Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites
2.2. Physicochemical Analysis
2.3. Experimental Setups
2.3.1. Reverse Osmosis (RO)
Trisep X-20TM | Specifications |
---|---|
Membrane type | Polyamide-urea thin film |
Maximum operating T° | 50 °C |
Minimum salt rejection | 98.5% |
Maximum operating pressure | 41 bar |
Continuous operating pH range | 4–11 |
Maximum Silt Density Index (SDI) (15 min) | 5.0 |
Maximum turbidity | 2 NTU |
2.3.2. Osmotic Membrane Distillation–Crystallization
2.3.3. Vacuum Membrane Distillation–Crystallization
2.4. Crystal Recovery Procedures and Characterization
2.4.1. Recovery Procedures
2.4.2. Characterization Techniques
3. Results and Discussion
3.1. Physicochemical Analyses of Water Sources
3.2. RO Results
3.3. Membrane Distillation–Crystallization Results
3.3.1. Osmotic Membrane Distillation–Crystallization Results
- ▪
- OMD-Cr without RO preconcentration
- ▪
- OMD-Cr with RO preconcentration
3.3.2. Vacuum Membrane Crystallization Results
- ▪
- Crystal recovery and characterization
- ▪
- Microscope analysis
- ▪
- Scanning electron microscopy (SEM) analysis
- ▪
- Energy Dispersive X-ray Spectroscopy (EDX) analysis
- ▪
- X-ray diffraction (XRD) analysis
- ▪ Particle size distribution analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Water Activity
Appendix B. Supporting Information
- Polarized Light Microscopy (PLM)
- X-ray diffraction characterization (XRD)
- Scanning electron microscopy (SEM)
- Energy Dispersive X-ray Spectroscopy (EDX)
- Particle size distribution of crystals
References
- World Bank Group. Water Storage Is at the Heart of Climate Change Adaptation; World Bank Group: Washington, DC, USA, 2023; Available online: https://www.worldbank.org/en/news/feature/2023/02/03/water-storage-is-at-the-heart-of-climate-change-adaptation (accessed on 12 December 2024).
- Keri, R.S.; Hosamani, K.M.; Seetharama Reddy, H.R.; Nataraj, S.K.; Aminabhavi, T.M. Application of the electrodialytic pilot plant for fluoride removal. J. Water Chem. Technol. 2011, 33, 293–300. [Google Scholar] [CrossRef]
- Gangani, N.; Joshi, V.C.; Sharma, S.; Bhattacharya, A. Fluoride contamination in water: Remediation strategies through membranes. Groundw. Sustain. Dev. 2022, 17, 100751. [Google Scholar] [CrossRef]
- Sharma, S.; Bhattacharya, A. Drinking water contamination and treatment techniques. Appl. Water Sci. 2017, 7, 1043–1067. [Google Scholar] [CrossRef]
- Brindha, K.; Elango, L. Fluoride in groundwater: Causes, implications and mitigation measures. In Fluoride Properties, Applications and Environmental Management; Monroy, S.D., Ed.; Applications and Environmental Management, Nova Publishers: New York, NY, USA, 2011; pp. 111–136. [Google Scholar]
- Waghmare, S.S.; Arfin, T. Fluoride removal from water by various techniques. Int. J. Innov. Sci. Eng. Technol. 2015, 2, 560–571. [Google Scholar]
- Bejaoui, I.; Mnif, A.; Hamrouni, B. Performance of Reverse Osmosis and Nanofiltration in the Removal of Fluoride from Model Water and Metal Packaging Industrial Effluent. Sep. Sci. Technol. 2014, 49, 1135–1145. [Google Scholar] [CrossRef]
- Barathi, M.; Kumar, A.S.K.; Rajesh, N. Impact of fluoride in potable water—An outlook on the existing defluoridation strategies and the road ahead. Coord. Chem. Rev. 2019, 387, 121–128. [Google Scholar] [CrossRef]
- Bhatnagar, A.; Kumar, E.; Sillanpää, M. Fluoride removal from water by adsorption—A review. Chem. Eng. J. 2011, 171, 811–840. [Google Scholar] [CrossRef]
- Biswas, K.; Gupta, K.; Goswami, A.; Ghosh, U.C. Fluoride removal efficiency from aqueous solution by synthetic iron (III)–aluminum (III)–chromium (III) ternary mixed oxide. Desalination 2010, 255, 44–51. [Google Scholar] [CrossRef]
- Jacks, G. Fluoride in groundwater: Mobilization, trends, and remediation. In Groundwater Assessment, Modeling, and Management; CRC Press: Boca Raton, FL, USA, 2016; pp. 339–349. [Google Scholar]
- Kimambo, V.; Bhattacharya, P.; Mtalo, F.; Mtamba, J.; Ahmad, A. Fluoride occurrence in groundwater systems at global scale and status of defluoridation—State of the art. Groundw. Sustain. Dev. 2019, 9, 100223. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Fluoride in Drinkingwater, Background Document for Development of WHO Guidelines for Drinking-Water Quality; WHO: Geneva, Switzerland, 2004. [Google Scholar]
- Fawell, J. Fluoride in Drinking-Water; WHO IWA publishing: London, UK, 2006. [Google Scholar]
- Rango, T.; Vengosh, A.; Jeuland, M.; Tekle-Haimanot, R.; Weinthal, E.; Kravchenko, J.; Paul, C.; McCornick, P. Fluoride exposure from groundwater as reflected by urinary fluoride and children’s dental fluorosis in the Main Ethiopian Rift Valley. Sci. Total Environ. 2014, 496, 188–197. [Google Scholar] [CrossRef]
- Rango, T.; Vengosh, A.; Jeuland, M.; Whitford, G.M.; Tekle-Haimanot, R. Biomarkers of chronic fluoride exposure in groundwater in a highly exposed population. Sci. Total Environ. 2017, 596, 1–11. [Google Scholar] [CrossRef]
- Tekle-Haimanot, R.; Melaku, Z.; Kloos, H.; Reimann, C.; Fantaye, W.; Zerihun, L.; Bjorvatn, K. The geographic distribution of fluoride in surface and groundwater in Ethiopia with an emphasis on the Rift Valley. Sci. Total Environ. 2006, 367, 182–190. [Google Scholar] [CrossRef]
- Tekle-Haimanot, R. Study of Fluoride and Fluorosis in Ethiopia with Recommendations on Appropriate Defluoridation Technologies. In Consultancy Report; UNICEF: Addis Ababa, Ethiopia, 2005; pp. 1–55. [Google Scholar]
- Rango, T.; Kravchenko, J.; Atlaw, B.; McCornick, P.G.; Jeuland, M.; Merola, B.; Vengosh, A. Groundwater quality and its health impact: An assessment of dental fluorosis in rural inhabitants of the Main Ethiopian Rift. Environ. Int. 2012, 43, 37–47. [Google Scholar] [CrossRef]
- Mumtaz, N.; Pandey, G.; Labhasetwar, P.K. Global fluoride occurrence, available technologies for fluoride removal, and electrolytic defluoridation: A review. Crit. Rev. Environ. Sci. Technol. 2015, 45, 2357–2389. [Google Scholar] [CrossRef]
- Dessalegne, M.; Zewge, F. Daily dietary fluoride intake in rural villages of the Ethiopian Rift Valley. Toxicol. Environ. Chem. 2013, 95, 1056–1068. [Google Scholar] [CrossRef]
- Jadhav, S.V.; Bringas, E.; Yadav, G.D.; Rathod, V.K.; Ortiz, I.; Marathe, K.V. Arsenic and fluoride contaminated groundwaters: A review of current technologies for contaminants removal. J. Environ. Manag. 2015, 162, 306–325. [Google Scholar] [CrossRef]
- Ahmad, S.; Singh, R.; Arfin, T.; Neeti, K. Fluoride contamination, consequences and removal techniques in water: A review. Environ. Sci. Adv. 2022, 1, 620–661. [Google Scholar] [CrossRef]
- Thamarai, P.; Deivayanai, V.C.; Karishma, S.; Yaashikaa, P.R.; Saravanan, A. Effective removal of fluoride ions from contaminated water using electrochemical techniques: A critical review on recent developments and environmental perspective. J. Hazard. Mater. Adv. 2024, 16, 100483. [Google Scholar] [CrossRef]
- Mousazadeh, M.; Alizadeh, S.M.; Frontistis, Z.; Kabdaşlı, I.; Karamati Niaragh, E.; Al Qodah, Z.; Naghdali, Z.; Mahmoud, A.E.; Sandoval, M.A.; Butler, E.; et al. Electrocoagulation as a promising defluoridation technology from water: A review of state of the art of removal mechanisms and performance trends. Water 2021, 13, 656. [Google Scholar] [CrossRef]
- Alkhudhiri, A.; Darwish, N.; Hilal, N. Membrane distillation: A comprehensive review. Desalination 2012, 287, 2–18. [Google Scholar] [CrossRef]
- Naidu, G.; Jeong, S.; Choi, Y.; Jang, E.; Hwang, T.M.; Vigneswaran, S. Application of vacuum membrane distillation for small scale drinking water production. Desalination 2014, 354, 53–61. [Google Scholar] [CrossRef]
- Damtie, M.M.; Woo, Y.C.; Kim, B.; Hailemariam, R.H.; Park, K.D.; Shon, H.K.; Park, C.; Choi, J.S. Removal of fluoride in membrane-based water and wastewater treatment technologies: Performance review. J. Environ. Manag. 2019, 251, 109524. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, Y.; Lienhard, J.H. How RO membrane permeability and other performance factors affect process cost and energy use: A review. Desalination 2019, 470, 114064. [Google Scholar] [CrossRef]
- Moran Ayala, L.I.; Paquet, M.; Janowska, K.; Jamard, P.; Quist-Jensen, C.A.; Bosio, G.N.; Mártires, D.O.; Fabbri, D.; Boffa, V. Water Defluoridation: Nanofiltration vs Membrane Distillation. Ind. Eng. Chem. Res. 2018, 57, 14740–14748. [Google Scholar] [CrossRef]
- Shaji, E.; Sarath, K.V.; Santosh, M.; Krishnaprasad, P.K.; Arya, B.K.; Babu, M.S. Fluoride contamination in groundwater: A global review of the status, processes, challenges, and remedial measures. Geosci. Front. 2024, 15, 101734. [Google Scholar] [CrossRef]
- Semiat, R.; Hasson, D. Seawater and brackish-water desalination with membrane operations. In Membrane Operations: Innovative Separations and Transformations; John Wiley & Sons: Hoboken, NJ, USA, 2009; pp. 221–243. [Google Scholar]
- Miller, S.; Shemer, H.; Semiat, R. Energy and environmental issues in desalination. Desalination 2015, 366, 2–8. [Google Scholar] [CrossRef]
- Damtie, M.M.; Hailemariam, R.H.; Woo, Y.C.; Park, K.D.; Choi, J.S. Membrane-based technologies for zero liquid discharge and fluoride removal from industrial wastewater. Chemosphere 2019, 236, 124288. [Google Scholar] [CrossRef]
- Yadav, A.; Singh, K.; Panda, A.B.; Labhasetwar, P.K.; Shahi, V.K. Membrane distillation crystallization for simultaneous recovery of water and salt from tannery industry wastewater using TiO2 modified poly (vinylidene fluoride-co-hexafluoropropylene) nanocomposite membranes. J. Water Process Eng. 2021, 44, 102393. [Google Scholar] [CrossRef]
- Ousman, W.Z.; Alemayehu, E.; Luis, P. Fluoride Removal and Recovery from Water Using Reverse Osmosis and Osmotic Membrane Crystallization. Clean Technol. 2023, 5, 973–996. [Google Scholar] [CrossRef]
- Ousman, W.Z.; Alemayehu, E.; Luis, P. Integration of reverse osmosis and membrane distillation for fluoride removal from groundwater aiming at a zero-waste discharge process. J. Environ. Chem. Eng. 2025. under review. [Google Scholar]
- American Public Health Assocoation (APHA). Standard Methods for the Examination of Water and Wastewater; APHA Press: Denver, CO, USA, 2017; Available online: https://yabesh.ir/wp-content/uploads/2018/02/Standard-Methods-23rd-Perv.pdf (accessed on 25 November 2024).
- Lenntech. Trisep X-20: The Proven Low Fouling RO Membrane; Lenntech: Delfgauw, The Netherlands, 2022. [Google Scholar]
- Sparenberg, M.-C.; Ruiz Salmón, I.; Luis, P. Economic evaluation of salt recovery from wastewater via membrane distillation-crystallization. Sep. Purif. Technol. 2020, 235, 116075. [Google Scholar] [CrossRef]
- Sparenberg, M.-C.; Hanot, B.; Molina-Fernandez, C.; Luis, P. Experimental mass transfer comparison between vacuum and direct contact membrane distillation for the concentration of carbonate solutions. Sep. Purif. Technol. 2021, 275, 119193. [Google Scholar] [CrossRef]
- Armfield. FT17 Cross-Flow Filtration Unit: Instructional Manual, in ISSUE 4; Armfield: Ringwood, UK, 2018. [Google Scholar]
- Baker, R.W. Membrane Technology and Applications; John Wiley & Sons: Hoboken, NJ, USA, 2004. [Google Scholar]
- Kiil, F. Kinetic model of osmosis through semipermeable and solute-permeable membranes. Acta Physiol. Scand. 2003, 177, 107–117. [Google Scholar] [CrossRef] [PubMed]
- Bartels, C.; Franks, R.; Rybar, S.; Schierach, M.; Wilf, M. The effect of feed ionic strength on salt passage through reverse osmosis membranes. Desalination 2005, 184, 185–195. [Google Scholar] [CrossRef]
- Ruiz Salmón, I.; Janssens, R.; Luis, P. Mass and heat transfer study in osmotic membrane distillation-crystallization for CO2 valorization as sodium carbonate. Sep. Purif. Technol. 2017, 176, 173–183. [Google Scholar] [CrossRef]
- Luis, P.; Van Aubel, D.; Van der Bruggen, B. Technical viability and exergy analysis of membrane crystallization: Closing the loop of CO2 sequestration. Int. J. Greenh. Gas Control 2013, 12, 450–459. [Google Scholar] [CrossRef]
- Martínez, M.B.; Jullok, N.; Negrín, Z.R.; Van der Bruggen, B.; Luis, P. Membrane crystallization for the recovery of a pharmaceutical compound from waste streams. Chem. Eng. Res. Des. 2014, 92, 264–272. [Google Scholar] [CrossRef]
- Luis, P. Fundamental Modeling of Membrane Systems: Membrane and Process Performance; Elsevier: Amsterdam, The Netherlands, 2018. [Google Scholar]
- Sandler, S.I. Chemical, Biochemical, and Engineering Thermodynamics, 5th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Water and Sanitation; World Health Organization. Guidelines for Drinking-Water Quality [Electronic Resource]: Incorporating First Addendum; World Health Organization: Geneva, Switzerland, 2006; Volume 1, Recommendations. [Google Scholar]
- Subba Rao, N.; Subrahmanyam, A.; Ravi Kumar, S.; Srinivasulu, N.; Babu Rao, G.; Rao, P.S.; Reddy, G.V. Geochemistry and quality of groundwater of Gummanampadu sub-basin, Guntur District, Andhra Pradesh, India. Environ. Earth Sci. 2012, 67, 1451–1471. [Google Scholar] [CrossRef]
- Soceanu, A.; Dobrinas, S.; Dumitrescu, C.I.; Manea, N.; Sirbu, A.; Popescu, V.; Vizitiu, G. Physico-chemical parameters and health risk analysis of groundwater quality. Appl. Sci. 2021, 11, 4775. [Google Scholar] [CrossRef]
- Gao, M.; Xiao, W.; Miao, L.; Yang, Z.; Liang, W.; Ao, T.; Yang, Q.; Chen, W. Prussian blue and its analogs: A robust platform for efficient capacitive deionization. Desalination 2024, 574, 117278. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Guidelines for drinking-water quality. WHO Chron. 2011, 38, 104–108. [Google Scholar]
- Pritchard, M.; Mkandawire, T.; O’Neill, J. Assessment of groundwater quality in shallow wells within the southern districts of Malawi. Phys. Chem. Earth Parts A/B/C 2008, 33, 812–823. [Google Scholar] [CrossRef]
- Subba Rao, N. Seasonal variation of groundwater quality in a part of Guntur District, Andhra Pradesh, India. Environ. Geol. 2006, 49, 413–429. [Google Scholar] [CrossRef]
- Yang, Z.; Ma, X.-H.; Tang, C.Y. Recent development of novel membranes for desalination. Desalination 2018, 434, 37–59. [Google Scholar] [CrossRef]
- Lumami Kapepula, V.; García Alvarez, M.; Sang Sefidi, V.; Buleng Njoyim Tamungang, E.; Ndikumana, T.; Musibono, D.D.; Van Der Bruggen, B.; Luis, P. Evaluation of commercial reverse osmosis and nanofiltration membranes for the removal of heavy metals from surface water in the Democratic Republic of Congo. Clean Technol. 2022, 4, 1300–1316. [Google Scholar] [CrossRef]
- Pushpalatha, N.; Sreeja, V.; Karthik, R.; Saravanan, G. Total dissolved solids and their removal techniques. Int. J. 2022, 2, 13–20. [Google Scholar] [CrossRef]
- García Alvarez, M.; Lumami Kapepula, V.; Sang Sefidi, V.; Buleng Njoyim Tamungang, E.; Ndikumana, T.; Musibono, D.D.; Van Der Bruggen, B.; Luis, P. Osmotic Membrane Distillation Crystallization of NaHCO3. Energies 2022, 15, 2682. [Google Scholar] [CrossRef]
- Osman, W.N.; Nawi, N.M.; Samsuri, S.; Bilad, M.R.; Wibisono, Y.; Yáñez, E.H.; Saad, J.M. A review on recent progress in membrane distillation crystallization. ChemBioEng. Rev. 2022, 9, 93–109. [Google Scholar] [CrossRef]
- Kim, H.-J.; Kim, W.-S. Configuration of sodium fluoride crystal characterized by surface crystals on mother crystal. J. Cryst. Growth 2001, 233, 326–335. [Google Scholar] [CrossRef]
- Chen, J.Y.; Lin, C.W.; Lin, P.H.; Li, C.W.; Liang, Y.M.; Liu, J.C.; Chen, S.S. Fluoride recovery from spent fluoride etching solution through crystallization of Na3AlF6 (synthetic cryolite). Sep. Purif. Technol. 2014, 137, 53–58. [Google Scholar] [CrossRef]
- Saeed Zango, M.; Pelig-Ba, K.B.; Anim-Gyampo, M.; Gibrilla, A.; Abu, M. Assessment of the mineralogy of granitoids and associated granitic gneisses responsible for groundwater fluoride mobilization in the Vea catchment, Upper East Region, Ghana. Sustain. Water Resour. Manag. 2022, 8, 4. [Google Scholar] [CrossRef]
- Gulina, L.; Tolstoy, V.; Murin, I. Crystallization of New Inorganic Fluoride Nanomaterials at Soft Chemistry Conditions and Their Application Prospects. Russ. J. Inorg. Chem. 2024, 69, 285–296. [Google Scholar] [CrossRef]
- Tachibana, S.; Yamagishi, H.; Orikasa, Y. Fluorine and Oxygen K-edge X-ray Absorption Near Edge Structure of Ytterbium Fluoride Sulfide. Mem. SR Cent. Ritsumeikan Univ. 2019, 21, 7–9. [Google Scholar]
- Sinharoy, A.; Lee, G.Y.; Chung, C.M. Process Intensification for Enhanced Fluoride Removal and Recovery as Calcium Fluoride Using a Fluidized Bed Reactor. Int. J. Mol. Sci. 2024, 25, 4646. [Google Scholar] [CrossRef]
- Ruiz Salmón, I.; Luis, P. Membrane Crystallization via Membrane Distillation. Chem. Eng. Process. 2018, 123, 258–271. [Google Scholar] [CrossRef]
Parameters | Data from Manufacturer |
---|---|
Module configuration | Hollow fibers |
Membrane/potting material | Polypropylene/polyethylene |
Fiber inner/outer Diameter (μm) | 240/300 |
Wall thickness (μm) | 40 |
Effective pore size (μm) | 0.04 |
Porosity (%) | 40 |
Effective fiber length (m) | 0.16 |
Effective membrane surface area (m2) | 1.4 |
Number of fibers | 10,200 |
Burst strength (bar) | 27 |
Contact angle (°) | 112 |
Membrane Characteristics | Data from Manufacturer |
---|---|
Module configuration | Hollow fibers |
Membrane material | Polypropylene |
Potting material | Polyurethane |
Fiber i.d./o.d. | 240/300 [µm] |
Wall thickness | 40 [µm] |
Pore size (length–width) | 0.4–0.04 [µm] |
Porosity | 40 [%] |
Effective membrane surface area | 0.18 [m2] |
Effective fiber length | 0.1397 [m] |
Number of fibers | 2300 |
Contact angle | 112 [°] |
Parameters | Unit | Sampling Sites | WHO Guideline Values [51] | |
---|---|---|---|---|
Meki-01 | Meki-02 | |||
Temperature | °C | 24 ± 0.1 | 24.5 ± 0.2 | - |
pH | - | 9.1 ± 0.2 | 8.1 ± 0.3 | - |
Conductivity | mScm−1 | 4.1 ± 0.3 | 2.8 ± 0.2 | - |
Ca2+ | mgL−1 | 26.6 ± 0.5 | 6.1 ± 0.1 | 30–100 |
K+ | mg/L | 38.5 ± 0.8 | 40.6 ± 0.8 | <12 |
Mg2+ | mg/L | 5.34 ± 0.1 | 2.12 ± 0.04 | 10–50 |
Na+ | mg/L | 951 ± 19 | 409 ± 8 | 200 |
Fe2+ | mg/L | <0.01 | <0.01 | 0.3 |
F− | mg/L | 20.8 ± 0.4 | 22.7 ± 0.5 | <1.5 |
Cl− | mg/L | 420 ± 8 | 170 ± 3 | 250 |
SO42− | mg/L | 786 ± 16 | 259 ± 5 | <250 |
CO32− | mg/L | 9.9 ± 0.3 | 9.9 ± 0.3 | - |
HCO3− | mg/L | 970 ± 29 | 830 ± 25 | 300 |
TDS | mg/L | 2800 ± 97 | 1600 ± 74 | 50–150 |
Study Periods | Permeate Flux (m3s−1m−2) | Kov (m3m−2s−1) | Mean Feed of Temperature (°C) |
---|---|---|---|
1st 12 h | 3.073 × 10−8 | 7.061 × 10−12 | 35.96 ± 0.16 |
2nd 12 h | 2.76 × 10−8 | 6.344 × 10−12 | 35.94 ± 0.01 |
3rd 12 h | 2.28 × 10−8 | 5.250 × 10−12 | 35.96 ± 0.16 |
The last 10 h | 1.96 × 10−8 | 4.515 × 10−12 | 35.91 ± 0.01 |
Element | Atomic Percentage (%) |
---|---|
Ca | 2.52 |
K | 0.2 |
Na | 23.8 |
Mg | 0.05 |
Al | 0.16 |
Si | 0.77 |
F | 0.99 |
Cl | 0.22 |
C | 11.94 |
S | 1.44 |
O | 58.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ousman, W.Z.; Alemayehu, E.; Luis, P. Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process. Clean Technol. 2025, 7, 40. https://doi.org/10.3390/cleantechnol7020040
Ousman WZ, Alemayehu E, Luis P. Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process. Clean Technologies. 2025; 7(2):40. https://doi.org/10.3390/cleantechnol7020040
Chicago/Turabian StyleOusman, Wuhib Zeine, Esayas Alemayehu, and Patricia Luis. 2025. "Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process" Clean Technologies 7, no. 2: 40. https://doi.org/10.3390/cleantechnol7020040
APA StyleOusman, W. Z., Alemayehu, E., & Luis, P. (2025). Fluoride Removal and Recovery from Groundwater Using an Integrated Reverse Osmosis–Membrane Crystallization Process. Clean Technologies, 7(2), 40. https://doi.org/10.3390/cleantechnol7020040