Examination of Over-Discharge Effects on a Cylindrical Lithium-Ion Battery via the Immersion of a Copper Strip in a Salt Solution
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Experimental Materials
2.2. The Experimental Procedures
2.3. Analysis Methods
2.4. Calculating the Discharge Efficiency
3. Results
3.1. Battery Discharge with a Copper Strip in Saltwater
3.1.1. No Connection to the Copper Conductor in Battery Discharging
3.1.2. Connection to the Copper Conductor in Battery Discharging
3.2. Chemical Analysis of the Precipitates
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Feixiang, W.; Joachim, M.; Yan, Y. Guidelines and trends for next-generation rechargeable lithium and lithium-ion batteries. Chem. Soc. Rev. 2020, 49, 1569–1614. [Google Scholar] [CrossRef]
- Hadrien, B.; Marion, L.; Nicolas, L. The future of lithium-ion batteries: Exploring expert conceptions, market trends, and price scenarios. Energy Res. Soc. Sci. 2022, 93, 102850. [Google Scholar] [CrossRef]
- Long, Z.; Xin, L.; Bin, L.; Yi, Y.; Ming, Y.; Jiahui, W.; Yujiu, Z. State Estimation Models of Lithium-Ion Batteries for Battery Management System: Status, Challenges, and Future Trends. Batteries 2023, 8, 131. [Google Scholar] [CrossRef]
- Suraj, R.; Rajan, K.; Rabinder, S.B. Current trends, challenges, and prospects in material advances for improving the overall safety of lithium-ion battery pack. J. Chem. Eng. 2023, 463, 142336. [Google Scholar] [CrossRef]
- Micah, S.Z.; Jessika, E.T. Re-examining rates of lithium-ion battery technology improvement and cost decline. J. Chem. Eng. 2021, 14, 1635–1651. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hannan, M.A.; Aini, H.; Afida, A.; Mohamad, H.M.; Tahia, F.K.; Dickson, N.T. Data-driven state of charge estimation of lithium-ion batteries: Algorithms, implementation factors, limitations and future trends. J. Clean. Prod. 2020, 277, 124110. [Google Scholar] [CrossRef]
- Tang, F.; Jiang, T.; Tan, Y.; Xu, X.; Zhou, Y. Preparation and electrochemical performance of silicon@graphene aerogel composites for lithium-ion batteries. J. Alloys Compd. 2021, 854, 157135. [Google Scholar] [CrossRef]
- Patil, R.; Phadatare, M.; Blomquist, N.; Örtegren, J.; Hummelgård, M.; Meshram, J.; Dubal, D.; Olin, H. Highly Stable Cycling of Silicon-Nanographite Aerogel-Based Anode for Lithium-Ion Batteries. ACS Omega 2021, 6, 6600–6606. [Google Scholar] [CrossRef]
- Lin, P.Y.; Qi, Z.; Ting, Q.; Jia, L. An environmentally friendly discharge technology to pretreat spent lithium-ion batteries. J. Clean. Prod. 2020, 245, 118820. [Google Scholar] [CrossRef]
- Lutz, W.; Hans-Georg, J.; Thomas, L.; Urs, A.P. Crushing of large Li-ion battery cells. Waste Manag. 2019, 85, 317–326. [Google Scholar] [CrossRef]
- Zheng, F.; Qiangling, D.; Qingkui, P.; Zesen, W.; Huiqi, C.; Jinhua, S.; Qingsong, W. Comparative study of chemical discharge strategy to pretreat spent lithium-ion batteries for safe, efficient, and environmentally friendly recycling. J. Clean. Prod. 2022, 359, 132116. [Google Scholar] [CrossRef]
- Zalosh, R.; Gandhi, P.; Barowy, A. Lithium-ion energy storage battery explosion incidents. J. Loss Prev. Process Ind. 2021, 72, 104560. [Google Scholar] [CrossRef]
- Sin-Woo, K.; Soo-Gyeong, P.; Eui-Ju, L. Assessment of the explosion risk during lithium-ion battery fires. J. Loss Prev. Process Ind. 2022, 80, 104851. [Google Scholar] [CrossRef]
- Hao, W.; Guorui, Q.; Jiaqi, Y.; Bo, L.; Yonggang, W. An effective and cleaner discharge method of spent lithium batteries. J. Energy Storage 2022, 54, 105383. [Google Scholar] [CrossRef]
- Kim, S.; Bang, J.; Yoo, J.; Shin, Y.; Bae, J.; Jeong, J. A comprehensive review on the pretreatment process in lithium-ion battery recycling. J. Clean. Prod. 2021, 294, 101016. [Google Scholar] [CrossRef]
- Rouhi, H.; Karola, E.; Serna-Guerrero, R.; Santasalo-Aarnio, A. Voltage behavior in lithium-ion batteries after electrochemical discharge and its implications on the safety of recycling processes. J. Energy Storage 2021, 35, 102323. [Google Scholar] [CrossRef]
- Zhang, T.; He, Y.; Ge, L.; Fu, R.; Zhang, X.; Huang, Y. Characteristics of wet and dry crushing methods in the recycling process of spent lithium-ion batteries. J. Power Sources 2013, 240, 766–771. [Google Scholar] [CrossRef]
- Xiao, J.; Guo, J.; Zhan, L.; Xu, Z. A cleaner approach to the discharge process of spent lithium ion batteries in different solutions. J. Clean. Prod. 2020, 255, 120064. [Google Scholar] [CrossRef]
- Liu, Y.; Mu, D.; Li, R.; Ma, Q.; Zheng, R.; Dai, C. Purification and characterization of reclaimed electrolytes from spent lithium-ion batteries. J. Phys. Chem. C 2017, 121, 4181–4187. [Google Scholar] [CrossRef]
- Xu, X.; Yu, C.; Tang, S.; Sun, X.; Si, X.; Wu, L. Remaining useful life prediction of lithium-ion batteries based on wiener processes with considering the relaxation effect. Energies 2019, 12, 1685. [Google Scholar] [CrossRef]
- Severi, O.; Mari, L.; Annukka, S.A.; Rodrigo, S.G. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling. Waste Manag. 2018, 76, 242–249. [Google Scholar] [CrossRef]
- Mohammad, M.T.; Milad, J.; Alireza, B. Discharge of lithium-ion batteries in salt solutions for safer storage, transport, and resource recovery. Waste Manag. Res. 2021, 40, 402–409. [Google Scholar] [CrossRef]
- Zhao, Y.; Kang, Y.; Fan, M.; Li, T.; Wozny, J.; Zhou, Y.; Wang, X.; Chueh, Y.-L.; Liang, Z.; Zhou, G. Precise separation of spent lithium-ion cells in water without discharging for recycling. J. Energy Storage 2022, 45, 1092–11099. [Google Scholar] [CrossRef]
- Brian, M.; Qinghua, T.; Xueyi, G.; Kinnor, C.; Dawei, Y. Pyrometallurgical options for recycling spent lithium-ion batteries: A comprehensive review. J. Power Sources 2019, 22, 229622. [Google Scholar] [CrossRef]
- Xu, C.; Ouyang, M.; Lu, L.; Liu, X.; Wang, S.; Feng, X. Preliminary study on the mechanism of lithium ion battery pack under water immersion. ECS Trans. 2017, 77, 209–2016. [Google Scholar] [CrossRef]
- Tennakone, K. Hydrogen from brine electrolysis: A new approach. Int. J. Hydrogen Energy 1989, 14, 681–682. [Google Scholar] [CrossRef]
Saltwater | Salt in Water, g per 400 mL | PH |
---|---|---|
10 wt.% | 4 | 9.75 |
15 wt.% | 6 | 10.36 |
20 wt.% | 8 | 10.49 |
25 wt.% | 10 | 10.60 |
30 wt.% | 12 | 10.63 |
Precipitate | Element, Wt.% | |||||||
---|---|---|---|---|---|---|---|---|
CuO | Cl | Na2O | Fe2O3 | Al2O3 | NiO | SO3 | P2O5 | |
No contact with copper | 1.69 | 23.06 | 22.13 | 31.43 | 20.88 | 0.53 | 0.10 | 0.16 |
Contacting the copper | 82.26 | 11.48 | 2.83 | 2.82 | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tserendejid, B.; Urtnasan, E.; Wang, J.-P. Examination of Over-Discharge Effects on a Cylindrical Lithium-Ion Battery via the Immersion of a Copper Strip in a Salt Solution. Corros. Mater. Degrad. 2025, 6, 19. https://doi.org/10.3390/cmd6020019
Tserendejid B, Urtnasan E, Wang J-P. Examination of Over-Discharge Effects on a Cylindrical Lithium-Ion Battery via the Immersion of a Copper Strip in a Salt Solution. Corrosion and Materials Degradation. 2025; 6(2):19. https://doi.org/10.3390/cmd6020019
Chicago/Turabian StyleTserendejid, Bayarmaa, Erdenebold Urtnasan, and Jei-Pil Wang. 2025. "Examination of Over-Discharge Effects on a Cylindrical Lithium-Ion Battery via the Immersion of a Copper Strip in a Salt Solution" Corrosion and Materials Degradation 6, no. 2: 19. https://doi.org/10.3390/cmd6020019
APA StyleTserendejid, B., Urtnasan, E., & Wang, J.-P. (2025). Examination of Over-Discharge Effects on a Cylindrical Lithium-Ion Battery via the Immersion of a Copper Strip in a Salt Solution. Corrosion and Materials Degradation, 6(2), 19. https://doi.org/10.3390/cmd6020019