Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = tomato yellow leaf curl virus (TYLCV)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 4501 KiB  
Article
Functional Characterization of Dual-Initiation Codon-Derived V2 Proteins in Tomato Yellow Leaf Curl Virus
by Zhiyuan Wang, Pan Gong, Siwen Zhao, Fangfang Li and Xueping Zhou
Agronomy 2025, 15(7), 1726; https://doi.org/10.3390/agronomy15071726 - 17 Jul 2025
Viewed by 303
Abstract
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 [...] Read more.
Tomato yellow leaf curl virus (TYLCV) is a highly destructive pathogen of global tomato crops. The open reading frame (ORF) of TYLCV V2 contains two initiation codons (ATG1/V2-1 and ATG2/V2-2), producing distinct protein isoforms. Using custom antibodies, we confirmed V2-1 and V2-2 expression in infected Nicotiana benthamiana and tomato plants. Deletion mutants revealed their specialized roles: V2-1 was indispensable for viral replication and systemic spread—its loss severely reduced pathogenicity and genome accumulation. V2-2 acted as an auxiliary factor, and its deletion attenuated symptoms but kept the virus infection. Host-specific effects were observed—V2-1 deletion led to lower viral DNA/coat protein levels in N. benthamiana than in tomato, suggesting host-dependent regulation. Mutant viruses declined progressively in tomato, indicating host defense clearance. Heterologous co-expression of both isoforms via potato virus X induced systemic necrosis in N. benthamiana, demonstrating functional synergy between isoforms. Both initiation codons were essential for V2-mediated suppression of transcriptional gene silencing (TGS) and post-transcriptional gene silencing (PTGS). This study uncovers the mechanistic divergence of V2 isoforms in TYLCV infection, highlighting their collaborative roles in virulence and host manipulation. The findings advance understanding of geminivirus coding complexity and offer potential targets for resistance strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

17 pages, 39761 KiB  
Article
SlMYC2 Mediates the JA Pathway by Responding to Chlorocholine Chloride in the Regulation of Resistance to TYLCD
by Yanan Ma, Liangfang Wang, Zuozeng Cao, Hui Wang, Fu Wang and Wenying Zhu
Plants 2025, 14(9), 1353; https://doi.org/10.3390/plants14091353 - 30 Apr 2025
Viewed by 343
Abstract
Tomato yellow leaf curl disease (TYLCD) significantly affects tomato yield. The jasmonic acid (JA) pathway is crucial in the defence response of plants; however, its role in plant resistance to TYLCD remains undefined. In production, CCC (chlorocholine chloride) is often used to cultivate [...] Read more.
Tomato yellow leaf curl disease (TYLCD) significantly affects tomato yield. The jasmonic acid (JA) pathway is crucial in the defence response of plants; however, its role in plant resistance to TYLCD remains undefined. In production, CCC (chlorocholine chloride) is often used to cultivate strong seedlings to enhance seedling vitality and improve stress resistance. However, the mechanism through which CCC enhances disease resistance in tomatoes remains unclear. In this study, tomato seedlings were exogenously sprayed with 300 mg/L CCC before and after inoculation with tomato yellow leaf curl virus (TYLCV). The results indicated that no significant tomato yellow virus disease phenotype was observed in tomato seedlings after spraying with CCC and subsequent inoculation with the virus. Spraying CCC on seedlings inoculated with the virus and exhibiting typical phenotypes can significantly alleviate the yellowing and curling symptoms of new leaves and improve photosynthesis-related indicators in tomato plants. The detection of virus copy numbers within the plants revealed that the virus copy numbers in plants treated with CCC were significantly lower than those in the control group. Transcriptomic analysis revealed that, after spraying CCC, the key enzyme genes AOS2 and AOC in the JA synthesis pathway in tomatoes were significantly upregulated, whereas the expressions of JAZ2 and MYC2 genes, which negatively regulate JA synthesis, were significantly downregulated. In the stable state, JAZ proteins interact with MYC2 and inhibit its transcriptional activity of MYC2. Tomatoes overexpressing MYC2 and JAZ2 exhibit a significant decrease in TYLCD resistance. These results indicated that exogenous spraying CCC affected the expression of genes such as MYC2 and JAZ2, and then regulated JA pathway, increased the endogenous JA content in plants, and enhanced the disease resistance of tomato plants to TYLCD. This study provides a scientific reference for effectively preventing and controlling TYLCD in tomato production and reducing the influence of TYLCD on tomato yield and quality. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

24 pages, 3411 KiB  
Article
Virus–Host Interactions and Genetic Exchange in Mixed Infections of Tomato Yellow Leaf Curl Virus (TYLCV), Tomato Leaf Curl New Delhi Virus (ToLCNDV), and Tomato Chlorosis Virus (ToCV)
by Isabel M. Fortes, Luis Díaz-Martínez, Enrique Moriones and Ana Grande-Pérez
Agronomy 2025, 15(5), 1006; https://doi.org/10.3390/agronomy15051006 - 22 Apr 2025
Viewed by 970
Abstract
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, [...] Read more.
Tomato yellow leaf curl virus (TYLCV), tomato leaf curl New Delhi virus (ToLCNDV), and tomato chlorosis virus (ToCV) are emerging viruses that cause significant damage to tomato (Solanum lycopersicum). TYLCV and ToLCNDV are single-stranded DNA viruses from the genus Begomovirus, family Geminiviridae, while ToCV is an RNA virus from the genus Crinivirus (family Closteroviridae). These viruses share overlapping geographic ranges, vectors (the whitefly Bemisia tabaci), and host plants, making mixed infections common. This study investigated interactions between TYLCV and ToLCNDV and between ToLCNDV and ToCV in mixed infections of susceptible and TYLCV-resistant tomato genotypes. We evaluated infection, disease development, trans-replication of genome components, and genetic exchange. Our results showed no significant synergistic or antagonistic interactions, complementation, or interference between the viruses. TYLCV resistance in tomato genotypes remained stable. The DNA-B component of ToLCNDV exhibited impaired functionality and was not complemented by TYLCV. No evidence was found that the crinivirus tomato chlorosis virus (ToCV) enhances ToLCNDV infection, suggesting limited interactions despite shared vectors. Genetic exchange was detected in defective DNA (def-DNA) molecules using high-throughput sequencing (HTS), indicating potential genetic interactions between these viruses. These findings suggest that mixed infections do not pose immediate concerns for increased pathogenicity but highlight the ecological implications of genetic exchange, warranting further study of the evolutionary consequences of such interactions in mixed-virus environments. Full article
(This article belongs to the Special Issue Role of RNA and ssDNA Viruses in Plant–Virus/Viroid Interactions)
Show Figures

Figure 1

11 pages, 2461 KiB  
Article
Development and Application of a Multiplex PCR Assay for Simultaneous Detection of Tomato Yellow Leaf Curl Virus and Tomato Leaf Curl New Delhi Virus
by Hongxia Hu, Jie Zhang, Xiaoyin Wu, Li Li and Yajuan Qian
Viruses 2025, 17(3), 322; https://doi.org/10.3390/v17030322 - 27 Feb 2025
Viewed by 823
Abstract
Tomato leaf curl New Delhi virus (ToLCNDV) and tomato yellow leaf curl virus (TYLCV) are two important viral pathogens that severely affect Solanaceae and Cucurbitaceae plants. In order to reduce the further spread of these viruses, it is crucial to establish an efficient [...] Read more.
Tomato leaf curl New Delhi virus (ToLCNDV) and tomato yellow leaf curl virus (TYLCV) are two important viral pathogens that severely affect Solanaceae and Cucurbitaceae plants. In order to reduce the further spread of these viruses, it is crucial to establish an efficient and reliable method to accurately detect the viruses. In this study, a multiplex PCR assay for the simultaneous detection of TYLCV and ToLCNDV was established. Three primer pairs designed from conserved regions within the coat protein or movement protein-encoding regions of the respective viruses were employed in the assay. The optimization of parameters such as primer concentration was set at 0.15 μM/0.15 μM, 0.25 μM/0.25 μM, and 0.50 μM/0.50 μM for ToLCNDV-DNA-A-F/R, TYLCV-F/R, and ToLCNDV-DNA-B-F/R primer pairs. At optimal primer concentrations, the multiplex PCR method demonstrates effective performance with an annealing temperature ranging from 51 °C to 66 °C. The specificity of the assay evaluated by testing against other begomoviruses showed no evidence of cross-amplification. Further sensitivity analysis performed using a serially diluted plasmid containing viral targets as templates demonstrated high sensitivity with a detection limit of 103 copies/μL. Field surveys utilizing the multiplex PCR assay successfully identified the infection of TYLCV and ToLCNDV in field-collected samples. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

12 pages, 1913 KiB  
Article
Dufulin Impacts Plant Defense Against Tomato Yellow Leaf Curl Virus Infecting Tomato
by Liping Huang, Yingying Tang, Shuaixin Wang, Jianbin Chen, Jiao Du, Shuo Yan, Deyong Zhang, Xiaobin Shi, Yong Liu and Fan Li
Viruses 2025, 17(1), 53; https://doi.org/10.3390/v17010053 - 31 Dec 2024
Cited by 2 | Viewed by 1212
Abstract
Tomato yellow leaf curl virus (TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify [...] Read more.
Tomato yellow leaf curl virus (TYLCV) poses a significant threat to tomato production, leading to severe yield losses. The current control strategies primarily rely on the use of pesticides, which are often nonselective and costly. Therefore, there is an urgent need to identify more environmentally friendly alternatives. Dufulin, a novel compound that has been effective in controlling viral diseases in tobacco and rice, has not yet been tested against TYLCV. This study assessed the efficacy of dufulin in controlling TYLCV over a three-year span from 2021 to 2023 through field trials, by monitoring disease symptoms and viral titers. Additionally, this study assessed the expression levels of genes associated with systemic acquired resistance (SAR), specifically proteinase inhibitor II (PI II) and non-expressor of pathogenesis-related genes 1 (NPR1), using real-time qRT-PCR. The chlorophyll and nitrogen content in the leaves were also measured. Plants treated with dufulin showed reduced symptomatology and lower viral titers compared to the controls. Analysis of gene expression revealed that NPR1 was upregulated in the dufulin-treated plants, whereas PI II expression was consistently downregulated in the TYLCV-infected plants. Interestingly, PI II expression increased in the healthy plants following a seven-day post-treatment with dufulin. Moreover, the treated plants exhibited a higher chlorophyll content than the controls, though no significant differences in the nitrogen levels were observed between the dufulin-treated and water-treated plants. Overall, the application of dufulin significantly bolstered the plant’s defense response, effectively reducing TYLCV symptoms and enhancing resistance. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

21 pages, 1301 KiB  
Review
Interactions between Common Bean Viruses and Their Whitefly Vector
by Amanda L. Ferreira, Murad Ghanim, Yi Xu and Patricia V. Pinheiro
Viruses 2024, 16(10), 1567; https://doi.org/10.3390/v16101567 - 2 Oct 2024
Cited by 1 | Viewed by 2251
Abstract
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although [...] Read more.
Common bean (Phaseolus vulgaris L.) is a widely cultivated crop, representing an important protein source in the human diet in developing countries. The production of this crop faces serious challenges, such as virus diseases transmitted by the whitefly Bemisia tabaci. Although there is a lot of information about some of these viruses, most of what we know has been developed using model systems, such as tomato plants and tomato yellow leaf curl virus (TYLCV). There is still very little information on the most relevant common bean viruses, such as bean golden mosaic virus (BGMV), bean golden yellow mosaic virus (BGYMV), bean dwarf mosaic virus (BDMV), cowpea mild mottle virus (CPMMV), and bean yellow disorder virus (BnYDV). In this review, we discuss the available data in the most up-to-date literature and suggest future research avenues to contribute to the development of management tools for preventing or reducing the damage caused by viruses in this important crop. Full article
(This article belongs to the Section Viruses of Plants, Fungi and Protozoa)
Show Figures

Figure 1

15 pages, 2438 KiB  
Article
Non-Feeding Transmission Modes of the Tomato Yellow Leaf Curl Virus by the Whitefly Bemisia tabaci Do Not Contribute to Reoccurring Leaf Curl Outbreaks in Tomato
by Wendy G. Marchant, Judith K. Brown, Saurabh Gautam, Saptarshi Ghosh, Alvin M. Simmons and Rajagopalbabu Srinivasan
Insects 2024, 15(10), 760; https://doi.org/10.3390/insects15100760 - 30 Sep 2024
Cited by 2 | Viewed by 1540
Abstract
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of [...] Read more.
Tomato yellow leaf curl virus (TYLCV) causes significant yield loss in tomato production in the southeastern United States and elsewhere. TYLCV is transmitted by the whitefly Bemisia tabaci cryptic species in a persistent, circulative, and non-propagative manner. Unexpectedly, transovarial and sexual transmission of TYLCV has been reported for one strain from Israel. In this study, the potential contribution of the B. tabaci B cryptic species transovarial and sexual transmission of TYLCV (Israel strain, Georgia variant, Georgia, USA) to reoccurring outbreaks was investigated by conducting whitefly-TYLCV transmission assays and virus DNA detection using end point PCR, DNA quantitation via real-time PCR, and virion detection by immunocapture PCR. TYLCV DNA was detectable in four, two, and two percent of first-generation fourth-instar nymphs, first-generation adults, and second-generation adults, respectively, following transovarial acquisition. Post-mating between viruliferous counterparts, the virus’s DNA was detected in four percent of males and undetectable in females. The accumulation of TYLCV DNA in whiteflies from the transovarial and/or sexual experiments was substantially lower (100 to 1000-fold) compared with whitefly adults allowed a 48-hr acquisition-access period on plants infected with TYLCV. Despite the detection of TYLCV DNA in whiteflies from the transovarial and/or mating experiments, the virions were undetectable by immunocapture PCR—a technique specifically designed to detect virions. Furthermore, tomato test plants exposed to whitefly adults that presumably acquired TYLCV transovarially or through mating remained free of detectable TYLCV DNA. Collectively, the extremely low levels of TYLCV DNA and complete absence of virions detected in whiteflies and the inability of the B. tabaci cryptic species B to transmit TYLCV to test tomato plants following transovarial and mating acquisition indicate that neither transovarial nor sexual transmission of TYLCV are probable or epidemiologically relevant for TYLCV persistence in this pathosystem. Full article
(This article belongs to the Special Issue Plant–Insect Vector–Pathogen Interactions)
Show Figures

Figure 1

14 pages, 1343 KiB  
Article
Demonstration of Insect Vector-Mediated Transfer of a Betasatellite between Two Helper Viruses
by Noun Fouad, Martine Granier, Stéphane Blanc, Gaël Thébaud and Cica Urbino
Viruses 2024, 16(9), 1420; https://doi.org/10.3390/v16091420 - 5 Sep 2024
Cited by 1 | Viewed by 1516
Abstract
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread [...] Read more.
Begomoviruses, transmitted by the whitefly Bemisia tabaci, pose significant threats to global agriculture due to their severe impact on various crops. Among the satellite molecules associated with begomoviruses, betasatellites play a crucial role in enhancing disease severity and yield losses. The spread and association of these molecules with helper viruses in host plants are thus matters of concern. Here, we focus on the propagation of betasatellites and, more specifically, on their transfer between different helper viruses and hosts through vector transmission. Our results show that the cotton leaf curl Gezira betasatellite (CLCuGeB), initially acquired with its helper virus cotton leaf curl Gezira virus (CLCuGeV) from an okra plant, can be transmitted and assisted by a different helper virus, tomato yellow leaf curl virus (TYLCV), in a different host plant (tomato plant). The new association can be formed whether TYLCV and CLCuGeB encounter each other in a host plant previously infected with TYLCV or in whiteflies having acquired the different components separately. Our findings reveal two pathways by which betasatellites can be transferred between helper viruses and host plants and highlight the ability of betasatellites to spread in begomovirus-infected environments. Full article
(This article belongs to the Special Issue Plant Viruses and Their Vectors: Epidemiology and Control)
Show Figures

Figure 1

12 pages, 848 KiB  
Article
Effect of Introgression of Ty-1 and ty-5 Genes on Productivity, Quality, and Antioxidant Compounds in De la Pera Tomato Breeding Lines
by José Ángel Cabrera, Pedro Carbonell, Juan Francisco Salinas, Adrian Grau, Aranzazu Alonso, Francisca Hernández, Juan José Ruiz and Santiago García-Martínez
Agriculture 2024, 14(7), 1192; https://doi.org/10.3390/agriculture14071192 - 19 Jul 2024
Cited by 2 | Viewed by 1683
Abstract
Tomato (Solanum lycopersicum L.) is a crop that is affected by more than a hundred viral species. De la pera is a local varietal type of tomato that is very popular in southeastern Spain. However, it is highly susceptible to several viruses, [...] Read more.
Tomato (Solanum lycopersicum L.) is a crop that is affected by more than a hundred viral species. De la pera is a local varietal type of tomato that is very popular in southeastern Spain. However, it is highly susceptible to several viruses, such as Tomato yellow leaf curl virus (TYLCV), which is considered one of the most important diseases of tomato crops and is a limiting factor for production in both outdoor and protected crops, making it difficult to eradicate. This study shows the effect of gene introgression on the performance of traditional lines of De la pera by combining two genes that offer tolerance to TYLCV, Ty-1 and ty-5, on some yield and quality traits and on the antioxidant capacity of tomato fruits. Two pear tomato breeding families, UMH175 and UMH220, were evaluated. Four lines from each of the families with all homozygous combinations of the Ty-1 and ty-5 genes were studied. The results showed that the introgression of the ty-5 allele produced a slight negative effect on yield, mean fruit weight, total soluble solids, and titratable acidity, in contrast to Ty-1, which produced a large negative effect. None of the introgressions showed a negative effect on the antioxidant compounds. ty-5 is a promising gene for use in breeding programs. Full article
Show Figures

Figure 1

20 pages, 14746 KiB  
Article
Gibberellin Positively Regulates Tomato Resistance to Tomato Yellow Leaf Curl Virus (TYLCV)
by Chenwei Zhang, Dandan Wang, Yan Li, Zifan Wang, Zhiming Wu, Qingyin Zhang, Hongwei Jia, Xiaoxu Dong, Lianfen Qi, Jianhua Shi and Zhonglin Shang
Plants 2024, 13(9), 1277; https://doi.org/10.3390/plants13091277 - 6 May 2024
Cited by 3 | Viewed by 2880
Abstract
Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that [...] Read more.
Tomato yellow leaf curl virus (TYLCV) is a prominent viral pathogen that adversely affects tomato plants. Effective strategies for mitigating the impact of TYLCV include isolating tomato plants from the whitefly, which is the vector of the virus, and utilizing transgenic lines that are resistant to the virus. In our preliminary investigations, we observed that the use of growth retardants increased the rate of TYLCV infection and intensified the damage to the tomato plants, suggesting a potential involvement of gibberellic acid (GA) in the conferring of resistance to TYLCV. In this study, we employed an infectious clone of TYLCV to inoculate tomato plants, which resulted in leaf curling and growth inhibition. Remarkably, this inoculation also led to the accumulation of GA3 and several other phytohormones. Subsequent treatment with GA3 effectively alleviated the TYLCV-induced leaf curling and growth inhibition, reduced TYLCV abundance in the leaves, enhanced the activity of antioxidant enzymes, and lowered the reactive oxygen species (ROS) levels in the leaves. Conversely, the treatment with PP333 exacerbated TYLCV-induced leaf curling and growth suppression, increased TYLCV abundance, decreased antioxidant enzyme activity, and elevated ROS levels in the leaves. The analysis of the gene expression profiles revealed that GA3 up-regulated the genes associated with disease resistance, such as WRKYs, NACs, MYBs, Cyt P450s, and ERFs, while it down-regulated the DELLA protein, a key agent in GA signaling. In contrast, PP333 induced gene expression changes that were the opposite of those caused by the GA3 treatment. These findings suggest that GA plays an essential role in the tomato’s defense response against TYLCV and acts as a positive regulator of ROS scavenging and the expression of resistance-related genes. Full article
(This article belongs to the Section Horticultural Science and Ornamental Plants)
Show Figures

Figure 1

12 pages, 1633 KiB  
Article
Begomovirus Transmission to Tomato Plants Is Not Hampered by Plant Defenses Induced by Dicyphus hesperus Knight
by Saioa Legarrea, Angela Gabrielle LaTora, Alvin M. Simmons and Rajagopalbabu Srinivasan
Viruses 2024, 16(4), 587; https://doi.org/10.3390/v16040587 - 10 Apr 2024
Cited by 2 | Viewed by 1674
Abstract
Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby [...] Read more.
Plants can respond to insect infestation and virus infection by inducing plant defenses, generally mediated by phytohormones. Moreover, plant defenses alter host quality for insect vectors with consequences for the spread of viruses. In agricultural settings, other organisms commonly interact with plants, thereby inducing plant defenses that could affect plant–virus–vector interactions. For example, plant defenses induced by omnivorous insects can modulate insect behavior. This study focused on tomato yellow leaf curl virus (TYLCV), a plant virus of the family Geminiviridae and genus Begomovirus. It is transmitted in a persistent circulative manner by the whitefly Bemisia tabaci Gennadius (Hemiptera: Aleyrodidae), posing a global threat to tomato production. Mirids (Hemiptera: Miridae) are effective biological control agents of B. tabaci, but there is a possibility that their omnivorous nature could also interfere with the process of virus transmission. To test this hypothesis, this study first addressed to what extent the mirid bug Dicyphus hesperus Knight induces plant defenses in tomato. Subsequently, the impact of this plant–omnivore interaction on the transmission of TYLCV was evaluated. Controlled cage experiments were performed in a greenhouse setting to evaluate the impact of mirids on virus transmission and vector acquisition by B. tabaci. While we observed a reduced number of whiteflies settling on plants exposed to D. hesperus, the plant defenses induced by the mirid bug did not affect TYLCV transmission and accumulation. Additionally, whiteflies were able to acquire comparable amounts of TYLCV on mirid-exposed plants and control plants. Overall, the induction of plant defenses by D. hesperus did not influence TYLCV transmission by whiteflies on tomato. Full article
(This article belongs to the Special Issue Molecular Virus-Insect Interactions)
Show Figures

Figure 1

16 pages, 3220 KiB  
Article
D-Limonene Affects the Feeding Behavior and the Acquisition and Transmission of Tomato Yellow Leaf Curl Virus by Bemisia tabaci
by Yan Wei, Liming Gao, Zhanhong Zhang, Kailong Li, Zhuo Zhang, Deyong Zhang, Jianbin Chen, Jing Peng, Yang Gao, Jiao Du, Shuo Yan, Xiaobin Shi and Yong Liu
Viruses 2024, 16(2), 300; https://doi.org/10.3390/v16020300 - 15 Feb 2024
Cited by 5 | Viewed by 2538
Abstract
Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant–insect–plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. [...] Read more.
Bemisia tabaci (Gennadius) is an important invasive pest transmitting plant viruses that are maintained through a plant–insect–plant cycle. Tomato yellow leaf curl virus (TYLCV) can be transmitted in a persistent manner by B. tabaci, which causes great losses to global agricultural production. From an environmentally friendly, sustainable, and efficient point of view, in this study, we explored the function of d-limonene in reducing the acquisition and transmission of TYLCV by B. tabaci as a repellent volatile. D-limonene increased the duration of non-feeding waves and reduced the duration of phloem feeding in non-viruliferous and viruliferous whiteflies by the Electrical Penetration Graph technique (EPG). Additionally, after treatment with d-limonene, the acquisition and transmission rate of TYLCV was reduced. Furthermore, BtabOBP3 was determined as the molecular target for recognizing d-limonene by real-time quantitative PCR (RT-qPCR), fluorescence competitive binding assays, and molecular docking. These results confirmed that d-limonene is an important functional volatile which showed a potential contribution against viral infections with potential implications for developing effective TYLCV control strategies. Full article
(This article belongs to the Special Issue Molecular Virus-Insect Interactions)
Show Figures

Figure 1

18 pages, 5621 KiB  
Article
Exploring Tomato Fruit Viromes through Transcriptome Data Analysis
by Yeonhwa Jo, Hoseong Choi, Bong Choon Lee, Jin-Sung Hong, Sang-Min Kim and Won Kyong Cho
Viruses 2023, 15(11), 2139; https://doi.org/10.3390/v15112139 - 24 Oct 2023
Cited by 1 | Viewed by 2077
Abstract
This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato [...] Read more.
This study delves into the complex landscape of viral infections in tomatoes (Solanum lycopersicum) using available transcriptome data. We conducted a virome analysis, revealing 219 viral contigs linked to four distinct viruses: tomato chlorosis virus (ToCV), southern tomato virus (STV), tomato yellow leaf curl virus (TYLCV), and cucumber mosaic virus (CMV). Among these, ToCV predominated in contig count, followed by STV, TYLCV, and CMV. A notable finding was the prevalence of coinfections, emphasizing the concurrent presence of multiple viruses in tomato plants. Despite generally low viral levels in fruit transcriptomes, STV emerged as the primary virus based on viral read count. We delved deeper into viral abundance and the contributions of RNA segments to replication. While initially focused on studying the impact of sound treatment on tomato fruit transcriptomes, the unexpected viral presence underscores the importance of considering viruses in plant research. Geographical variations in virome communities hint at potential forensic applications. Phylogenetic analysis provided insights into viral origins and genetic diversity, enhancing our understanding of the Korean tomato virome. In conclusion, this study advances our knowledge of the tomato virome, stressing the need for robust pest control in greenhouse-grown tomatoes and offering insights into virus management and crop protection. Full article
(This article belongs to the Special Issue Diversity and Coinfections of Plant or Fungal Viruses 2023)
Show Figures

Figure 1

8 pages, 1583 KiB  
Brief Report
A New Strategy of Cross-Protection Based on Attenuated Vaccines: RNA Viruses Are Used as Vectors to Control DNA Viruses
by Mingjing Zhu, Shanshan Liu, Zhao Wang, Chengming Yu and Xuefeng Yuan
Agronomy 2023, 13(9), 2334; https://doi.org/10.3390/agronomy13092334 - 7 Sep 2023
Cited by 4 | Viewed by 2503
Abstract
Plant viruses can infect various types of plants, including food and oil crops, and ornamental flowers, threatening agricultural production and food supply. Cross-protection is an efficient strategy against severe viral strains. Due to distinct infection mechanisms, cross-protection cases involving RNA viruses and DNA [...] Read more.
Plant viruses can infect various types of plants, including food and oil crops, and ornamental flowers, threatening agricultural production and food supply. Cross-protection is an efficient strategy against severe viral strains. Due to distinct infection mechanisms, cross-protection cases involving RNA viruses and DNA viruses often rely on the utilization of corresponding attenuated strains for control purposes. In this study, we utilized cucumber mosaic virus (CMV), a member of the RNA virus group, as the foundational framework for developing attenuated vaccines. We developed four vaccines by inserting relevant sequences from tomato yellow leaf curl virus (TYLCV), a DNA virus. All vaccines demonstrated effective prevention against TYLCV infection, with relative control efficacies exceeding 80%. Subsequently, we evaluated the preventive effects of these vaccines on mixed infections of CMV and TYLCV. Our findings demonstrated that CMV (R2-2bPTI-TYC1C4), CMV (R2-2bPTII-TYC1C4), and CMV (R2-2bPTIII-TYRep) displayed significant efficacy in preventing mixed infections. Following pre-inoculation with these vaccines, the disease index of tomato plants decreased from 100 to 56. This work provides theoretical foundations and tangible resources for controlling TYLCV through cross-protection while suggesting a feasible strategy for utilizing weak RNA virus vaccines to control DNA viruses. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

11 pages, 1655 KiB  
Communication
Association of Tomato Chlorosis Virus Complicates the Management of Tomato Yellow Leaf Curl Virus in Cultivated Tomato (Solanum lycopersicum) in the Southern United States
by Manish Kumar, Saritha Raman Kavalappara, Theodore McAvoy, Samuel Hutton, Alvin M. Simmons and Sudeep Bag
Horticulturae 2023, 9(8), 948; https://doi.org/10.3390/horticulturae9080948 - 21 Aug 2023
Cited by 12 | Viewed by 3571
Abstract
Tomato (Solanum lycopersicum L.) production in the USA has been severely impacted by the tomato yellow leaf curl virus (TYLCV). Furthermore, a complex association of whitefly-transmitted TYLCV (genus, begomovirus) and tomato chlorosis virus (ToCV, genus, crinivirus) were recently identified in tomato. Several tomato [...] Read more.
Tomato (Solanum lycopersicum L.) production in the USA has been severely impacted by the tomato yellow leaf curl virus (TYLCV). Furthermore, a complex association of whitefly-transmitted TYLCV (genus, begomovirus) and tomato chlorosis virus (ToCV, genus, crinivirus) were recently identified in tomato. Several tomato cultivars were developed and commercialized with intermediate resistance (IR) against TYLCV-IL (Israel), the predominant strain of TYLCV found in Georgia, USA. TYLCV-resistant cultivars were tested in open field conditions against multiple whitefly-transmitted viruses in Georgia under natural disease pressure during the fall of 2022. The area under disease progress curve (AUDPC) over time showed a steady increase in disease severity among all cultivars. Further analysis of infected samples using high throughput sequencing (HTS) and quantitative PCR (qPCR) revealed the presence of TYLCV and ToCV in symptomatic upper and lower leaves, respectively. Moreover, the presence of both viruses in upper and lower leaves was determined. A mixed infection of both viruses, TYLCV and ToCV, resulted in severe disease development which may enhance the commercial tomato plants to break resistance and lead to decreased fruit quality and marketable yields. Full article
(This article belongs to the Special Issue The Diagnosis, Management, and Epidemiology of Plant Diseases)
Show Figures

Figure 1

Back to TopTop