.; Enamorado-Montes, G.; Caballero, E.C.; Marrugo-Negrete, J. Phytoremediation of Soils Contaminated with Heavy Metals from Gold Mining Activities Using Clidemia sericea D. Don. Plants 2022, 11, 597. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Pinedo-Hernández, J.; Olivero-Verbel, J.; Díez, S. Phytoremediation of mercury-contaminated soils by Jatropha curcas. Chemosphere 2015, 127, 58–63. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Combatt, E.M.; Bravo, A.G.; Díez, S. Flood-induced metal contamination in the topsoil of floodplain agricultural soils: A case-study in Colombia. Land Degrad. Dev. 2019, 30, 2139–2149. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Pinedo-Hernández, J.; Díez, S. Assessment of heavy metal pollution, spatial distribution and origin in agricultural soils along the Sinú River Basin, Colombia. Environ. Res. 2017, 154, 380–388. [Google Scholar] [CrossRef]
- Quintanilla-Villanueva, G.; Villanueva-Rodríguez, M.; Guzmán-Mar, J.; Torres-Gaytan, D.; Hernández-Ramírez, A.; Orozco-Rivera, G.; Hinojosa-Reyes, L. Mobility and speciation of mercury in soils from a mining zone in Villa Hidalgo, SLP, Mexico: A preliminary risk assessment. Appl. Geochem. 2020, 122. [Google Scholar] [CrossRef]
- Tomiyasu, T.; Kono, Y.; Kodamatani, H.; Hidayati, N.; Rahajoe, J.S. The distribution of mercury around the small-scale gold mining area along the Cikaniki river, Bogor, Indonesia. Environ. Res. 2013, 125, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Xiao, R.; Wang, S.; Li, R.H.; Wang, J.J.; Zhang, Z.Q. Soil heavy metal contamination and health risks associated with artisanal gold mining in Tongguan, Shaanxi, China. Ecotoxicol. Environ. Saf. 2017, 141, 17–24. [Google Scholar] [CrossRef] [PubMed]
- Gyamfi, O.; Sørensen, P.B.; Darko, G.; Ansah, E.; Vorkamp, K.; Bak, J.L. Contamination, exposure and risk assessment of mercury in the soils of an artisanal gold mining community in Ghana. Chemosphere 2021, 267, 128910. [Google Scholar] [CrossRef]
- Martínez, Z.; González, M.S.; Paternina, J.; Cantero, M. Contaminación de suelos agrícolas por metales pesados, zona minera El Alacrán, Colombia. Temas Agrar. 2017, 22, 21–31. [Google Scholar] [CrossRef]
- Pico, M.A.V. Recuperación de un Suelo Mediante Fitorremediación con Jatropha curcas L. como una Estrategia Para el Manejo de Pasivos Ambientales Mineros en el Norte de Colombia. 2021. Available online: https://repositorio.unicordoba.edu.co/entities/publication/c7b28f9b-d21e-49b8-8371-d9fe09218ed0/full (accessed on 20 March 2025).
- Hu, H.; Gao, Y.; Tan, W.; Xi, B. Effects of dissolved organic matter on mercury speciation in rice rhizosphere amended with sulfur-rich biochar. Soil Environ. Health 2023, 1, 100022. [Google Scholar] [CrossRef]
- Eckley, C.S.; Luxton, T.P.; Stanfield, B.; Baldwin, A.; Holloway, J.; McKernan, J.; Johnson, M.G. Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site. Environ. Pollut. 2020, 271, 116369. [Google Scholar] [CrossRef]
- Guevara, M.P. Influencia de las Variables Ambientales en la Estructura de las Comunidades Bentónicas y su Relación con el flujo de Mercurio en la Bahía de Buenaventura. Master’s Thesis, Universidad Nacional de Colombia, Palmira Valle, Colombia, 2017. [Google Scholar]
- Martínez-Trinidad, S.; Hernández-Silva, G.; Heydrich, S.C. Metodología para establecer la relación del mercurio total con propiedades físicas y químicas del suelo en San Joaquín, Qro., México. Actas Del INAGEQ 2013, 19, 35–46. [Google Scholar]
- Guedron, S.; Grangeon, S.; Lanson, B.; Grimaldi, M. Mercury speciation in a tropical soil association; Consequence of gold mining on Hg distribution in French Guiana. Geoderma 2009, 153, 331–346. [Google Scholar] [CrossRef]
- Martínez, X. El mercurio Como Contaminante global: Desarrollo de Metodologías Para su Determinación en Suelos Contaminados y Estrategias Para la Reducción de su Liberación al Medio Ambiente. 2004. Available online: https://www.tdx.cat/bitstream/handle/10803/3174/xgm1de1.pdf (accessed on 20 March 2025).
- De Astudillo, L.R.; Prin, J.L.; Noriega, J.; Albornoz, L.A.; Hidalgo-Prada, B.; Ramírez, A. Determinación de mercurio en suelos del sector minero las claritas, estado bolívar, mediante procesos analiticos de especiación y microscopía electrónica de barrido (Meb), Saber. Rev. Multidiscip. Del Cons. De Investig. De La Universidad de Oriente 2008, 20, 343–352. [Google Scholar]
- Li, Y.; Lu, C.; Zhu, N.; Chao, J.; Hu, W.; Zhang, Z.; Wang, Y.; Liang, L.; Chen, J.; Xu, D.; et al. Mobilization and methylation of mercury with sulfur addition in paddy soil: Implications for integrated water-sulfur management in controlling Hg accumulation in rice. J. Hazard. Mater. 2022, 430, 128447. [Google Scholar] [CrossRef] [PubMed]
- Sysalová, J.; Kučera, J.; Drtinová, B.; Červenka, R.; Zvěřina, O.; Komárek, J.; Kameník, J. Mercury species in formerly contaminated soils and released soil gases. Sci. Total. Environ. 2017, 584-585, 1032–1039. [Google Scholar] [CrossRef] [PubMed]
- Jaradat, A.A.; Johnson, J.M.; Weyers, S.L.; Barbour, N.W. Determinants and Prediction of Carbon/Nitrogen Ratio in Five Diverse Crop Plants. Commun. Soil Sci. Plant Anal. 2009, 40, 2688–2711. [Google Scholar] [CrossRef]
- Soto-Mora, E.; Hernández-Vázquez, M.; Luna-Zendejas, H.; Ortiz-Ortíz, E.; García-Gallegos, E. Evaluación del contenido de materia orgánica en suelos agrícolas y su relación carbono/nitrógeno. Rev. Iberoam. De Ciencias 2016, 3, 8. [Google Scholar]
- Hussain, S.; Yang, J.; Hussain, J.; Sattar, A.; Ullah, S.; Hussain, I.; Rahman, S.U.; Zandi, P.; Xia, X.; Zhang, L. Mercury fractionation, bioavailability, and the major factors predicting its transfer and accumulation in soil–wheat systems. Sci. Total. Environ. 2022, 847, 157432. [Google Scholar] [CrossRef]
- Molina, J.L. Efectos del Biochar, Bokashi y Compost en las Dinámicas del Carbono y Nitrógeno en Suelos con pH Contrastados. Bachelor’s Thesis, Universidad de Jaén, Jaén, Spain, 2018. [Google Scholar]
- Yerima, B.; Enang, R.; Kome, G.; Van Ranst, E. Exchangeable aluminium and acidity in Acrisols and Ferralsols of the north-west highlands of Cameroon. Geoderma Reg. 2020, 23, e00343. [Google Scholar] [CrossRef]
- Freiling, M.; von Tucher, S.; Schmidhalter, U. Factors influencing phosphorus placement and effects on yield and yield parameters: A meta-analysis. Soil Tillage Res. 2022, 216, 105257. [Google Scholar] [CrossRef]
- Grobelak, A. Organic soil amendments in the phytoremediation process. In Phytoremediation: Management of Environmental Contaminants; Springer: Berlin/Heidelberg, Germany, 2016; Volume 4, pp. 21–39. ISBN 9783319418117. [Google Scholar]
- Wei, S.; Li, Y.; Zhou, Q.; Srivastava, M.; Chiu, S.; Zhan, J.; Wu, Z.; Sun, T. Effect of fertilizer amendments on phytoremediation of Cd-contaminated soil by a newly discovered hyperaccumulator JSolanum nigrum L. J. Hazard. Mater. 2010, 176, 269–273. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Lin, C.-T.; Lee, M.-C.; Wu, C.-W.; Lai, Y.-H. Nitrogen fertilization promotes the phytoremediation of cadmium in Pentas lanceolata. Int. Biodeterior. Biodegradation 2013, 85, 709–714. [Google Scholar] [CrossRef]
- Titah, H.S.; Abdullah, S.R.S.; Mushrifah, I.; Anuar, N.; Basri, H.; Mukhlisin, M. Effect of applying rhizobacteria and fertilizer on the growth of Ludwigia octovalvis for arsenic uptake and accumulation in phytoremediation. Ecol. Eng. 2013, 58, 303–313. [Google Scholar] [CrossRef]
- Gustin, M.S.; E Lindberg, S.; Austin, K.; Coolbaugh, M.; Vette, A.; Zhang, H. Assessing the contribution of natural sources to regional atmospheric mercury budgets. Sci. Total. Environ. 2000, 259, 61–71. [Google Scholar] [CrossRef] [PubMed]
- Skyllberg, U. Chemical speciation of mercury in soil and sediment. In Environmental Chemistry and Toxicology of Mercury; Wiley: Hoboken, NJ, USA, 2011; pp. 219–258. [Google Scholar] [CrossRef]
- Ministerio de Ambiente y Desarrollo Sostenible de Colombia, Instituto de Hidrología, Meteorología y Estudios Ambientales (IDEAM). Datos Consultados de las Estaciones Meteorológicas del Catálogo Nacional de Estaciones: CECILIA [25020780], AYAPEL–AUT [25025030] y MARRALU–AUT [25027770]. Available online: http://dhime.ideam.gov.co/atencionciudadano/ (accessed on 3 May 2025).
- Federación Nacional de Arroceros (FEDEARROZ). Histórico Región—Al día con el clima. Datos Consultados de las Estaciones meteorológicas del Catálogo Nacional de Estaciones: CECILIA [25020780], AYAPEL–AUT [25025030] y MARRALU–AUT [25027770]. Available online: https://clima.fedearroz.com.co/historico-region/ (accessed on 3 May 2025).
- Ramírez-Morales, D.; Rodríguez-Artavia, B.; Sáenz-Vargas, W.; Sánchez-Gutiérrez, R.; Villalobos-González, W.; Mora-Barrantes, J.C. Minerías artesanales para la extracción de oro mediante el uso de mercurio: Estado del arte del impacto ambiental en los medios agua, aire y suelo. Rev. Tecnol. En Marcha 2019, 32, 3–11. [Google Scholar] [CrossRef]
- Cano, J. Heavy metals and soil fertility at NChannelirrigation, Puno, Peru. Manglar 2021, 18, 419–426. [Google Scholar] [CrossRef]
- Gworek, B.; Dmuchowski, W.; Baczewska-Dąbrowska, A.H. Mercury in the terrestrial environment: A review. Environ. Sci. Eur. 2020, 32, 1–19. [Google Scholar] [CrossRef]
- Gębka, K.; Saniewska, D.; Bełdowska, M. Mobility of mercury in soil and its transport into the sea. Environ. Sci. Pollut. Res. 2020, 27, 8492–8506. [Google Scholar] [CrossRef]
- Singh, S.; Karwadiya, J.; Srivastava, S.; Patra, P.K.; Venugopalan, V. Potential of indigenous plant species for phytoremediation of arsenic contaminated water and soil. Ecol. Eng. 2021, 175, 106476. [Google Scholar] [CrossRef]
- Nowack, B.; Schulin, R.; Luster, J. Metal fractionation in a contaminated soil after reforestation: Temporal changes versus spatial variability. Environ. Pollut. 2010, 158, 3272–3278. [Google Scholar] [CrossRef]
- Patra, M.; Sharma, A. Mercury toxicity in plants. Bot. Rev. 2000, 66, 379–422. [Google Scholar] [CrossRef]
- Maathuis, F.J.M. Physiological functions of mineral macronutrients. Curr. Opin. Plant Biol. 2009, 12, 250–258. [Google Scholar] [CrossRef]
- Khalid, S.; Shahid, M.; Niazi, N.K.; Murtaza, B.; Bibi, I.; Dumat, C. A comparison of technologies for remediation of heavy metal contaminated soils. J. Geochem. Explor. 2017, 182, 247–268. [Google Scholar] [CrossRef]
- Shah, V.; Daverey, A. Phytoremediation: A multidisciplinary approach to clean up heavy metal contaminated soil. Environ. Technol. Innov. 2020, 18, 100774. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Durango-Hernández, J.; Díaz-Fernández, L.; Urango-Cárdenas, I.; Araméndiz-Tatis, H.; Vergara-Flórez, V.; Bravo, A.G.; Díez, S. Transfer and bioaccumulation of mercury from soil in cowpea in gold mining sites. Chemosphere 2020, 250, 126142. [Google Scholar] [CrossRef] [PubMed]
- Chandra, R.; Yadav, S.; Yadav, S. Phytoextraction potential of heavy metals by native wetland plants growing on chlorolignin containing sludge of pulp and paper industry. Ecol. Eng. 2017, 98, 134–145. [Google Scholar] [CrossRef]
- Clemens, S.; Aarts, M.G.; Thomine, S.; Verbruggen, N. Plant science: The key to preventing slow cadmium poisoning. Trends Plant Sci. 2013, 18, 92–99. [Google Scholar] [CrossRef]
- Verbruggen, N.; Hermans, C.; Schat, H. Mechanisms to cope with arsenic or cadmium excess in plants. Curr. Opin. Plant Biol. 2009, 12, 364–372. [Google Scholar] [CrossRef]
- Marrugo-Negrete, J.; Enamorado-Montes, G.; Durango-Hernández, J.; Pinedo-Hernández, J.; Díez, S. Removal of mercury from gold mine effluents using Limnocharis flava in constructed wetlands. Chemosphere 2017, 167, 188–192. [Google Scholar] [CrossRef]
- Núñez, S.E.R.; Negrete, J.L.M.; Rios, J.E.A.; Hadad, H.R.; Maine, M.A. Hg, Cu, Pb, Cd, and Zn Accumulation in Macrophytes Growing in Tropical Wetlands. Water Air Soil Pollut. 2010, 216, 361–373. [Google Scholar] [CrossRef]
- Durango, J.V.V.; Negrete, J.L.M.; Jaramillo, B.C.; Perez, L.M.C. Remediación de suelos contaminados con mercurio utilizando guarumo (Cecropia peltata). Ing. Y Desarro. 2010, 27, 113–129. [Google Scholar]
- Hussain, S.; Yang, J.; Hussain, J.; Hussain, I.; Kumar, M.; Ullah, S.; Zhang, L.; Xia, X.; Jia, Y.; Ma, Y.; et al. Phytoavailability and transfer of mercury in soil-pepper system: Influencing factors, fate, and predictive approach for effective management of metal-impacted spiked soils. Environ. Res. 2021, 207, 112190. [Google Scholar] [CrossRef]
- Monteiro, L.C.; Vieira, L.C.G.; Bernardi, J.V.E.; Rodrigues, Y.O.S.; de Mesquita, L.P.B.; de Souza, J.P.R.; Sena, G.; Oliveira, I.A.d.S.; Cabral, C.d.S.; Júnior, J.F.G.; et al. Mercury Bioconcentration and Translocation in Rooted Macrophytes (Paspalum repens Berg.) from Floodplain Lakes in the Araguaia River Watershed, Brazilian Savanna. Water 2024, 16, 1199. [Google Scholar] [CrossRef]
- Figueira, E.; Freitas, R.; Pereira, E.; Duarte, A. Mercury uptake and allocation in Juncus maritimus: Implications for phytoremediation and restoration of a mercury contaminated salt marsh. J. Environ. Monit. 2012, 14, 2181–2188. [Google Scholar] [CrossRef] [PubMed]
- Takarina, N.D.; Pin, T.G. Bioconcentration Factor (BCF) and Translocation Factor (TF) of Heavy Metals in Mangrove Trees of Blanakan Fish Farm. Makara J. Sci. 2017, 21, 77–81. [Google Scholar] [CrossRef]
- Moreno-Jiménez, E.; Gamarra, R.G.; Carpena-Ruiz, R.O.; Millán, R.; Peñalosa, J.; Esteban, E. Mercury bioaccumulation and phytotoxicity in two wild plant species of Almadén area. Chemosphere 2006, 63, 1969–1973. [Google Scholar] [CrossRef] [PubMed]
- Pacheco, F.V.; Silveira, H.R.d.O.; Alvarenga, A.A.; Alvarenga, I.C.A.; Pinto, J.E.B.P.; Lira, J.M.S. Gas Exchange and Production of Photosynthetic Pigments of Piper aduncum L. Grown at Different Irradiances. Am. J. Plant Sci. 2013, 04, 114–121. [Google Scholar] [CrossRef]
- Tinoco-Ojanguren, C.; Pearcy, R.W. Stomatal dynamics and its importance to carbon gain in two rainforest Piper species—I. VPD effects on the transient stomatal response to lightflecks. Oecologia 1993, 94, 388–394. [Google Scholar] [CrossRef]
- Antoniadis, V.; Levizou, E.; Shaheen, S.M.; Ok, Y.S.; Sebastian, A.; Baum, C.; Prasad, M.N.; Wenzel, W.W.; Rinklebe, J. Trace elements in the soil-plant interface: Phytoavailability, translocation, and phytoremediation–A review. Earth-Sci. Rev. 2017, 171, 621–645. [Google Scholar] [CrossRef]
- Lasat, M.M. Phytoextraction of Metals from Contaminated Soil: A Review of Plant/Soil/Metal Interaction and Assessment of Pertinent Agronomic Issues. J. Hazard. Subst. Res. 1999, 2, 5. [Google Scholar] [CrossRef]
- Krumins, J.A.; Goodey, N.M.; Gallagher, F. Plant–soil interactions in metal contaminated soils. Soil Biol. Biochem. 2015, 80, 224–231. [Google Scholar] [CrossRef]
Plot | Total Hg (µg kg−1) | |||
---|---|---|---|---|
Median (µg kg−1) | Minimum (µg kg−1) | Maximum (µg kg−1) | ||
Experimental | 1 | 195.6 abc | 107.9 | 867.9 |
3 | 77.9 bc | 66.4 | 670.5 | |
4 | 621.2 ac | 411.6 | 52,044.4 | |
5 | 230.9 abc | 152.6 | 808.1 | |
6 | 145.9 abc | 104.6 | 493.1 | |
8 | 1141.0 a | 816.4 | 5548.2 | |
9 | 153.3 abc | 43.3 | 18,652.0 | |
10 | 120.1 abc | 75.0 | 1287.9 | |
12 | 55.6 b | 40.8 | 87.4 | |
Control | 2 | 697.3 abc | 62.9 | 1029.9 |
7 | 962.3 ac | 247.3 | 2587.4 | |
11 | 135.6 bc | 55.9 | 462.9 |
pH | OM | S | P | CEC | |
---|---|---|---|---|---|
OM | −0.3 * | ||||
S | −0.3 * | 0.2 | |||
P | −0.1 | 0.2 | −0.3 * | ||
CEC | −0.4 * | 0.6 * | 0.5 * | −0.2 | |
HgT | 0.02 | 0.4 * | 0.01 | 0.3 * | 0.3 * |
Plot | Conditions | Chemical Parameters | ||||
---|---|---|---|---|---|---|
pH (1:1) | OM (%) | CEC cmolc kg−1 | S, mg kg−1 | P, mg kg−1 | ||
1 | Initial | 5.3 a | 0.4 a | 2.4 a | 1.1 a | 2.5 a |
Final | 4.8 b | 0.6 a | 1.7 b | 10.9 b | 0.6 b | |
3 | Initial | 5.0 a | 0.4 a | 4.9 a | 3.7 a | 1.3 a |
Final | 4.8 b | 0.9 a | 4.8 a | 6.6 a | 1.9 a | |
4 | Initial | 4.7 a | 0.6 a | 3.0 a | 5.9 a | 3.1 a |
Final | 4.5 b | 0.3 a | 2.7 a | 2.6 a | 2.3 a | |
5 | Initial | 5.0 a | 0.5 a | 3.1 a | 6.3 a | 1.3 a |
Final | 4.6 b | 0.6 a | 3.5 a | 2.8 a | 2.0 b | |
6 | Initial | 5.1 a | 0.3 a | 1.5 a | 3.3 a | 1.7 a |
Final | 4.7 b | 0.4 a | 2.1 b | 1.8 a | 1.7 a | |
8 | Initial | 5.3 a | 0.3 a | 1.7 a | 2.3 a | 3.3 a |
Final | 4.8 b | 0.5 a | 2.3 a | 3.7 a | 1.5 b | |
9 | Initial | 4.7 a | 0.2 a | 1.1 a | 1.3 a | 4.2 a |
Final | 4.8 a | 0.4 a | 1.2 a | 4.4 a | 4.6 a | |
10 | Initial | 5.0 a | 0.1 a | 0.9 a | 2.9 a | 3.1 a |
Final | 4.9 a | 0.3 a | 1.0 a | 4.0 a | 2.2 a | |
12 | Initial | 5.1 a | 0.1 a | 1.2 a | 2.7 a | 1.1 a |
Final | 4.6 a | 0.1 a | 1.3 a | 5.1 a | 2.8 a | |
2 | Initial | 4.5 a | 0.5 a | 9.9 a | 6.5 a | 1.1 a |
Final | 4.2 b | 1.0 b | 11.26 b | 19.0 a | 0.4 b | |
7 | Initial | 5.3 a | 0.2 a | 1.5 a | 4.2 a | 2.5 a |
Final | 4.8 b | 0.5 b | 2.4 b | 3.8 a | 1.1 b | |
11 | Initial | 5.1 a | 0.1 a | 1.2 a | 4.3 a | 1.8 a |
Final | 4.6 b | 0.1 a | 1.2 a | 3.8 a | 1.2 a |
Plot | Total Hg (µg kg−1) | |||||
---|---|---|---|---|---|---|
Initial | Final | |||||
Median | Range (Min–Max) | Medium | Median | Range (Min–Max) | Medium | |
1 | 195.6 a | 107.9–867.9 | 299.7 | 172.6 b | 143.1–291.0 | 193.8 |
2 | 697.3 a | 62.9–1029.9 | 536.7 | 127.5 b | 74.7–427.7 | 228.4 |
3 | 77.9 a | 66.4–670.5 | 214.0 | 380.1 a | 79.0–1179.0 | 477.3 |
4 | 621.2 a | 411.6–52,044.4 | 10,894.2 | 748.1 b | 97.0–14,457.44 | 4141.3 |
5 | 230.9 a | 152.6–808.1 | 326.4 | 151.9 a | 107.5–680.3 | 248.5 |
6 | 146.0 a | 104.6–493.1 | 241.6 | 250.2 a | 91.9–744.0 | 355.2 |
7 | 962.3 a | 247.3–2587.4 | 1104.5 | 2551.4 a | 169.7–3544.5 | 1901.6 |
8 | 1141.0 a | 816.4–5548.1 | 2007.7 | 2660.1 a | 505.8–5366.7 | 2702.9 |
9 | 153.3 a | 43.3–18,652.0 | 3946.2 | 1610.4 ± b | 306.0–4301.7 | 2106.7 |
10 | 120.12 a | 75.0–1287.9 | 351.2 | 548.8 a | 62.4–3735.2 | 1191.7 |
11 | 135.63 a | 55.9–462.9 | 184.3 | 96.8 a | 34.3–317.7 | 124.0 |
12 | 55.60 a | 40.8–87.4 | 60.8 | 78.0 a | 47.3–147.4 | 84.4 |
Plot | Total Hg (µg kg−1) | Removal (%) | |
---|---|---|---|
Initial | Final | ||
Experimental | 2038.0 | 1278.0 | 37.3 |
Controls | 608.5 | 751.3 | −23.5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Rosa-Mendoza, M.; Viña-Pico, M.; Marrugo-Negrete, J. Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia. Soil Syst. 2025, 9, 68. https://doi.org/10.3390/soilsystems9030068
De la Rosa-Mendoza M, Viña-Pico M, Marrugo-Negrete J. Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia. Soil Systems. 2025; 9(3):68. https://doi.org/10.3390/soilsystems9030068
Chicago/Turabian StyleDe la Rosa-Mendoza, Mayra, Mario Viña-Pico, and José Marrugo-Negrete. 2025. "Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia" Soil Systems 9, no. 3: 68. https://doi.org/10.3390/soilsystems9030068
APA StyleDe la Rosa-Mendoza, M., Viña-Pico, M., & Marrugo-Negrete, J. (2025). Phytoremediation of Soils Contaminated with Mercury Using Piper marginatum in Ayapel, Colombia. Soil Systems, 9(3), 68. https://doi.org/10.3390/soilsystems9030068