Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (252)

Search Parameters:
Keywords = total dissolved ions

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 4712 KiB  
Article
Adsorptive Removal Behavior of Two Activated Carbons for Bis(2-ethylhexyl) Phosphate Dissolved in Water
by Lifeng Chen, Jing Tang, Zhuo Wang, Hongling Wang, Wannian Feng, Junjie Chen, Qingqing Yan, Shunyan Ning, Wenlong Li, Yuezhou Wei and Di Wu
Toxics 2025, 13(8), 624; https://doi.org/10.3390/toxics13080624 - 25 Jul 2025
Viewed by 292
Abstract
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when [...] Read more.
Bis(2-ethylhexyl) phosphate (P204) is widely used in extraction processes in the nuclear and rare earth industries. However, its high solubility in water results in high levels of total organic carbon and phosphorus in aqueous environments, and may also lead to radioactive contamination when it is used to combine with radionuclides. In this paper, we characterized a coconut shell activated carbon (CSAC) and a coal-based activated carbon (CBAC) for the adsorption of P204 and then evaluated their adsorption performance through batch and column experiments. The results found that, except for the main carbon matrix, CSAC and CBAC carried rich oxygen-containing functional groups and a small amount of inorganic substances. Both adsorbents had porous structures with pore diameters less than 4 nm. CSAC and CBAC showed good removal performance for P204 under low pH conditions, with removal efficiencies significantly higher than those of commonly used adsorption resins (XAD-4 and IRA900). The adsorption kinetics of P204 conformed to the pseudo-second-order kinetic model, and the adsorption isotherms conformed to the Langmuir model, indicating a monolayer chemical reaction mechanism. Both adsorbents exhibited strong anti-interference capabilities; their adsorption performance for P204 did not change greatly with the ambient temperature or the concentrations of common interfering ions. Column experiments demonstrated that CSAC could effectively fix dissolved P204 with a removal efficiency exceeding 90%. The fixed P204 could be desorbed with acetone. The findings provide an effective method for the recovery of P204 and the regeneration of spent activated carbon, which shows promise for practical applications in the future. Full article
(This article belongs to the Section Toxicity Reduction and Environmental Remediation)
Show Figures

Figure 1

23 pages, 9204 KiB  
Article
Hydrochemical Characteristics and Genesis Analysis of Closed Coal Mining Areas in Southwestern Shandong Province, China
by Xiaoqing Wang, Jinxian He, Guchun Zhang, Jianguo He, Heng Zhao, Meng Wu, Xuejuan Song and Dongfang Liu
Eng 2025, 6(7), 164; https://doi.org/10.3390/eng6070164 - 18 Jul 2025
Viewed by 272
Abstract
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to [...] Read more.
With the large-scale closure of coal mines leading to groundwater pollution, in order to systematically identify the sources of major chemical ions in surface water and groundwater. This study comprehensively applied methods such as Piper’s trilinear diagram, linear fitting, and correlation analysis to quantitatively analyze the hydrochemical characteristics of closed coal mining areas in southwest Shandong and to clarify the sources of geochemical components in surface water and groundwater, and the PMF model was used to analyze the sources of chemical components in mine water and karst water. The results show that the concentrations of TDS ( Total Dissolved Solids), SO42−, Fe, and Mn in the mine water of the closed coal mine area are higher than in the karst water. Both water bodies are above groundwater quality standards. Ca2+, SO42−, and HCO3 dominate the ionic components in surface water and different types of groundwater. The hydrochemical types of surface, pore, and mine waters are mainly SO4-HCO3-Ca, whereas SO4-HCO3-Ca and HCO3-SO4-Ca dominate karst waters. SO42− is the leading ion in the TDS of water bodies. The mineralization process of surface water is mainly controlled by the weathering of silicate minerals, while that of the groundwater is mainly controlled by the dissolution of carbonate minerals. The impact of mining activities on surface water and groundwater is significant, while the impact of agricultural activities on surface water and groundwater is relatively small. The degree of impact of coal mining activities on SO42− concentrations in surface water, pore water, and karst water, in descending order, is karst water, surface water, and pore water. The PMF (Positive Matrix Factorization) model analysis results indicate that dissolution of carbonate minerals with sulphate and oxidation dissolution of sulfide minerals are the main sources of chemical constituents in mine waters. Carbonate dissolution, oxidation dissolution of sulfide minerals, domestic sewage, and dissolution of carbonate minerals with sulphate are ranked as the main sources of chemical constituents in karst water from highest to lowest. These findings provide a scientific basis for the assessment and control of groundwater pollution in the areas of closed coal mines. Full article
Show Figures

Figure 1

23 pages, 11464 KiB  
Article
Characterization of Water Quality and the Relationship Between WQI and Benthic Macroinvertebrate Communities as Ecological Indicators in the Ghris Watershed, Southeast Morocco
by Ali El Mansour, Saida Ait Boughrous, Ismail Mansouri, Abdellali Abdaoui, Wafae Squalli, Asmae Nouayti, Mohamed Abdellaoui, El Mahdi Beyouda, Christophe Piscart and Ali Ait Boughrous
Water 2025, 17(14), 2055; https://doi.org/10.3390/w17142055 - 9 Jul 2025
Viewed by 447
Abstract
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate [...] Read more.
The Ghris watershed in southern Morocco is a significant ecological and agricultural area. However, due to the current impacts of climate change, farming activities, and pollution, data on its quality and biological importance need to be updated. Therefore, this study aimed to evaluate the physico-chemical and biological quality of surface water in the Ghris River. The Water Quality Index (WQI) and the Iberian Biological Monitoring Working Group (IBMWP) index were used to assess water quality along four sampling sites in 2024. The collected data were analyzed with descriptive and multivariate statistics. In total, 424 benthic macroinvertebrates belonging to seven orders were identified in the surface waters of the Ghris basin. These microfauna were significantly variable among the studied sites (p < 0.05). Station S4 is significantly rich in species, including seven orders and nine families of macroinvertebrates, followed by Station S2, with seven orders and eight families. Stations S3 and S1 showed less species diversity, with three orders and one family, respectively. The Insecta comprised 95.9% of the abundance, while the Crustacea constituted just 4.1%. The physico-chemical parameters significantly surpassed (p < 0.05) the specified norms of surface water in Morocco. This indicates a decline in the water quality of the studied sites. The findings of the principal component analysis (PCA) demonstrate that the top two axes explain 87% of the cumulative variation in the data. Stations 2 and 3 are closely associated with high concentrations of pollutants, notably Cl, SO42−, NO3, and K+ ions. Dissolved oxygen (DO) showed a slight correlation with S2 and S3, while S4 was characterized by high COD and PO4 concentrations, low levels of mineral components (except Cl), and average temperature conditions. Bioindication scores for macroinvertebrate groups ranging from 1 to 10 enabled the assessment of pollution’s influence on aquatic biodiversity. The IBMWP biotic index indicated discrepancies in water quality across the sites. This study gives the first insight and updated data on the biological and chemical quality of surface water in the Ghris River and the entire aquatic ecosystem in southeast Morocco. These data are proposed as a reference for North African and Southern European rivers. However, more investigations are needed to evaluate the impacts of farming, mining, and urbanization on the surface and ground waters in the study zone. Similarly, it is vital to carry out additional research in arid and semi-arid zones since there is a paucity of understanding regarding taxonomic and functional diversity, as well as the physico-chemical factors impacting water quality. Full article
(This article belongs to the Section Biodiversity and Functionality of Aquatic Ecosystems)
Show Figures

Figure 1

28 pages, 3292 KiB  
Article
Optimization of the Quality of Reclaimed Water from Urban Wastewater Treatment in Arid Region: A Zero Liquid Discharge Pilot Study Using Membrane and Thermal Technologies
by Maria Avramidi, Constantinos Loizou, Maria Kyriazi, Dimitris Malamis, Katerina Kalli, Angelos Hadjicharalambous and Constantina Kollia
Membranes 2025, 15(7), 199; https://doi.org/10.3390/membranes15070199 - 1 Jul 2025
Viewed by 772
Abstract
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs [...] Read more.
With water availability being one of the world’s major challenges, this study aims to propose a Zero Liquid Discharge (ZLD) system for treating saline effluents from an urban wastewater treatment plant (UWWTP), thereby supplementing into the existing water cycle. The system, which employs membrane (nanofiltration and reverse osmosis) and thermal technologies (multi-effect distillation evaporator and vacuum crystallizer), has been installed and operated in Cyprus at Larnaca’s WWTP, for the desalination of the tertiary treated water, producing high-quality reclaimed water. The nanofiltration (NF) unit at the plant operated with an inflow concentration ranging from 2500 to 3000 ppm. The performance of the installed NF90-4040 membranes was evaluated based on permeability and flux. Among two NF operation series, the second—operating at 75–85% recovery and 2500 mg/L TDS—showed improved membrane performance, with stable permeability (7.32 × 10−10 to 7.77 × 10−10 m·s−1·Pa−1) and flux (6.34 × 10−4 to 6.67 × 10−4 m/s). The optimal NF operating rate was 75% recovery, which achieved high divalent ion rejection (more than 99.5%). The reverse osmosis (RO) unit operated in a two-pass configuration, achieving water recoveries of 90–94% in the first pass and 76–84% in the second. This setup resulted in high rejection rates of approximately 99.99% for all major ions (Cl, Na+, Ca2+, and Mg2+), reducing the permeate total dissolved solids (TDS) to below 35 mg/L. The installed multi-effect distillation (MED) unit operated under vacuum and under various inflow and steady-state conditions, achieving over 60% water recovery and producing high-quality distillate water (TDS < 12 mg/L). The vacuum crystallizer (VC) further concentrated the MED concentrate stream (MEDC) and the NF concentrate stream (NFC) flows, resulting in distilled water and recovered salts. The MEDC process produced salts with a purity of up to 81% NaCl., while the NFC stream produced mixed salts containing approximately 46% calcium salts (mainly as sulfates and chlorides), 13% magnesium salts (mainly as sulfates and chlorides), and 38% sodium salts. Overall, the ZLD system consumed 12 kWh/m3, with thermal units accounting for around 86% of this usage. The RO unit proved to be the most energy-efficient component, contributing 71% of the total water recovery. Full article
(This article belongs to the Special Issue Applications of Membrane Distillation in Water Treatment and Reuse)
Show Figures

Figure 1

14 pages, 4161 KiB  
Article
Examination of Over-Discharge Effects on a Cylindrical Lithium-Ion Battery via the Immersion of a Copper Strip in a Salt Solution
by Bayarmaa Tserendejid, Erdenebold Urtnasan and Jei-Pil Wang
Corros. Mater. Degrad. 2025, 6(2), 19; https://doi.org/10.3390/cmd6020019 - 28 May 2025
Viewed by 600
Abstract
Li-ion battery recycling is growing with better tech and eco-awareness. Explosions are possible during battery recycling due to their residual voltage. Proper battery discharge is vital to successful recycling. The goal of this study was to investigate a new method for discharging cylindrical [...] Read more.
Li-ion battery recycling is growing with better tech and eco-awareness. Explosions are possible during battery recycling due to their residual voltage. Proper battery discharge is vital to successful recycling. The goal of this study was to investigate a new method for discharging cylindrical batteries, utilizing a saltwater solution and copper conductors and analyzing the impact of both direct and indirect contact between the copper and the battery. A key variable impacting the discharge process was inconsistent spacing between the battery and the copper conductor. In the gap, the saltwater, functioning as an electrolyte solution, created an electrical short circuit, thus causing faster discharge. Because the battery was not in contact with the copper conductor during the discharge process, corrosion of the battery cap and valve occurred, leading to the battery’s anode and cathode elements dissolving into the solution. However, a near-total voltage drop of 99% was observed in the battery, indicating that it was almost completely discharged. Upon making contact with the copper strip during its discharge cycle, the battery exhibited no signs of corrosion. This report details the battery discharge process, encompassing an analysis of the electrochemical reaction, schematic diagrams, and a chemical analysis of the discharge precipitate. Full article
Show Figures

Graphical abstract

15 pages, 1803 KiB  
Article
Vegetation-Driven Changes in Soil Salinity Ions and Microbial Communities Across Tidal Flat Reclamation
by Shumei Cai, Sixin Xu, Deshan Zhang, Yun Liang and Haitao Zhu
Microorganisms 2025, 13(6), 1184; https://doi.org/10.3390/microorganisms13061184 - 22 May 2025
Viewed by 408
Abstract
Soil microbes play a vital role in tidal flat ecosystems but are highly susceptible to disturbances from land reclamation. This study investigated the dynamics of bacterial communities and their environmental drivers across a 50-year reclamation chronosequence under three vegetation types (bare flats, reed [...] Read more.
Soil microbes play a vital role in tidal flat ecosystems but are highly susceptible to disturbances from land reclamation. This study investigated the dynamics of bacterial communities and their environmental drivers across a 50-year reclamation chronosequence under three vegetation types (bare flats, reed beds, and rice fields). The results showed that, after 50 years of reclamation, total dissolved salts decreased significantly in vegetated zones, particularly in rice fields, where Cl dropped by 54.71% and nutrients (SOC, TN, TP) increased substantially. Key ions, including HCO3, Cl, and K+, were the primary drivers of microbial community structure, exerting more influence than total salinity (TDS) or pH. Bacterial abundance and diversity increased over time, with rice fields showing the highest values after 50 years. Actinobacteriota and Proteobacteria were positively correlated with HCO3 and K+, while Cl negatively affected Acidobacteriota. Genus-level analyses revealed that specific taxa, such as Sphingomonas and Gaiella, exhibited ion responses diverging from broader phylum-level patterns, exemplifying niche-specific adaptations to salinity regimes. These findings underscore the pivotal role of vegetation type and individual salinity ions in driving microbial succession during tidal flat reclamation. A phased vegetation strategy, starting with reed colonization and followed by rice cultivation, can enhance soil quality and microbial diversity. This research provides important insights for optimizing vegetation management and ion monitoring in sustainable tidal flat reclamation. Full article
Show Figures

Figure 1

30 pages, 14799 KiB  
Article
Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process
by Wuhib Zeine Ousman, Esayas Alemayehu and Patricia Luis
Clean Technol. 2025, 7(2), 40; https://doi.org/10.3390/cleantechnol7020040 - 20 May 2025
Cited by 1 | Viewed by 2093
Abstract
Elevated fluoride levels in drinking water pose a significant health risk for communities relying on groundwater in the Ethiopian Central Rift Valley. This study aims at characterizing real groundwater samples from the Ethiopian Central Rift Valley and evaluating the performance of an integrated [...] Read more.
Elevated fluoride levels in drinking water pose a significant health risk for communities relying on groundwater in the Ethiopian Central Rift Valley. This study aims at characterizing real groundwater samples from the Ethiopian Central Rift Valley and evaluating the performance of an integrated membrane process based on reverse osmosis (RO) and membrane crystallization (MCr) for fluoride removal and its recovery as mixed fluoride salts. Groundwater analysis revealed fluoride concentrations of 20.8 mgL−1 at the Meki-01 site and 22.7 mgL−1 at the Meki-02 site, both exceeding the WHO guideline of 1.5 mgL−1. In addition, total dissolved solids exceeded 1000 mgL−1 at both sites, classifying the water as brackish. A commercial RO membrane demonstrated excellent fluoride and ion rejection, with fluoride removal rates exceeding 99%. The total dissolved solids (TDS) removal efficiency reached 89%. The mean water permeability of the membrane was 4.52 Lm−2h−1bar−1. The retentate produced in the RO unit reached a concentration of 70 mgL−1, which was then treated using osmotic membrane distillation–crystallization (OMD-Cr) and/or vacuum membrane crystallization (VM-Cr). This process facilitated the recovery of mixed salts while achieving an almost zero-liquid discharge. The study confirms the successful removal of fluoride and its recovery as mixed salt, along with the recovery of water in an environmentally friendly and manageable way. Full article
Show Figures

Figure 1

26 pages, 9639 KiB  
Article
Hydrochemical Characteristics and Evolution Laws of Groundwater in Huangshui River Basin, Qinghai
by Ziqi Wang, Ting Lu, Shengnan Li, Kexin Zhou, Yidong Gu, Bihui Wang and Yudong Lu
Water 2025, 17(9), 1349; https://doi.org/10.3390/w17091349 - 30 Apr 2025
Viewed by 414
Abstract
Groundwater plays a leading role in ecological environment protection in semi-arid regions. The Huangshui River Basin is located in the Tibetan Plateau and Loess Plateau transition zone of semi-arid areas. Its ecological environment is relatively fragile, and there is an urgent need for [...] Read more.
Groundwater plays a leading role in ecological environment protection in semi-arid regions. The Huangshui River Basin is located in the Tibetan Plateau and Loess Plateau transition zone of semi-arid areas. Its ecological environment is relatively fragile, and there is an urgent need for systematic study of the basin to develop a groundwater environment and realize the rational and efficient development of water resources. In this study, methodologically, we combined the following: 1. Field sampling (271 groundwater samples across the basin’s hydrogeological units); 2. Comprehensive laboratory analysis of major ions and physicochemical parameters; 3. Multivariate statistical analysis (Pearson correlation, descriptive statistics); 4. Geospatial techniques (ArcGIS kriging interpolation); 5. Hydrochemical modeling (Piper diagrams, Gibbs plots, PHREEQC simulations). Key findings reveal the following: 1. Groundwater is generally weakly alkaline (pH 6.94–8.91) with TDS ranging 155–10,387 mg/L; 2. Clear spatial trends: TDS and major ions (Na+, Ca2+, Mg2+, Cl, SO42−) increase along flow paths; 3. Water types evolve from Ca-HCO3-dominant (upper reaches) to complex Ca-SO4/Ca-Cl mixtures (lower reaches); 4. Water–rock interactions dominate hydrochemical evolution, with secondary cation exchange effects; 5. PHREEQC modeling identifies dominant carbonate dissolution (mean SIcalcite = −0.32) with localized evaporite influences (SIgypsum up to 0.12). By combining theoretical calculations and experimental results, this study reveals distinct hydrochemical patterns and evolution mechanisms. The groundwater transitions from Ca-HCO3-type in upstream areas to complex Ca-SO4/Cl mixtures downstream, driven primarily by dissolution of gypsum and carbonate minerals. Total dissolved solids increase dramatically along flow paths (155–10,387 mg/L), with Na+ and SO42− showing the strongest correlation to mineralization (r > 0.9). Cation exchange processes and anthropogenic inputs further modify water chemistry in midstream regions. These findings establish a baseline for sustainable groundwater management in this ecologically vulnerable basin. Full article
Show Figures

Figure 1

20 pages, 3878 KiB  
Article
Extraction of Major Groundwater Ions from Total Dissolved Solids and Mineralization Using Artificial Neural Networks: A Case Study of the Aflou Syncline Region, Algeria
by Mohammed Elamin Stamboul, Azzaz Habib, Abderrahmane Hamimed, Mousaab Zakhrouf, Il-Moon Chung and Sungwon Kim
Hydrology 2025, 12(5), 103; https://doi.org/10.3390/hydrology12050103 - 25 Apr 2025
Viewed by 668
Abstract
Global water demand due to population growth and agricultural development has led to widespread overexploitation of groundwater, particularly in semi-arid regions. The traditional hydrochemistry monitoring system still suffers from limited laboratory accessibility and high costs. This study aims to predict the major ions [...] Read more.
Global water demand due to population growth and agricultural development has led to widespread overexploitation of groundwater, particularly in semi-arid regions. The traditional hydrochemistry monitoring system still suffers from limited laboratory accessibility and high costs. This study aims to predict the major ions of groundwater, including Ca2+, Mg2+, Na+, SO42−, Cl, K+, HCO3, and NO3, utilizing two field-measurable parameters (i.e., total dissolved solids (TDS) and mineralization (MIN)) in the Aflou syncline region, Algeria. A multilayer perceptron (MLP) model optimized with Levenberg–Marquardt backpropagation (LMBP) provided the greatest predictive accuracy for the different ions of SO42−, Mg2+, Na+, Ca2+, and Cl with R2 = (0.842, 0.980, 0.759, 0.945, 0.895), RMSE = (53.660, 12.840, 14.960, 36.460, 30.530) (mg/L), and NSE = (0.840, 0.978, 0.754, 0.941, 0.892) in the testing phase, respectively. However, the predictive accuracy for the remaining ions of K+, HCO3, and NO3 was supplied as R2 = (0.045, 0.366, 0.004), RMSE = (6.480, 41.720, 40.460) (mg/L), and NSE = (0.003, 0.361, −0.933), respectively. The performance of our model (LMBP-MLP) was validated in adjacent and similar geological locations, including Aflou, Madna, and Ain Madhi. In addition, LMBP-MLP showed very promising results, with performance similar to that in the original research region. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

20 pages, 9617 KiB  
Article
Unravelling the Effect of Low-Molecular-Weight Dissolved Organic Matter on Antimony Enrichment in Groundwater of the Xikuangshan Sb Mining Area, China
by Tongchun Qin, Zijian Li, Qianqian Sun and Chunming Hao
Water 2025, 17(8), 1206; https://doi.org/10.3390/w17081206 - 17 Apr 2025
Viewed by 438
Abstract
The effect of low-molecular-weight dissolved organic matter (LDOM) on antimony enrichment in groundwater remains unclear. In this study, the spectroscopic and molecular characteristics of high- and low-Sb groundwater are compared using optical spectrophotometry, ultrafiltration, and Fourier transform ion cyclotron resonance mass spectrometry. The [...] Read more.
The effect of low-molecular-weight dissolved organic matter (LDOM) on antimony enrichment in groundwater remains unclear. In this study, the spectroscopic and molecular characteristics of high- and low-Sb groundwater are compared using optical spectrophotometry, ultrafiltration, and Fourier transform ion cyclotron resonance mass spectrometry. The results demonstrated that although the mean DOM concentration in LDOM groundwater (3.98 mg/L) accounted for only 69.22% of the mean DOM concentration, the proportion of Sb(V) within the total Sb varied between 80.29% and 99.56%. LDOM was characterized by higher biological and fluorescence index values, a greater H/C ratio, and reduced double-bond equivalent values compared with high-molecular-weight dissolved organic matter. High abundances of LDOM can enhance the primary enrichment of Sb(V) within the total Sb concentration via competitive adsorption and, as energy and electron acceptors for microbial communities facilitate Sb(III), oxidation within groundwater systems. This study provides new perspectives on understanding how DOM influences the migration and speciation transformation of Sb in groundwater environments. Full article
(This article belongs to the Section Water Quality and Contamination)
Show Figures

Figure 1

13 pages, 614 KiB  
Article
Closed-Circuit Reverse Osmosis Performance Evaluation in a High-Recovery-Rate Water Reclamation Pilot Project
by Jian Huang, Simeng Li, Saied Dalagah, Shaun Stone, David Ahles, Joe Mouawad and Mohamadali Sharbatmaleki
Sustainability 2025, 17(8), 3388; https://doi.org/10.3390/su17083388 - 10 Apr 2025
Cited by 1 | Viewed by 936
Abstract
Reusing treated effluent from municipal wastewater treatment plants is essential for addressing freshwater scarcity, a key objective of the United Nations Sustainable Development Goals (SDGs). While closed-circuit reverse osmosis (CCRO) has shown promise in municipal reuse facilities, the comprehensive assessment of water quality [...] Read more.
Reusing treated effluent from municipal wastewater treatment plants is essential for addressing freshwater scarcity, a key objective of the United Nations Sustainable Development Goals (SDGs). While closed-circuit reverse osmosis (CCRO) has shown promise in municipal reuse facilities, the comprehensive assessment of water quality parameters, especially at higher recovery rates, is lacking. In this study, at the San Jacinto Valley Regional Water Reclamation Facility (SJVRWRF), we evaluated the performance of CCRO in treating municipal wastewater tertiary effluent, focusing on high recovery rates. Our analysis of selected chemical parameters across recovery rates ranging from 90% to 95% revealed the effective removal of suspended particles by CCRO. However, variations in removal rates were observed among ions, with chloride removal at 96.3% and nitrate removal at 79.6%, contrasting with fluoride’s complete removal and sulfate’s 99.7% removal rate. Divalent ions like calcium and magnesium exhibited better rejection than monovalent ions such as sodium and potassium. Additionally, the removal efficiency of total dissolved solids (TDSs), alkalinity, chloride, nitrate, sodium, and potassium decreased with an increasing recovery rate, while sulfate, calcium, and magnesium removal rates remained stable. These findings enhance our understanding of membrane treatment processes, providing valuable insights for future water reclamation projects to combat freshwater resource scarcity. Full article
(This article belongs to the Section Waste and Recycling)
Show Figures

Figure 1

16 pages, 2720 KiB  
Article
Ultrapure Water Production by a Saline Industrial Effluent Treatment
by Adriana Hernández Miraflores, Karina Hernández Gómez, Claudia Muro, María Claudia Delgado Hernández, Vianney Díaz Blancas, Jesús Álvarez Sánchez and German Eduardo Devora Isordia
Membranes 2025, 15(4), 116; https://doi.org/10.3390/membranes15040116 - 7 Apr 2025
Cited by 1 | Viewed by 875
Abstract
A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a [...] Read more.
A membrane system was applied for ultrapure water production from the treatment of saline effluent from the canned food industry. The industrial effluent presented a high saline concentration, including sodium chloride, calcium carbonate, calcium sulfates, and magnesium. The effluent was treated using a system of reverse osmosis (RO) and a post-treatment process consisting of ion exchange resins (IEXRs). The RO was accompanied by the addition of a hexametaphosphate dose (2, 6, and 10 mg/L) as an antiscalant to avoid the RO membrane scaling by minerals. In turn, IEXRs were used for water deionization to produce ultrapure water with a reduced concentration of monovalent ions. The antiscalant dose was 6 mg/L, producing clean water from RO permeates with an efficiency of 65–70%. The brine from RO was projected for its reuse in food industry processes. The clean water quality from RO showed 20% total dissolved solids (TDS) removal (equivalent to salts). The antiscalant inhibited the formation of calcium salt incrustation > 200 mg/L, showing low fouling. In turn, anionic resins removed 99.8% of chloride ions, whereas the monovalent salts were removed by a mix of cationic–anionic resin, producing ultrapure water with electrical conductivity < 3.3 µS/cm. The cost of ultrapure water production was 2.62 USD/m3. Full article
Show Figures

Figure 1

27 pages, 4995 KiB  
Article
Monthly Variation, Environmental Drivers, and Ecological Functions of Marine Bacterial Community in a Eutrophic Coastal Area of China
by Zezheng Yan, Yanjian Jin, Tiejun Li, Xiaoling Zhang, Qiao Yang, Chengzhe Ren and Ling Qiao
Microorganisms 2025, 13(4), 837; https://doi.org/10.3390/microorganisms13040837 - 7 Apr 2025
Viewed by 592
Abstract
This study investigated the monthly variations of bacterial communities in the surface seawater of the Wenzhou coastal area and their influencing factors, while exploring the ecological functions of microbial communities. The results indicated that the surface seawater bacterial communities in this region exhibited [...] Read more.
This study investigated the monthly variations of bacterial communities in the surface seawater of the Wenzhou coastal area and their influencing factors, while exploring the ecological functions of microbial communities. The results indicated that the surface seawater bacterial communities in this region exhibited high diversity, with significantly higher diversity observed in the winter half-year compared to the summer half-year. The bacterial community structures showed distinct monthly variations, with high similarity between adjacent months, particularly from June to September. The dominant bacterial taxa primarily included Proteobacteria represented by the SAR86 clade, OM43 clade, and Rhodobacteraceae; Bacteroidota represented by Flavobacteriaceae; and Cyanobacteria mainly composed of Cyanobium PCC-6307 and Synechococcus CC9902. Temperature and nitrate ions were identified as the environmental factors most strongly correlated with monthly bacterial community variations, while dissolved oxygen, nitrite ions, and total organic carbon also showed significant correlations with relative abundances of certain taxa. Predictions of the bacterial community’s ecological functions revealed that chemoheterotrophic functions were most abundant throughout the year, whereas photoautotrophic functions were primarily enriched in summer. Denitrification and other nitrogen cycling-related functions also displayed obvious monthly variations. Collectively, this study provides valuable insights into the temporal changes in coastal microbial communities and their interactions with different environments. Full article
(This article belongs to the Section Environmental Microbiology)
Show Figures

Figure 1

18 pages, 7849 KiB  
Article
Analysis of Prediction Confidence in Water Quality Forecasting Employing LSTM
by Pan Fang, Yonggui Wang, Yanxin Zhao and Jin Kang
Water 2025, 17(7), 1050; https://doi.org/10.3390/w17071050 - 2 Apr 2025
Cited by 2 | Viewed by 883
Abstract
Water quality prediction serves as an important foundation for risk control and the proactive management of the aquatic environment, and the Long Short-Term Memory (LSTM) network has gained recognition as an effective approach for achieving high-precision water quality predictions. However, despite its potential, [...] Read more.
Water quality prediction serves as an important foundation for risk control and the proactive management of the aquatic environment, and the Long Short-Term Memory (LSTM) network has gained recognition as an effective approach for achieving high-precision water quality predictions. However, despite its potential, there is a significant gap in the literature regarding the confidence analysis of its prediction accuracy and the underlying causes of variability across different water quality indicators and basins. To address this gap, the present study introduces a novel confidence evaluation method to systematically assess the performance of LSTM in predicting key water quality parameters, including ammonia nitrogen (AN), biochemical oxygen demand (BOD), chemical oxygen demand (COD), dissolved oxygen (DO), hydrogen ion concentration (pH), and total phosphorus (TP). This evaluation was conducted across three basins with distinct geographical, climatic, and water quality conditions: the Huangshui River Basin (HSB), the Haihe River Basin (HRB), and the Yangtze River Basin (YRB). The results of the confidence evaluation revealed that LSTM exhibited higher credibility in the Haihe River Basin compared to the Yangtze River Basin. Additionally, LSTM demonstrated greater accuracy and stability in predicting total phosphorus (TP) compared to other water quality indicators in both basins, with median NSE values of 0.71 in the HRB and 0.73 in the YRB. Additionally, the research demonstrated a linear relationship between the ability of LSTM models to predict the water quality and temporal autocorrelation as well as the cross-correlation coefficients of the water quality parameters. The coefficients of determination (R2) ranged from 0.59 to 0.85, with values of 0.59 and 0.79 for the YRB and 0.85 and 0.80 for the HRB, respectively. This finding underscores the importance of considering these correlation metrics when evaluating the reliability of LSTM-based predictions. Full article
(This article belongs to the Special Issue Machine Learning Applications in the Water Domain)
Show Figures

Figure 1

22 pages, 5224 KiB  
Article
Impacts of Natural Organic Matter and Dissolved Solids on Fluoride Retention of Polyelectrolyte Multilayer-Based Hollow Fiber Nanofiltration Membranes
by Hussein Abuelgasim, Nada Nasri, Martin Futterlieb, Radhia Souissi, Fouad Souissi, Stefan Panglisch and Ibrahim M. A. ElSherbiny
Membranes 2025, 15(4), 110; https://doi.org/10.3390/membranes15040110 - 2 Apr 2025
Cited by 1 | Viewed by 1025
Abstract
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow [...] Read more.
This study examines the effects of natural organic matter (NOM) and dissolved solids on fluoride (F) retention in polyelectrolyte multilayer-based hollow-fiber nanofiltration membranes (dNF40). Lab-scale filtration experiments were conducted under varying operating conditions (initial salt concentration, NOM concentration, permeate flux, crossflow velocity, and recovery rate). dNF40 membranes exhibited F retention above 70% ± 1.2 in the absence of NOM and competing ions. However, when filtering synthetic model water (SMW) designed to simulate groundwater contaminated with high total dissolved solids (TDSs) and NOM, F retention decreased to approximately 60% ± 0.7, which was generally attributed to ion competition. Furthermore, despite limited declines in normalized permeability, the addition of NOM to SMW notably deceased F retention in the steady state to~20% due to fouling effects. The facilitated transport of the divalent cations Ca2+ and Mg2+ could be observed, as they accumulated in the organic fouling layer. While SO42− retention remained relatively stable, the retention of monovalent anions (NO3, Cl, and F) decreased substantially due to drag effects. Na+ retention improved slightly to maintain electroneutrality. Feed salinity was shown to significantly affect separation efficiency, with PEC layers undergoing swelling and certain structural changes as the ionic strength increased. During batch filtration experiments at varying recovery rates, the retention of monovalent anions further decreased, with F retention reducing to just ~10% at a 90% recovery rate. This study provides valuable insights into better understanding and optimizing the performance of PEC-based NF membranes across diverse water treatment scenarios. Full article
(This article belongs to the Section Membrane Applications for Water Treatment)
Show Figures

Figure 1

Back to TopTop