Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (61)

Search Parameters:
Keywords = torsional vibration of shafting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 11045 KB  
Article
Research on Dynamic Characteristics of High-Speed Helical Gears with Crack Faults in Electric Vehicle Deceleration Systems
by Hongyuan Zhang, Dongsheng Li, He Wang and Hongyun Sun
Appl. Sci. 2025, 15(23), 12497; https://doi.org/10.3390/app152312497 - 25 Nov 2025
Viewed by 162
Abstract
As a key component of pure electric vehicles, the reducer plays a vital role in power transmission and overall drive system performance. This study investigates the nonlinear dynamic characteristics of helical gears with tooth root crack faults in high-speed reducers. A coupled bending–torsional–shaft [...] Read more.
As a key component of pure electric vehicles, the reducer plays a vital role in power transmission and overall drive system performance. This study investigates the nonlinear dynamic characteristics of helical gears with tooth root crack faults in high-speed reducers. A coupled bending–torsional–shaft dynamic model is developed, in which the time-varying mesh stiffness of cracked helical gears is calculated using an improved potential energy method. The system’s nonlinear dynamic responses under varying mesh error excitation, gear backlash, and damping ratio are numerically obtained via the variable-step Runge–Kutta method. The results reveal that under high input speed conditions, the motion of the faulted system evolves from single-period to quasi-periodic motion as bifurcation parameters change. In the stable state, fault characteristic signals are apparent, whereas under strong nonlinear vibrations and chaotic motion, they become difficult to distinguish in traditional time- and frequency-domain analyses. To address this limitation, the DBSCAN clustering algorithm is introduced, which applies machine learning to cluster the Poincaré cross-sections of the system under different motion states. This approach enables the effective classification and identification of crack-induced and fault-related noise, thereby improving the accuracy of fault detection in nonlinear dynamic gear systems. Full article
Show Figures

Figure 1

13 pages, 4048 KB  
Article
Predictive Control Structure for a Two-Mass Drive System with a Two-Layer Observer
by Karol Wróbel, Kacper Krzysztof Śleszycki and Piotr Majdański
Energies 2025, 18(23), 6113; https://doi.org/10.3390/en18236113 - 22 Nov 2025
Viewed by 327
Abstract
This paper presents the control problem of a drive system with an electric motor and a finitely stiff shaft. In such a system, effective damping of torsional vibrations requires the use of advanced control structures. Such structures, in turn, require precise information about [...] Read more.
This paper presents the control problem of a drive system with an electric motor and a finitely stiff shaft. In such a system, effective damping of torsional vibrations requires the use of advanced control structures. Such structures, in turn, require precise information about all state variables, and often also about the system parameters. To ensure effective damping of torsional vibrations, the paper proposes the use of a predictive control algorithm that cooperates with a two-layer observer. Coupling these two algorithms resulted in improved state variable waveforms, particularly for unknown initial states, and the imposition of more stringent state variable constraints. Full article
(This article belongs to the Special Issue Drive System and Control Strategy of Electric Vehicle)
Show Figures

Figure 1

19 pages, 5713 KB  
Article
Integration of Theoretical and Experimental Torsional Vibration Analysis in a Marine Propulsion System with Component Degradation
by Quang Dao Vuong, Jiwoong Lee and Jae-Ung Lee
Appl. Sci. 2025, 15(21), 11423; https://doi.org/10.3390/app152111423 - 25 Oct 2025
Viewed by 774
Abstract
This study investigates torsional vibration characteristics in an aged coastal car ferry propulsion system using theoretical calculations based on the Matrix method alongside experimental measurements. While the measured torsional vibration at the propeller shaft remained within the limits, it was significantly higher than [...] Read more.
This study investigates torsional vibration characteristics in an aged coastal car ferry propulsion system using theoretical calculations based on the Matrix method alongside experimental measurements. While the measured torsional vibration at the propeller shaft remained within the limits, it was significantly higher than the calculated values, particularly at the 5th harmonic order excited by engine combustion. Negative torque peaks observed during transient clutch engagement caused gear hammering. Structural vibration analysis identified potential gearbox defects, such as wear or misalignment. Multiple torsional vibration calculation models were developed considering various degrees of degradation of the aged rubber blocks and viscous torsional damper. A model assuming that the damping capacity of damper drops to about 1%, corresponding to the specified values at 125 °C, produced results that closely reproduced the measured vibration characteristics. The finding, confirmed by an actual inspection, identifies viscous oil leakage and deterioration of the damper as the primary cause of excessive vibration. Prompt replacement of the viscous oil is recommended to improve torsional vibration behavior. Full article
(This article belongs to the Special Issue Structural Dynamics and Vibration)
Show Figures

Figure 1

20 pages, 1574 KB  
Article
Analysis of Torsional Vibration of Single Pile in Orthotropic Layered Soil
by Zixin Lian, Yanzhi Zhu and Yongzhi Jiu
Buildings 2025, 15(21), 3834; https://doi.org/10.3390/buildings15213834 - 23 Oct 2025
Cited by 1 | Viewed by 442
Abstract
To address the difficulty in obtaining analytical solutions for the torsional vibration response of pile foundations in orthotropic layered soil foundations subjected to torsional excitation at the pile top, this study investigates a layered recursive algorithm based on the Hankel transform. An integral [...] Read more.
To address the difficulty in obtaining analytical solutions for the torsional vibration response of pile foundations in orthotropic layered soil foundations subjected to torsional excitation at the pile top, this study investigates a layered recursive algorithm based on the Hankel transform. An integral transformation method is employed to reduce the dimensionality of the coupled pile–soil torsional vibration equations, converting the three-dimensional system of partial differential equations into a set of ordinary differential equations. Combining the constitutive properties of transversely anisotropic strata with interlayer contact conditions, a transfer matrix model is established. Employing inverse transformation coupled with the Gauss–Kronrod integration method, an explicit frequency-domain solution for the torsional dynamic impedance at the pile top is derived. The research findings indicate that the anisotropy coefficient of the foundation significantly influences both the real and imaginary parts of the impedance magnitude. The sequence of soil layer distribution and the bonding state at interfaces jointly affect the nonlinear transmission characteristics of torque along the pile shaft. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

31 pages, 9665 KB  
Article
Motor Airgap Torque Harmonics Due to Cascaded H-Bridge Inverter Operating with Failed Cells
by Hamid Hamza, Ideal Oscar Libouga, Pascal M. Lingom, Joseph Song-Manguelle and Mamadou Lamine Doumbia
Energies 2025, 18(16), 4286; https://doi.org/10.3390/en18164286 - 12 Aug 2025
Viewed by 670
Abstract
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical [...] Read more.
This paper proposes the expressions for the motor airgap torque harmonics induced by a cascaded H-bridge inverter operating with failed cells. These variable frequency drive systems (VFDs), are widely used in oil and gas applications, where a torsional vibration evaluation is a critical challenge for field engineers. This paper proposes mathematical expressions that are crucial for an accurate torsional analysis during the design stage of VFDs, as required by international standards such as API 617, API 672, etc. By accurately reconstructing the electromagnetic torque from the stator voltages and currents in the (αβ0) reference frame, the obtained expressions enable the precise prediction of the exact locations of torque harmonics induced by the inverter under various real-world operating conditions, without the need for installed torque sensors. The neutral-shifted and peak-reduction fault-tolerant control techniques are commonly adopted under faulty operation of these VFDs. However, their effects on the pulsating torques harmonics in machine air-gap remain uncovered. This paper fulfils this gap by conducting a detailed evaluation of spectral characteristics of these fault-tolerant methods. The theoretical analyses are supported by MATLAB/Simulink 2024 based offline simulation and Typhoon based virtual real-time simulation results performed on a (4.16 kV and 7 MW) vector-controlled induction motor fed by a 7-level cascaded H-bridge inverter. According to the theoretical analyses- and simulation results, the Neutral-shifted and Peak-reduction approaches rebalance the motor input line-to-line voltages in the event of an inverter’s failed cells but, in contrast to the normal mode the carrier, all the triplen harmonics are no longer suppressed in the differential voltage and current spectra due to inequal magnitudes in the phase voltages. These additional current harmonics induce extra airgap torque components that can excite the lowly damped eigenmodes of the mechanical shaft found in the oil and gas applications and shut down the power conversion system due torsional vibrations. Full article
Show Figures

Figure 1

17 pages, 8151 KB  
Article
FEA-Based Vibration Modal Analysis and CFD Assessment of Flow Patterns in a Concentric Double-Flange Butterfly Valve Across Multiple Opening Angles
by Desejo Filipeson Sozinando, Bernard Xavier Tchomeni and Alfayo Anyika Alugongo
Vibration 2025, 8(3), 42; https://doi.org/10.3390/vibration8030042 - 23 Jul 2025
Cited by 1 | Viewed by 1566
Abstract
A concentric double-flange butterfly valve (DN-500, PN-10) was analyzed to examine its dynamic behavior and internal fluid flow across multiple opening angles. Finite Element Analysis (FEA) was employed to determine natural frequencies, mode shapes, and effective mass participation factors (EMPFs) for valve positions [...] Read more.
A concentric double-flange butterfly valve (DN-500, PN-10) was analyzed to examine its dynamic behavior and internal fluid flow across multiple opening angles. Finite Element Analysis (FEA) was employed to determine natural frequencies, mode shapes, and effective mass participation factors (EMPFs) for valve positions at 30°, 60°, and 90°. The valve geometry was discretized using a curvature-based mesh with linear elastic isotropic properties for 1023 carbon steel. Lower-order vibration modes produced global deformations primarily along the valve disk, while higher-order modes showed localized displacement near the shaft–bearing interface, indicating coupled torsional and translational dynamics. The highest EMPF in the X-direction occurred at 1153.1 Hz with 0.2631 kg, while the Y-direction showed moderate contributions peaking at 0.1239 kg at 392.06 Hz. The Z-direction demonstrated lower influence, with a maximum EMPF of 0.1218 kg. Modes 3 and 4 were critical for potential resonance zones due to significant mass contributions and directional sensitivity. Computational Fluid Dynamics (CFD) simulation analyzed flow behavior, pressure drops, and turbulence under varying valve openings. At a lower opening angle, significant flow separation, recirculation zones, and high turbulence were observed. At 90°, the flow became more streamlined, resulting in a reduction in pressure losses and stabilizing velocity profiles. Full article
Show Figures

Figure 1

23 pages, 6990 KB  
Article
Fault Signal Emulation of Marine Turbo-Rotating Systems Based on Rotor-Gear Dynamic Interaction Modeling
by Seong Hyeon Kim, Hyun Min Song, Se Hyeon Jeong, Won Joon Lee and Sun Je Kim
J. Mar. Sci. Eng. 2025, 13(7), 1321; https://doi.org/10.3390/jmse13071321 - 9 Jul 2025
Viewed by 543
Abstract
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due [...] Read more.
Rotating machinery is essential in various industrial fields, and growing demands for high performance under harsh operating conditions have heightened interest in fault diagnosis and prognostic technologies. However, a major challenge in fault diagnosis research lies in the scarcity of data, primarily due to the inability to deliberately introduce faults into machines during actual operation. In this study, a physical model is proposed to realistically simulate the system behavior of a ship’s turbo-rotating machinery by coupling the torsional and lateral vibrations of the rotor. While previous studies employed simplified single-shaft models, the proposed model adopted gear mesh interactions to reflect the coupling behavior between shafts. Furthermore, the time-domain response of the system is analyzed through state-space transformation. The proposed model was applied to simulate imbalance and gear teeth damage conditions that may occur in marine turbo-rotating systems and the results were compared with those under normal operating conditions. The analysis confirmed that the model effectively reproduces fault-induced dynamic characteristics. By enabling rapid implementation of various fault conditions and efficient data acquisition data, the proposed model is expected to contribute to enhancing the reliability of fault diagnosis and prognostic research. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

27 pages, 9650 KB  
Article
Torsional Vibration Characterization of Hybrid Power Systems via Disturbance Observer and Partitioned Learning
by Tao Zheng, Hui Xie and Boqiang Liang
Energies 2025, 18(11), 2847; https://doi.org/10.3390/en18112847 - 29 May 2025
Viewed by 967
Abstract
The series–parallel hybrid powertrain combines the advantages of both series and parallel configurations, offering optimal power performance and fuel efficiency. However, the presence of multiple excitation sources significantly complicates the torsional vibration behavior during engine startup. To accurately identify and analyze the torsional [...] Read more.
The series–parallel hybrid powertrain combines the advantages of both series and parallel configurations, offering optimal power performance and fuel efficiency. However, the presence of multiple excitation sources significantly complicates the torsional vibration behavior during engine startup. To accurately identify and analyze the torsional vibration characteristics induced by shaft resonance in this process, a torsional vibration feature identification algorithm based on disturbance observation and parameter partition learning is proposed. A simplified model of the drivetrain shaft system is first established, and an extended state Kalman filter (ESKF) is designed to accurately estimate the torque of the torsional damper. The inclusion of extended disturbance states enhances the model’s robustness against system uncertainties. Subsequently, continuous wavelet transform (CWT) is employed to identify the resonance characteristics in the torsional vibration process from the torque signal. Combined with the parameter partition learning strategy, resonance frequencies are utilized to infer key system parameters. The results demonstrate that, under a 20% perturbation of structural parameters, the observer model with fixed parameters yields a root mean square error (RMSE) of 10.16 N·m for the torsional damper torque. In contrast, incorporating the parameter self-learning algorithm reduces the RMSE to 2.36 N·m, representing an 85.2% improvement in estimation accuracy. Using the Morlet wavelet with a frequency resolution parameter (VPO) of 15 at a 50 Hz sampling rate, the identified resonance frequency was 14.698 Hz, showing a 1.1% deviation from the actual natural frequency of 14.53 Hz. Full article
(This article belongs to the Special Issue Hybrid Electric Powertrain System Modelling and Control)
Show Figures

Figure 1

24 pages, 6850 KB  
Article
Comparative Study of Analytical Model Predictive Control and State Feedback Control for Active Vibration Suppression of Two-Mass Drive
by Adam Gorla and Piotr Serkies
Actuators 2025, 14(5), 254; https://doi.org/10.3390/act14050254 - 20 May 2025
Cited by 2 | Viewed by 990
Abstract
This article discusses speed control methods for electric motor drives with elastic mechanical coupling causing torsional vibrations, which negatively affect the operation of the system. Model Predictive Control (MPC) is often presented as an effective solution; however, it is notoriously difficult to implement [...] Read more.
This article discusses speed control methods for electric motor drives with elastic mechanical coupling causing torsional vibrations, which negatively affect the operation of the system. Model Predictive Control (MPC) is often presented as an effective solution; however, it is notoriously difficult to implement in real-time due to the high computational complexity of the controller. In this paper, a simplified predictive control approach in the form of Analytical MPC (aMPC) is proposed for the speed control of a two-mass motor drive. In contrast to conventional MPC, which requires complex online optimisation, aMPC derives an explicit control law analytically under simplifying assumptions, greatly reducing the computational load. The effect of the controller parameters on the drive performance is investigated and a multi-objective performance function for automatic tuning is proposed. The aMPC structure is compared with conventional State Feedback Control (SFC), including a system robustness test of both approaches. Based on simulation studies and experimental verification, the proposed structure is shown to ensure high dynamics in drive control, with smoother torque control and superior robustness for higher-load inertia ratios than SFC. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

28 pages, 8860 KB  
Article
Active Torsional Vibration Suppression Strategy for Power-Split-HEV Driveline System Based on Dual-Loop Control
by Wei Zhang, Xiaocong Liang, Zhengda Han, Lei Bu, Jingang Liu, Bing Fu and Mozhang Jiang
Machines 2025, 13(5), 418; https://doi.org/10.3390/machines13050418 - 15 May 2025
Viewed by 1163
Abstract
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, [...] Read more.
Power-split hybrid electric vehicles (power-split-HEVs) exhibit significant engine torque fluctuations due to their mechanical coupling with the driveline, leading to pronounced torsional vibration issues in the drive shaft. This study investigates an active torsional vibration suppression strategy based on drive motor control. First, a dynamic model of the power-split-HEV driveline is established, and its intrinsic characteristics are analyzed. Subsequently, an engine excitation torque model is developed to identify the dominant response orders, while a vehicle dynamics model is constructed to elucidate the torsional vibration mechanisms in both hybrid and pure electric driving modes. Next, a torsional vibration feedback control framework is proposed, utilizing the electric motor as a secondary-channel torque disturbance compensator. Furthermore, a novel frequency-decoupled dual-loop control framework is proposed, with rigorous derivation of the sufficient conditions for decoupling. Based on this framework, two distinct vibration suppression algorithms are developed for the secondary-loop controller, each tailored for specific operational modes. Finally, the proposed algorithms are validated through simulation and hardware-in-the-loop (HIL) testing. The results demonstrate a torque fluctuation suppression ratio of up to 72.2%, confirming that the active suppression algorithm effectively mitigates driveline torsional vibration induced by engine harmonic torque disturbances. Full article
(This article belongs to the Special Issue Advances in Dynamic Analysis of Multibody Mechanical Systems)
Show Figures

Figure 1

18 pages, 5216 KB  
Article
Fatigue Assessment of Marine Propulsion Shafting Due to Cyclic Torsional and Bending Stresses
by Alen Marijančević, Sanjin Braut, Roberto Žigulić and Ante Skoblar
Machines 2025, 13(5), 384; https://doi.org/10.3390/machines13050384 - 3 May 2025
Cited by 2 | Viewed by 1572
Abstract
The International Maritime Organization (IMO) mandates a reduction in carbon dioxide emissions from 2008 levels by at least 40% by 2030, prompting the widespread adoption of slow steaming and engine de-rating strategies. This study investigates the fatigue life of marine propulsion shafts under [...] Read more.
The International Maritime Organization (IMO) mandates a reduction in carbon dioxide emissions from 2008 levels by at least 40% by 2030, prompting the widespread adoption of slow steaming and engine de-rating strategies. This study investigates the fatigue life of marine propulsion shafts under slow steaming conditions, focusing on the interplay between torsional and bending vibrations. A finite element (FE) model of a low-speed two-stroke propulsion system is developed, incorporating torsional and lateral excitation sources from both the engine and propeller. Vibrational stresses are computed for multiple operating conditions, and fatigue life is assessed using both the conventional Det Norske Veritas (DNV) methodology and a proposed biaxial stress approach. Results indicate that while torsional vibrations remain the primary fatigue driver, bending-induced stresses contribute marginally to the overall fatigue life. The proposed methodology refines high-cycle fatigue (HCF) assessment by incorporating a corrected S-N curve and equivalent von Mises stress criteria. Comparisons with classification society standards demonstrate that existing guidelines remain valid for most cases, though further studies on extreme alignment deviations and dynamic bending effects are recommended. This study enhances understanding of fatigue mechanisms in marine shafting and proposes a refined methodology for improved fatigue life prediction. Full article
(This article belongs to the Section Machines Testing and Maintenance)
Show Figures

Figure 1

20 pages, 3483 KB  
Article
Novel Investigation of Influence of Torsional Load on Unbalance Fault Indicators for Induction Motors
by Amir R. Askari, Len Gelman and Andrew D. Ball
Sensors 2025, 25(7), 2084; https://doi.org/10.3390/s25072084 - 26 Mar 2025
Cited by 2 | Viewed by 521
Abstract
This paper investigates how the torsional load affects two vibration-based unbalance fault indicators. This investigation is important for unbalance fault diagnosis in multiple constant load conditions, which are unavoidable for many rotating machines. Coupled flexural–torsional dynamics of an unbalanced disc–shaft system, as the [...] Read more.
This paper investigates how the torsional load affects two vibration-based unbalance fault indicators. This investigation is important for unbalance fault diagnosis in multiple constant load conditions, which are unavoidable for many rotating machines. Coupled flexural–torsional dynamics of an unbalanced disc–shaft system, as the representative of an induction motor, is investigated via a continuous shaft–beam model. Numerical investigations reveal that the fundamental rotating intensity of the transversal acceleration is independent of the torsional load. So, the novel speed-invariant version of this indicator, which is obtained by normalizing the fundamental rotating intensity by the fourth power of the rotational speed, is also load-independent. The comprehensive experimental trials confirm load-independency of the considered two unbalance fault indicators. The important novel outcome is that, by conducting numerical analysis and comprehensive experimental trials with a belt conveyor system under various constant loading conditions, the load-independency of the fundamental rotating harmonic intensity as well as novel speed-invariant unbalance feature are justified. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

10 pages, 4818 KB  
Proceeding Paper
Analytical and Numerical Methods for the Identification of Torsional Oscillations and Forcing in Internal Combustion Engines
by Dario Santonocito and Sebastian Brusca
Eng. Proc. 2025, 85(1), 3; https://doi.org/10.3390/engproc2025085003 - 13 Feb 2025
Cited by 1 | Viewed by 1160
Abstract
Crankshafts, present in internal combustion engines, are mechanical parts subject to torsion and bending that vary over time and, if the forcing is close to one of the natural frequencies of the system, they can encounter problems of torsional oscillations. These vibrations can [...] Read more.
Crankshafts, present in internal combustion engines, are mechanical parts subject to torsion and bending that vary over time and, if the forcing is close to one of the natural frequencies of the system, they can encounter problems of torsional oscillations. These vibrations can lead to maximum oscillation amplitudes, with consequent fatigue stresses that would compromise the resistance and correct functioning of the shaft. The aim of this work is to indicate a methodology for identifying the natural frequencies of the crankshaft and the decomposition of the torques, due to gases and inertia, to identify the different harmonics; in fact, if one of these harmonics is close to the natural frequency of the crankshaft, the system will go into resonance. Full article
Show Figures

Figure 1

24 pages, 6799 KB  
Article
Design and Analysis of Combined Vibration Absorbers for Ship Propulsion Shaft Systems
by Dongdong Luo, Qing Ouyang and Hongsheng Hu
Actuators 2025, 14(1), 41; https://doi.org/10.3390/act14010041 - 20 Jan 2025
Cited by 1 | Viewed by 1761
Abstract
The vibration of a ship’s propulsion shaft system directly affects the ship’s lifespan, and many studies have designed vibration absorbers only for one of the natural frequencies of a ship’s propulsion shaft system without considering the influence of multiple low-order resonance frequencies. In [...] Read more.
The vibration of a ship’s propulsion shaft system directly affects the ship’s lifespan, and many studies have designed vibration absorbers only for one of the natural frequencies of a ship’s propulsion shaft system without considering the influence of multiple low-order resonance frequencies. In this paper, a vibration absorber combined with a magnetorheological elastomer vibration absorber and a rubber vibration absorber in series is designed, and it can cover two torsional natural frequency band ranges to achieve better vibration reduction performances in multiple different torsional natural frequencies. The torsional natural frequency of the propulsion shafting of a 45 m fishing vessel is determined based on a multiple-degrees-of-freedom equivalent discretization model. Two natural frequencies, 22.4 Hz and 131.4 Hz, of a ship propulsion shaft system are selected as the design goal parameters of the combined vibration absorber. The magnetic field is simulated to ensure that the magnetic field generated by an energized coil can meet requirements. Then, a dynamic simulation of the ship propulsion shaft system with a combined vibration absorber is conducted via co-simulation. Afterward, the device is installed on the intermediate shaft of the ship propulsion shaft system for simulation, and the vibration reduction effect of the device is analyzed at different frequencies by controlling the current. When the device is controlled to operate at the optimal frequency point, the results show that the angular acceleration vibration amplitude reduction around the first and third torsional natural frequencies of the propulsion shaft system reaches 90% and 18%, respectively. This study provides new ideas for the intelligent and controllable vibration damping of ship propulsion shaft systems, especially for the development trend of intelligent ship equipment under complex working conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

19 pages, 5845 KB  
Article
Fatigue Analysis for Shaft of Inland River Ship Under Ice Load
by Kai Yang and Guoqing Feng
J. Mar. Sci. Eng. 2025, 13(1), 131; https://doi.org/10.3390/jmse13010131 - 13 Jan 2025
Viewed by 931
Abstract
Inland river ships navigating in an ice area cannot avoid contact between the propeller and ice block. In addition to ensuring the safety of propeller blades, the fatigue strength of the propulsion shaft system under ice load excitation must also be considered. This [...] Read more.
Inland river ships navigating in an ice area cannot avoid contact between the propeller and ice block. In addition to ensuring the safety of propeller blades, the fatigue strength of the propulsion shaft system under ice load excitation must also be considered. This paper first studies how to calculate the natural frequency of free torsional vibration of the system, then uses Newmark integral programing to calculate the maximum torsional stress of shaft system under ice load at resonance speed. Low cycle stress and high cycle stress are studied according to fatigue analysis theory. The method of determining S–N curve and ice load stress spectrum is given and the cumulative damage ratio is calculated based on Palmgren–Miner linear cumulative damage theory. Finally, taking a real inland river vessel propulsion shaft system as an example, the fatigue strength of the shaft system under different working conditions of ice load excitation is studied. Therefore, this study has practical significance and engineering application value in conducting fatigue research on the propulsion shaft system of an inland waterway vessel sailing in an ice area. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

Back to TopTop