Closed-Circuit Reverse Osmosis Performance Evaluation in a High-Recovery-Rate Water Reclamation Pilot Project
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Pilot Project
2.2. Samples and Parameters
2.3. Data Analyses
2.4. Statistical Analyses
3. Results and Discussion
3.1. CCRO Rejection at 90% Recovery Rate
3.2. Performance of CCRO Removal at Increased Recovery Rates
3.3. Influence of Elevated Recovery Rate on General Water Quality Parameters
3.4. Influence of Elevated Recovery Rate on the Removal of Various Ions
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cordoba, S.; Das, A.; Leon, J.; Garcia, J.M.; Warsinger, D.M. Double-acting batch reverse osmosis configuration for best-in-class efficiency and low downtime. Desalination 2021, 506, 114959. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Urban Water Supply Sustainability and Resilience under Climate Variability: Innovative Paradigms, Approaches and Technologies. ACS EST Water 2024, 4, 5185–5206. [Google Scholar] [CrossRef]
- Angelakis, A.N.; Tchobanoglous, G.; Capodaglio, A.G.; Tzanakakis, V.A. The importance of nonconventional water resources under water scarcity. Water 2024, 16, 1015. [Google Scholar] [CrossRef]
- Okampo, E.J.; Nwulu, N. Optimisation of renewable energy powered reverse osmosis desalination systems: A state-of-the-art review. Renew. Sustain. Energy Rev. 2021, 140, 110712. [Google Scholar] [CrossRef]
- Edalat, A.; Hoek, E.M. Techno-economic analysis of RO desalination of produced water for beneficial reuse in California. Water 2020, 12, 1850. [Google Scholar] [CrossRef]
- Sun, W.; Zhang, Y.; Lu, Z.; Ke, Y.; Wang, X.; Wu, J. Fate of naturally dissolved organic matter and synthetic organic compounds subjected to drinking water treatment using membrane, activated carbon, and UV/H2O2 technologies. Environ. Sci. Technol. 2023, 57, 5558–5568. [Google Scholar] [CrossRef]
- Kim, D.-H.; Park, S.; Yoon, Y.; Park, C.M. Removal of total dissolved solids from reverse osmosis concentrates from a municipal wastewater reclamation plant by aerobic granular sludge. Water 2018, 10, 882. [Google Scholar] [CrossRef]
- Chen, A.S.; Wang, L.; Sorg, T.J.; Lytle, D.A. Removing arsenic and co-occurring contaminants from drinking water by full-scale ion exchange and point-of-use/point-of-entry reverse osmosis systems. Water Res. 2020, 172, 115455. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Swaminathan, J.; Guillen-Burrieza, E.; Arafat, H.A. Scaling and fouling in membrane distillation for desalination applications: A review. Desalination 2015, 356, 294–313. [Google Scholar] [CrossRef]
- Linge, K.L.; Blair, P.; Busetti, F.; Rodriguez, C.; Heitz, A. Chemicals in reverse osmosis-treated wastewater: Occurrence, health risk, and contribution to residual dissolved organic carbon. J. Water Supply Res. Technol.—AQUA 2012, 61, 494–505. [Google Scholar] [CrossRef]
- Tawalbeh, M.; Qalyoubi, L.; Al-Othman, A.; Qasim, M.; Shirazi, M. Insights on the development of enhanced antifouling reverse osmosis membranes: Industrial applications and challenges. Desalination 2023, 553, 116460. [Google Scholar] [CrossRef]
- Plakas, K.V.; Karabelas, A.J. Removal of pesticides from water by NF and RO membranes—A review. Desalination 2012, 287, 255–265. [Google Scholar] [CrossRef]
- Capodaglio, A.G. Fit-for-purpose urban wastewater reuse: Analysis of issues and available technologies for sustainable multiple barrier approaches. Crit. Rev. Environ. Sci. Technol. 2021, 51, 1619–1666. [Google Scholar] [CrossRef]
- Sedlak, D.L. The unintended consequences of the reverse osmosis revolution. Environ. Sci. Technol. 2019, 53, 3999–4000. [Google Scholar] [CrossRef]
- Markus, M.R.; Deshmukh, S.S. World Environmental and Water Resources Congress 2010: Challenges of Change. In An Innovative Approach to Water Supply—The Groundwater Replenishment System; American Society of Civil Engineers: Reston, VA, USA, 2010; pp. 3624–3639. [Google Scholar]
- Tang, C.Y.; Yang, Z.; Guo, H.; Wen, J.J.; Nghiem, L.D.; Cornelissen, E. Potable water reuse through advanced membrane technology. Environ. Sci. Technol. 2018, 52, 10215–10223. [Google Scholar] [CrossRef]
- Maddah, H.; Chogle, A. Biofouling in reverse osmosis: Phenomena, monitoring, controlling and remediation. Appl. Water Sci. 2017, 7, 2637–2651. [Google Scholar] [CrossRef]
- Ikehata, K.; Zhao, Y.; Kulkarni, H.V.; Li, Y.; Snyder, S.A.; Ishida, K.P.; Anderson, M.A. Water recovery from advanced water purification facility reverse osmosis concentrate by photobiological treatment followed by secondary reverse osmosis. Environ. Sci. Technol. 2018, 52, 8588–8595. [Google Scholar] [CrossRef]
- Warsinger, D.M.; Tow, E.W.; Nayar, K.G.; Maswadeh, L.A. Energy efficiency of batch and semi-batch (CCRO) reverse osmosis desalination. Water Res. 2016, 106, 272–282. [Google Scholar] [CrossRef]
- Gu, H.; Polanco, J.; Ishida, K.P.; Plumlee, M.H.; Boyd, M.; Desormeaux, E.; Juby, G.J.; Shad, M.F. Permeate quality, advanced oxidation process treatability, and cost for two concentrate treatment technologies to enhance recovery for potable reuse. Water Reuse 2023, 13, 305–318. [Google Scholar] [CrossRef]
- Gu, H.; Plumlee, M.H.; Li, M.; Mohseni, A.; Erlitzki, R. Enhancing municipal potable reuse recovery with flow-reversal RO: Pilot study, challenges, and retrofit considerations. Desalination 2025, 601, 118594. [Google Scholar] [CrossRef]
- Gu, H.; Plumlee, M.H.; Boyd, M.; Hwang, M.; Lozier, J.C. Operational optimization of closed-circuit reverse osmosis (CCRO) pilot to recover concentrate at an advanced water purification facility for potable reuse. Desalination 2021, 518, 115300. [Google Scholar] [CrossRef]
- Li, S.; Duran, K.; Delagah, S.; Mouawad, J.; Jia, X.; Sharbatmaleki, M. Energy efficiency of staged reverse osmosis (RO) and closed-circuit reverse osmosis (CCRO) desalination: A model-based comparison. Water Supply 2020, 20, 3096–3106. [Google Scholar] [CrossRef]
- Nayar, K.G. Brackish water desalination for greenhouse agriculture: Comparing the costs of RO, CCRO, EDR, and monovalent-selective EDR. Desalination 2020, 475, 114188. [Google Scholar] [CrossRef]
- Giagnorio, M.; Morciano, M.; Zhang, W.; Hélix-Nielsen, C.; Fasano, M.; Tiraferri, A. Coupling of forward osmosis with desalination technologies: System-scale analysis at the water-energy nexus. Desalination 2022, 543, 116083. [Google Scholar] [CrossRef]
- Mansell, B.; Ackman, P.; Tang, C.; Friess, P. Pilot-Scale Evaluation of the Closed-Circuit Desalination Process for Minimizing RO Concentrate Disposal Volume. In Proceedings of the WateReuse California Annual Conference, Los Angeles, CA, USA, 15–17 March 2015. [Google Scholar]
- Wang, S.; Aflaki, R.; Ruiz, M.; Broley, W.; Ingalsbe, M.; Trussell, B. How much concentrate can you squeeze with closed circuit desalination and what to consider. In Proceedings of the American Water Works Association/American Membrane Technology Association Membrane Technology Conference & Exposition, West Palm Beach, FL, USA, 12 March 2018. [Google Scholar]
- Idica, E.; Faulkner, B.; Sen, S.; Trussell, R. RO Brine Minimization for Potable Reuse at Padre Dam Municipal Water District. In Proceedings of the IWA 2017 Annual Conference, Long Beach, CA, USA, 23–27 July 2017. [Google Scholar]
- Huang, J.; Li, S.; Delagah, S.; Stone, S.; Mouawad, J.; Sharbatmaleki, M. Assessing closed-circuit reverse osmosis (CCRO) efficiency in removing contaminants of emerging concern (CECs) in a high-recovery water reclamation pilot study. Water Pract. Technol. 2025, 20, 314–323. [Google Scholar] [CrossRef]
- Cha, D.; Park, H.; Kim, S.; Lim, J.-L.; Kang, S.; Kim, C.-H. A statistical approach to analyze factors affecting silt density index. Desalination Water Treat. 2012, 45, 276–283. [Google Scholar] [CrossRef]
- Anis, S.F.; Hashaikeh, R.; Hilal, N. Reverse osmosis pretreatment technologies and future trends: A comprehensive review. Desalination 2019, 452, 159–195. [Google Scholar] [CrossRef]
- Liu, W.; Livingston, J.L.; Wang, L.; Wang, Z.; del Cerro, M.; Younssi, S.A.; Epsztein, R.; Elimelech, M.; Lin, S. Pressure-driven membrane desalination. Nat. Rev. Methods Primers 2024, 4, 10. [Google Scholar] [CrossRef]
- Shin, M.G.; Kwon, S.J.; Park, H.; Park, Y.-I.; Lee, J.-H. High-performance and acid-resistant nanofiltration membranes prepared by solvent activation on polyamide reverse osmosis membranes. J. Membr. Sci. 2020, 595, 117590. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, X.-Y.; Chung, T.-S.; Weber, M.; Staudt, C.; Maletzko, C. Removal of organic micro-pollutants (phenol, aniline and nitrobenzene) via forward osmosis (FO) process: Evaluation of FO as an alternative method to reverse osmosis (RO). Water Res. 2016, 91, 104–114. [Google Scholar] [CrossRef]
- Nativ, P.; Fridman-Bishop, N.; Nir, O.; Lahav, O. Dia-nanofiltration-electrodialysis hybrid process for selective removal of monovalent ions from Mg2+ rich brines. Desalination 2020, 481, 114357. [Google Scholar] [CrossRef]
- Mousavi, S.S.; Kargari, A. Water recovery from reverse osmosis concentrate by commercial nanofiltration membranes: A comparative study. Desalination 2022, 528, 115619. [Google Scholar] [CrossRef]
- Alshami, A.; Taylor, T.; Ismail, N.; Buelke, C.; Schultz, L. RO system scaling with focus on the concentrate line: Current challenges and potential solutions. Desalination 2021, 520, 115370. [Google Scholar] [CrossRef]
- Tepuš, B.; Simonič, M.; Petrinić, I. Comparison between nitrate and pesticide removal from ground water using adsorbents and NF and RO membranes. J. Hazard. Mater. 2009, 170, 1210–1217. [Google Scholar] [CrossRef] [PubMed]
- Asadollahi, M.; Bastani, D.; Musavi, S.A. Enhancement of surface properties and performance of reverse osmosis membranes after surface modification: A review. Desalination 2017, 420, 330–383. [Google Scholar] [CrossRef]
- Rahman, F. Calcium sulfate precipitation studies with scale inhibitors for reverse osmosis desalination. Desalination 2013, 319, 79–84. [Google Scholar] [CrossRef]
- Ashfaq, M.Y.; Al-Ghouti, M.A.; Da’na, D.A.; Qiblawey, H.; Zouari, N. Effect of concentration of calcium and sulfate ions on gypsum scaling of reverse osmosis membrane, mechanistic study. J. Mater. Res. Technol. 2020, 9, 13459–13473. [Google Scholar] [CrossRef]
- Damtie, M.M.; Woo, Y.C.; Kim, B.; Hailemariam, R.H.; Park, K.-D.; Shon, H.K.; Park, C.; Choi, J.-S. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. J. Environ. Manag. 2019, 251, 109524. [Google Scholar] [CrossRef]
- Fersi, C.; Dhahbi, M. Treatment of textile plant effluent by ultrafiltration and/or nanofiltration for water reuse. Desalination 2008, 222, 263–271. [Google Scholar] [CrossRef]
Parameters/Descriptions | Ultrafiltration (UF) Elements | Reverse Osmosis (RO) Elements |
---|---|---|
Quantity | 8 | 25 (in one-stage CCRO module) |
Manufacturer and module name | Toray Membrane, HFU-2020AN | DuPont, FilmTecTM FortilifeTM CR100 |
Membrane material | PVDF (polyvinylidene fluoride) | Polyamide thin-film composite |
Dimensions (in mm) | Length: 2160; inner diameter: 216 | Length: 1016; inner diameter: 29 |
Nominal pore size (in µm) | 0.01 | 0.0001 |
Membrane active area (m2) | 72 | 37.1 |
Nominal operating TMP (in kPa) | 0–200 | 0–103 (min. 4 elements per pressure vessel) |
Maximum inlet pressure (in kPa) | 300 | 4137 |
Maximum temperature (in °C) | 40 | 45 |
pH range | 1–10 (during filtration) | 2–11 (continuous operation) |
Maximum air flow (Nm3/h) | 9.0 | n/a |
Maximum filtrate flow (m3/h) | 12.0 | 17.0 |
Sample Date | Recovery Rate (%) | Feed Water Temperature (°C) | CCRO Permeate Flow Rate (m3/h) | CCRO Concentrate Flow Rate (m3/h) |
---|---|---|---|---|
28 October 2020 | 90 | 20.5 | 14.33 | 22.30 |
4 November 2020 | 90 | 23.6 | 14.41 | 22.28 |
2 December 2020 | 90 | 19.4 | 14.26 | 22.21 |
16 December 2020 | 92 | 19.2 | 14.63 | 21.99 |
22 December 2020 | 92 | 19.1 | 14.70 | 21.73 |
4 January 2021 | 92 | 18.4 | 14.51 | 22.08 |
11 January 2021 | 93 | 18.6 | 14.81 | 28.44 |
16 January 2021 | 93 | 18.9 | 14.74 | 28.23 |
20 January 2021 | 93 | 18.7 | 14.79 | 28.25 |
23 January 2021 | 94 | 17.2 | 14.97 | 29.09 |
27 January 2021 | 94 | 17.6 | 14.94 | 29.14 |
1 February 2021 | 94 | 17.3 | 14.88 | 29.02 |
3 February 2021 | 95 | 20.0 | 15.10 | 29.53 |
17 February 2021 | 95 | 19.1 | 15.11 | 29.51 |
1 May 2021 | 95 | 25.6 | 15.24 | 29.80 |
Parameters and Units | UF Influent | CCRO Influent | CCRO Permeate | CCRO Concentrate | CCRO Removal (%) | Concentration Gradient | CBrine/CInfluent |
---|---|---|---|---|---|---|---|
pH | 7.37 | 6.3 | 5.5 | 7.12 | NA | NA | NA |
Temperature, °C | 19.4 | 20.9 | 19.6 | 19.3 | NA | NA | NA |
Electrical conductivity (EC), µs/cm | 959 | 1018 | 58 | 7250 | 94.3 | 960 | 7.1 |
Total dissolved solids (TDSs), mg/L | NS | 590 | 29 | 5500 | 95.1 | 561 | 9.3 |
Total suspended solids (TSS), mg/L | NS | ND | NS | ND | NA | NA | NA |
Total organic carbon (TOC), mg/L | NS | 4.7 | 0.35 | 47 | 92.6 | 4.35 | 10.0 |
Alkalinity, mg/L as CaCO3 | NS | 62 | 9.4 | 440 | 84.8 | 52.6 | 7.1 |
Turbidity, NTU | 0.35 | ND | ND | ND | NA | NA | NA |
UV 254, % transmission | 80.2 | 80.5 | 97.7 | NS | NA | NA | NA |
Free chlorine residual, mg/L as Cl2 | 2.4 | 0.43 | NS | NS | NA | NA | NA |
Total chlorine residual, mg/L as Cl2 | 3.9 | 1.3 | NS | NS | NA | NA | NA |
Total chloride (Cl−), mg/L | NS | 120 | 4.4 | 1200 | 96.3 | 115.6 | 10.0 |
Total fluoride (F−), mg/L | NS | 0.18 | ND | 2.2 | 100.0 | 0.18 | 12.2 |
Nitrate, mg/L as NO3−-N | NS | 9.3 | 1.9 | 75 | 79.6 | 7.4 | 8.1 |
Total phosphorus, mg/L as PO43− | NS | 0.56 | NS | 8.3 | NA | NA | NA |
Sulfate, mg/L as SO42− | NS | 180 | 0.5 | 1800 | 99.7 | 179.5 | 10.0 |
Total silica, mg/L as SiO2 | NS | 23 | NS | 210 | NA | NA | NA |
Ammonia, mg/L as NH4+-N | NS | 8.9 | NS | 1.3 | NA | NA | NA |
Total barium (Ba2+), mg/L | NS | 0.036 | NS | 0.36 | NA | NA | NA |
Total Calcium (Ca2+), mg/L | NS | 50.7 | 0.133 | 503 | 99.7 | 50.6 | 9.9 |
Total magnesium (Mg2+), mg/L | NS | 6.92 | ND | 64.9 | 100.0 | 6.92 | 9.4 |
Total manganese (Mn4+), mg/L | NS | 0.0051 | NS | 0.076 | NA | NA | NA |
Total sodium (Na+), mg/L | NS | 110 | 7.7 | 990 | 93.0 | 102.3 | 9.0 |
Total potassium (K+), mg/L | NS | 17 | 1.2 | 160 | 92.9 | 15.8 | 9.4 |
Total iron (Fe3+), mg/L | NS | 0.052 | NS | 0.43 | NA | NA | NA |
Total aluminum (Al3+), mg/L | NS | ND | NS | ND | NA | NA | NA |
Total strontium (Si2+), mg/L | NS | 0.31 | NS | 3 | NA | NA | NA |
E. coli, MPN/100 mL | ND | ND | ND | NS | NA | NA | NA |
Total coliform, MPN/100 mL | ND | ND | ND | NS | NA | NA | NA |
Parameters | Conductivity | Total Dissolved Solids | Total Organic Carbon | Alkalinity as CaCO3 | |
---|---|---|---|---|---|
Date | Recovery Rate | EC | TDS | TOC | - |
28 October 2020 | 90% | 84.3% | 95.3% | 93.9% | 89.3% |
4 November 2020 | 90% | 92.8% | 95.7% | 94.2% | 88.1% |
2 December 2020 | 90% | 94.3% | 95.1% | 92.6% | 84.8% |
16 December 2020 | 92% | 93.3% | 96.1% | 84.1% | 91.6% |
22 December 2020 | 92% | 92.8% | 94.8% | 89.0% | 86.3% |
4 January 2021 | 92% | 91.3% | 94.7% | 89.5% | 84.7% |
11 January 2021 | 93% | 90.3% | 92.5% | 86.3% | 75.7% |
16 January 2021 | 93% | 91.1% | 91.3% | 88.9% | 78.5% |
20 January 2021 | 93% | 92.7% | 92.2% | 89.6% | 72.4% |
23 January 2021 | 94% | 90.1% | 90.2% | 89.2% | 73.3% |
27 January 2021 | 94% | 92.4% | 91.7% | 88.1% | 77.7% |
1 February 2021 | 94% | 89.7% | 90.4% | 89.1% | 76.3% |
3 February 2021 | 95% | 90.8% | 89.5% | - | 19.0% |
17 February 2021 | 95% | 90.9% | 90.0% | 92.4% | - |
1 May 2021 | 95% | 87.3% | 88.6% | 89.8% | 23.8% |
Parameters | Chloride, Total | Fluoride, Total | Nitrate as N | Sulfate as SO42− | Calcium, Total | Magnesium, Total | Sodium, Total | Potassium, Total | |
---|---|---|---|---|---|---|---|---|---|
Date | Recovery Rate | Cl− | F− | NO3− | SO42− | Ca2+ | Mg2+ | Na+ | K+ |
28 October 2020 | 90% | 96.0% | 100.0% | 78.7% | 99.6% | 99.5% | 100.0% | 92.5% | 90.5% |
4 November 2020 | 90% | 95.9% | 100.0% | 76.4% | 99.6% | 99.6% | 100.0% | 91.5% | 91.1% |
2 December 2020 | 90% | 96.3% | 100.0% | 79.6% | 99.7% | 99.7% | 100.0% | 93.0% | 92.9% |
16 December 2020 | 92% | 95.9% | 100.0% | 75.0% | 99.5% | 99.7% | 100.0% | 91.5% | 92.0% |
22 December 2020 | 92% | 96.1% | 100.0% | 75.9% | 99.7% | 99.6% | 100.0% | 92.2% | 92.3% |
4 January 2021 | 92% | 95.8% | 100.0% | 75.2% | 99.5% | 99.6% | 100.0% | 91.3% | 91.8% |
11 January 2021 | 93% | 94.1% | 100.0% | 69.6% | 99.8% | 99.8% | 100.0% | 91.6% | 90.7% |
16 January 2021 | 93% | 94.5% | 100.0% | 68.8% | 99.7% | 99.7% | 100.0% | 90.5% | 91.1% |
20 January 2021 | 93% | 94.2% | 100.0% | 69.2% | 99.7% | 99.7% | 100.0% | 89.1% | 90.5% |
23 January 2021 | 94% | 93.2% | 100.0% | 66.5% | 99.6% | 99.8% | 100.0% | 89.7% | 90.2% |
27 January 2021 | 94% | 93.8% | 100.0% | 65.0% | 99.6% | 99.7% | 100.0% | 90.0% | 90.5% |
1 February 2021 | 94% | 93.5% | 100.0% | 65.7% | 99.4% | 99.8% | 100.0% | 90.5% | 90.1% |
3 February 2021 | 95% | 92.0% | - | 60.8% | 99.6% | 100.0% | 100.0% | 86.4% | 86.5% |
17 February 2021 | 95% | 90.7% | 100.0% | 56.3% | 99.5% | 100.0% | 100.0% | 85.5% | 85.8% |
1 May 2021 | 95% | 91.1% | 100.0% | 58.1% | 99.5% | 100.0% | 100.0% | 85.9% | 85.1% |
Recovery Rate (%) | EC Removal (%) | TDS Removal (%) | TOC Removal (%) | Alkalinity Removal (%) |
---|---|---|---|---|
90 | 93.55 ± 2.64 | 95.37 ± 1.93 | 93.57 ± 1.54 | 87.40 ± 4.21 |
92 | 93.30 ± 1.86 | 96.10 ± 2.91 | 84.10 ± 3.69 | 91.60 ± 3.72 |
93 | 92.70 ± 2.01 | 92.20 ± 2.17 | 89.60 ± 2.96 | 72.40 ± 5.56 |
94 | 92.40 ± 1.37 | 91.70 ± 1.85 | 88.10 ± 3.13 | 77.70 ± 3.18 |
95 | 90.85 ± 1.75 | 89.75 ± 2.21 | 96.20 ± 2.72 | 19.00 ± 2.13 |
Recovery Rate (%) | Cl− Removal (%) | F− Removal (%) | NO3− Removal (%) | SO42− Removal (%) | Ca2+ Removal (%) | Na+ Removal (%) |
---|---|---|---|---|---|---|
90 | 96.07 ± 2.51 | 99.75 ± 0.21 | 78.23 ± 3.28 | 99.63 ± 0.32 | 99.60 ± 0.12 | 99.83 ± 0.13 |
92 | 95.90 ± 1.83 | 99.72 ± 0.18 | 75.00 ± 2.77 | 99.50 ± 0.27 | 99.71 ± 0.17 | 99.77 ± 0.18 |
93 | 94.20 ± 2.18 | 99.61 ± 0.31 | 69.20 ± 3.03 | 99.70 ± 0.18 | 99.70 ± 0.23 | 99.81 ± 0.15 |
94 | 93.80 ± 1.57 | 99.63 ± 0.28 | 65.00 ± 2.85 | 99.60 ± 0.21 | 99.68 ± 0.22 | 99.75 ± 0.20 |
95 | 91.35 ± 1.91 | 99.58 ± 0.24 | 58.55 ± 3.12 | 99.55 ± 0.23 | 99.87 ± 0.14 | 99.68 ± 0.31 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, J.; Li, S.; Dalagah, S.; Stone, S.; Ahles, D.; Mouawad, J.; Sharbatmaleki, M. Closed-Circuit Reverse Osmosis Performance Evaluation in a High-Recovery-Rate Water Reclamation Pilot Project. Sustainability 2025, 17, 3388. https://doi.org/10.3390/su17083388
Huang J, Li S, Dalagah S, Stone S, Ahles D, Mouawad J, Sharbatmaleki M. Closed-Circuit Reverse Osmosis Performance Evaluation in a High-Recovery-Rate Water Reclamation Pilot Project. Sustainability. 2025; 17(8):3388. https://doi.org/10.3390/su17083388
Chicago/Turabian StyleHuang, Jian, Simeng Li, Saied Dalagah, Shaun Stone, David Ahles, Joe Mouawad, and Mohamadali Sharbatmaleki. 2025. "Closed-Circuit Reverse Osmosis Performance Evaluation in a High-Recovery-Rate Water Reclamation Pilot Project" Sustainability 17, no. 8: 3388. https://doi.org/10.3390/su17083388
APA StyleHuang, J., Li, S., Dalagah, S., Stone, S., Ahles, D., Mouawad, J., & Sharbatmaleki, M. (2025). Closed-Circuit Reverse Osmosis Performance Evaluation in a High-Recovery-Rate Water Reclamation Pilot Project. Sustainability, 17(8), 3388. https://doi.org/10.3390/su17083388