Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,735)

Search Parameters:
Keywords = tomato fruit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3421 KB  
Article
Synergistic Plant Biostimulatory Effects of an Inter-Kingdom Interaction: Chlorella sp. and Kocuria rhizophila Algal–Bacterial Co-Culture for Sustainable Crop Production
by Katalin Tajti, Attila Farkas, Milán Farkas, Tibor Bíró, Vince Ördög and Gergely Maróti
Plants 2026, 15(2), 292; https://doi.org/10.3390/plants15020292 - 18 Jan 2026
Viewed by 52
Abstract
Plant biostimulatory effects of the green alga Chlorella sp. MACC-360, the Kocuria rhizophila FSP120 bacterial strain, and the combined inter-kingdom co-culture of the alga and bacterium were investigated using Solanum lycopersicum as a model plant grown under controlled greenhouse conditions. The application of [...] Read more.
Plant biostimulatory effects of the green alga Chlorella sp. MACC-360, the Kocuria rhizophila FSP120 bacterial strain, and the combined inter-kingdom co-culture of the alga and bacterium were investigated using Solanum lycopersicum as a model plant grown under controlled greenhouse conditions. The application of algal–bacterial co-cultures using the soil drench method significantly improved plant growth parameters, vegetative biomass yield, fruit yield, and photosynthetic performance of the tomato plants. The combined treatment resulted in a 43.7% increase in mean fruit yield, while individual applications of K. rhizophila FSP120 and Chlorella sp. MACC-360 enhanced yields by 30.85% and 19.44%, respectively. Although total yield increases did not reach statistical significance due to high intra-group variability, the treatment’s efficacy was statistically confirmed through key yield parameters including significantly higher fruit weight and fruit diameter (p < 0.05). The enhanced specific biostimulatory effects of the combined treatment could be at least partly attributed to the increased level of algal extracellular polymeric substances (EPS), which was a specific effect of algal co-cultivation with a Kocuria rhizophila bacterium. Detailed analysis of plant phenotypic alterations, biomass yield, fruit and flowering parameters, as well as microbial community analysis of the rhizosphere, were conducted and compared among the various treatments. Our results indicate that an appropriately chosen combination and application of biostimulatory microbes can significantly enhance crop production, which might contribute to more sustainable agriculture. Full article
(This article belongs to the Special Issue Advances in Microbial Solutions for Sustainable Agriculture)
Show Figures

Figure 1

15 pages, 956 KB  
Article
Evaluation of Fruit Quality in Processing Tomato Germplasm Resources
by Qi Wang, Mingya Zhang, Yuhan Shi, Yudong Liu, Wei Xu and Shengqun Pang
Horticulturae 2026, 12(1), 92; https://doi.org/10.3390/horticulturae12010092 - 16 Jan 2026
Viewed by 117
Abstract
In order to screen high-quality processed tomato germplasm resources, the present research measured the content of quality indicators—lycopene, soluble solids, total acidity, total sugar, and vitamin C—in mature fruits of 113 processed tomato high-generation inbred lines. Comprehensive evaluations of germplasm quality were conducted [...] Read more.
In order to screen high-quality processed tomato germplasm resources, the present research measured the content of quality indicators—lycopene, soluble solids, total acidity, total sugar, and vitamin C—in mature fruits of 113 processed tomato high-generation inbred lines. Comprehensive evaluations of germplasm quality were conducted through genetic diversity analysis, correlation analysis, principal component analysis, and cluster analysis. The results indicated that the variability of the five quality traits in the materials under test was relatively high, with a range of variation from 12.21% to 39.04%. Total sugar exhibited the greatest variation, while soluble solids content showed the least variation. The genetic diversity index ranged from 1.899 to 2.064, with total sugar, vitamin C, and lycopene showing high genetic variation. Soluble solids content was significantly positively correlated with lycopene, total sugar, and total acidity, while lycopene content was significantly positively correlated with total sugar. Vitamin C showed weaker correlations with other traits, but exhibited a significant negative correlation with total sugar. Total acidity had relatively simple correlations with other traits, being significantly correlated only with soluble solids. The three principal components extracted from the principal component analysis all had eigenvalues above 0.8%, contributing to a cumulative contribution rate of 77.435%. Through cluster analysis, the tested materials were divided into six major groups at an Euclidean distance of 15. Group I serves as candidate materials for breeding varieties with good basic quality and high vitamin C content. Group II stood out in terms of high sugar and lycopene content, suitable for developing tomato sauce or juice products with high vibrancy and sweetness. Group III had a high nutritional value and vibrant color, serving as core germplasm resources for breeding high-end processing-specific varieties. Group IV had high soluble solids content, making it a parent source for improving the viscosity and flavor of sauce tomatoes. Group V was suitable for specific formulations requiring high acidity or as breeding materials for high-acidity characteristics. Group VI had limited processing potential and should be used cautiously in breeding. The comprehensive evaluation results showed that the top five germplasm resources in terms of score were W119, 61, 82, 83, and W144. This study enriched the high-quality processed tomato germplasm resources and provided parental resources for quality breeding of processed tomatoes. Full article
(This article belongs to the Section Genetics, Genomics, Breeding, and Biotechnology (G2B2))
Show Figures

Figure 1

27 pages, 7708 KB  
Article
Effects of Substrate-Based Root Restriction on Tomato Growth, Fruit Quality, Yield, and Microbial Communities in a Simplified Automatic Soilless Cultivation System
by Yecheng Jin, Siqi Xia, Haili Zhang, Lingyu Wang, Ying Zhou, Jie Zhou, Xiaojian Xia, Nianqiao Shen and Zhenyu Qi
Agronomy 2026, 16(2), 212; https://doi.org/10.3390/agronomy16020212 - 15 Jan 2026
Viewed by 109
Abstract
Root restriction is an agronomic technique that influences plant morphology, physiology, and productivity. This study investigates the effects of root restriction on tomato growth, fruit quality, yield, and rhizosphere microbial communities using three distinct substrates: sand, soil, and peanut shell substrate (PSS), within [...] Read more.
Root restriction is an agronomic technique that influences plant morphology, physiology, and productivity. This study investigates the effects of root restriction on tomato growth, fruit quality, yield, and rhizosphere microbial communities using three distinct substrates: sand, soil, and peanut shell substrate (PSS), within a Simplified Automatic Soilless Culture System (SAS). Results demonstrated that root restriction at 8 cm height significantly enhanced fruit quality indicators: soluble sugar content increased by 69.01% (sand), 53.84% (soil), and 37.67% (PSS); soluble protein increased by 77.23%, 48.14%, and 66.51%; and lycopene increased by 100.03%, 62.33%, and 74.59%, respectively, compared to the 24 cm baseline. However, single-plant yield declined by 28.30% (sand), 64.28% (soil), and 22.06% (PSS). TOPSIS analysis (Technique for Order Preference by Similarity to Ideal Solution) identified PSS at 8 cm as the optimal combination for balancing quality and yield (Cj = 0.631). Microbial amplicon sequencing revealed higher rhizosphere microbial diversity in tomatoes grown in soil and peanut shell substrate compared to sand. These three types of growing media (soil, sand, and peanut shell substrate) establish the rhizosphere of bacterial and fungal communities by selecting specific microbial taxa. Changes in container height drive the reduction–oxidation functional divergence of bacterial communities, affecting the connectivity and complexity of microbial networks. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
Show Figures

Figure 1

24 pages, 15798 KB  
Article
Optimizing Priestley–Taylor Model Based on Machine Learning Algorithms to Simulate Tomato Evapotranspiration in Chinese Greenhouse
by Jiankun Ge, Jiaxu Du, Xuewen Gong, Quan Zhou, Guoyong Yang, Yanbin Li, Huanhuan Li, Jiumao Cai, Hanmi Zhou, Mingze Yao, Xinguang Wei and Weiwei Xu
Horticulturae 2026, 12(1), 89; https://doi.org/10.3390/horticulturae12010089 - 14 Jan 2026
Viewed by 94
Abstract
To further improve the prediction accuracy for greenhouse crop evapotranspiration (ET) under different irrigation conditions and enhance irrigation water use efficiency, this study proposes three methods to revise the Priestley–Taylor (PT) model coefficient α for calculating ET at different growth stages: [...] Read more.
To further improve the prediction accuracy for greenhouse crop evapotranspiration (ET) under different irrigation conditions and enhance irrigation water use efficiency, this study proposes three methods to revise the Priestley–Taylor (PT) model coefficient α for calculating ET at different growth stages: (1) considering the leaf senescence coefficient fS, plant temperature constraint parameter ft, and soil water stress index fsw to correct α (MPT model); (2) combining the Penman–Monteith (PM) model to inversely calculate α (PT-M model); (3) using the machine learning XGBoost algorithm to optimize α (PT-M(XGB) model). Accordingly, this study observed the cumulative evaporation (Ep) of a 20 cm standard evaporation pan and set two different irrigation treatments (K0.9: 0.9Ep and K0.5: 0.5Ep). We conducted field measurements of meteorological data inside the greenhouse, tomato physiological and ecological indices, and ET during 2020 and 2021. The above three methods were then used to dynamically simulate greenhouse tomato ET. Results showed the following: (1) In 2020 and 2021, under K0.9 and K0.5 irrigation treatments, the MPT model mean coefficient α for the entire growth stage was 1.27 and 1.26, respectively, while the PT-M model mean coefficient α was 1.31 and 1.30. For both models, α was significantly lower than 1.26 (conventional value) during the seedling stage and the flowering and fruiting stage, rose rapidly during the fruit enlargement stage, and then gradually declined toward 1.26 during the harvest stage. (2) Predicted ET (ETe) using the PT-M model underestimated the observed ET (ETm) by 8.71~16.01% during the seedling stage and the harvest stage, and overestimated by 1.62~6.15% during the flowering and fruiting stage and the fruit enlargement stage; the errors compared to ETm under both irrigation treatments over two years was 0.1~3.3%, with an R2 of 0.92~0.96. (3) The PT-M(XGB) model achieved higher prediction accuracy, with errors compared to ETm under both irrigation treatments over two years of 0.35~0.65%, and R2 above 0.98. The PT-M(XGB) model combined with the XGBoost algorithm significantly improved prediction accuracy, providing a reference for the precise calculation of greenhouse tomato ET. Full article
Show Figures

Figure 1

16 pages, 1145 KB  
Article
Untargeted Metabolomics Unravel the Effect of SlPBB2 on Tomato Fruit Quality and Associated Plant Metabolism
by Cuicui Wang, Lihua Jin, Daqi Fu and Weina Tian
Metabolites 2026, 16(1), 68; https://doi.org/10.3390/metabo16010068 - 12 Jan 2026
Viewed by 158
Abstract
Background: Proteasomes are protein complexes that mediate proteolysis to degrade unneeded or damaged proteins, and they play an indispensable role in plant growth and development. However, their regulatory effects on tomato fruit quality and the underlying metabolic mechanisms remain largely elusive. This study [...] Read more.
Background: Proteasomes are protein complexes that mediate proteolysis to degrade unneeded or damaged proteins, and they play an indispensable role in plant growth and development. However, their regulatory effects on tomato fruit quality and the underlying metabolic mechanisms remain largely elusive. This study aimed to elucidate the metabolic regulatory mechanisms of proteasomes in tomato fruits through untargeted metabolome analysis. Methods: An untargeted metabolomics approach was employed to profile the metabolic changes in tomato fruits. Metabolites were detected and identified under both positive and negative ion modes. Metabolic profiles were compared between wild-type (WT) tomato fruits and SlPBB2 RNA interference (SlPBB2-RNAi) lines. Specifically, the SlPBB2-RNAi line refers to a transgenic tomato line constructed via Agrobacterium-mediated transformation, where the expression of the proteasome component gene SlPBB2 was stably downregulated by RNA interference technology to clarify its regulatory role in fruit metabolism. KEGG enrichment analysis was performed to annotate the functions of differential metabolites. Results: A total of 568 and 333 metabolites were identified in positive and negative ion modes, respectively. Comparative analysis revealed 43 differentially abundant metabolites between WT and SlPBB2-RNAi fruits, including D-glucose, pyruvic acid, leucine, and naringenin. KEGG enrichment analysis further identified key metabolites involved in the carbon fixation pathway of photosynthetic organisms, with L-malic acid being a prominent representative. Reduced accumulation of D-glucose and pyruvic acid in SlPBB2-RNAi fruits suggested the inhibition of the citrate cycle, a core pathway in cellular energy metabolism. This metabolic perturbation was associated with decreased chlorophyll content in SlPBB2-RNAi plants, implying impaired photosynthetic carbon fixation and energy metabolism. Conclusions: This study uncovers the metabolic regulatory role of SlPBB2-mediated proteasome function in tomato fruits, providing novel insights into the link between proteasomal activity and fruit metabolic homeostasis from a metabolomic perspective. These findings offer new theoretical foundations for developing strategies to improve tomato nutritional quality. Full article
13 pages, 959 KB  
Article
Can the Application of Microbial Inocula Allow for Reducing Phosphate Fertilisation Rates in Open Field Tomato Crops?
by Artur Kowalski, Paweł Trzciński, Aya el Meziane, Lidia Sas-Paszt and Eligio Malusà
Agronomy 2026, 16(2), 170; https://doi.org/10.3390/agronomy16020170 - 9 Jan 2026
Viewed by 130
Abstract
In addition to its obvious benefits, mineral fertilisation also poses a number of threats to the environment. A four-year study was conducted to verify the possibility of integrating the application of a bacterial consortium to reduce the dose of mineral phosphorus (P) fertilisers [...] Read more.
In addition to its obvious benefits, mineral fertilisation also poses a number of threats to the environment. A four-year study was conducted to verify the possibility of integrating the application of a bacterial consortium to reduce the dose of mineral phosphorus (P) fertilisers in field-grown tomato crops without negative effects on yield. The combination of the microbial consortium with a 60% dose of both simple and complex P fertilisers did not show statistical differences in crop productivity and fruit quality compared to the full dose fertilisation each year, even when considering the cumulative yield. This was paralleled by a similar level of leaf chlorophyll index. Plants grown in rhizoboxes showed that the inoculation favoured, in the case of the complex fertiliser, a modification of the root system architecture, though not confirmed statistically. In the case of this kind of fertiliser, the inoculation induced a significant increase in the rhizospheric bacterial metabolic activity, which could be partly accounted for by the agronomic performance. However, this was not paralleled by a modification of the metabolic biodiversity of the bacterial population. The study demonstrated that, for highly demanding crops such as tomato, a valid agrononomic target for the application of microbial-based products integrated into a reduced mineral P fertilisation strategy could reach crop productivity not different from that obtained without them. Such a strategy could favour the adoption of an integrated nutrient management strategy by farmers, with positive impacts also on the environment. Full article
Show Figures

Figure 1

18 pages, 3249 KB  
Article
Functional Identification of the RiPFK2 Gene in Raspberry (Rubus idaeus L.) Demonstrates That It Enhances Fructose Content Inside Fruits
by Binbin Xu, Teng Zhang, Xuesong Ling, Fan Yang, Yingying Wen, Guohui Yang and Tiemei Li
Horticulturae 2026, 12(1), 79; https://doi.org/10.3390/horticulturae12010079 - 9 Jan 2026
Viewed by 181
Abstract
Fruit sweetness is a key trait that determines the quality of fresh raspberries and meets processing requirements. It is mainly regulated by the content of soluble sugars and organic acids. However, there is still a lack of systematic research on the molecular mechanisms [...] Read more.
Fruit sweetness is a key trait that determines the quality of fresh raspberries and meets processing requirements. It is mainly regulated by the content of soluble sugars and organic acids. However, there is still a lack of systematic research on the molecular mechanisms of sugar accumulation during the development of raspberry fruits. This study used the raspberry variety ‘Caroline’ as material. By detecting changes in sugar content during fruit development and ripening, combined with transcriptomic analysis of related differentially expressed genes, it was found that the differentially expressed gene RiPFK2 was significantly upregulated during the period of rapid sugar accumulation in the fruit. We constructed an RiPFK2 overexpression vector and found that fructose content significantly increased in transgenic tomatoes and raspberries, indicating that this gene positively regulates fructose accumulation. This study is the first to reveal the positive regulatory role of PFK family members in fructose accumulation in raspberry fruits, providing a theoretical basis for improving raspberry fruit quality. Full article
(This article belongs to the Special Issue Advances in Developmental Biology and Quality Control of Berry Crops)
Show Figures

Graphical abstract

32 pages, 3837 KB  
Article
The Development and Testing of a Temporary Small Cold Storage System: Gas-Inflated Membrane Cold Storage
by Lihua Duan, Xiaoyan Zhuo, Jiajia Su, Xiaokun Qiu, Limei Li, Wenhan Li, Yaowen Liu and Xihong Li
Foods 2026, 15(2), 231; https://doi.org/10.3390/foods15020231 - 8 Jan 2026
Viewed by 257
Abstract
At present, conventional cold storage facilities in China are poorly suited to on-farm storage demands for agricultural produce, mainly due to their large spatial requirements, complex and labor-intensive installation procedures, limited portability, and insufficient coverage in rural areas. These limitations significantly contribute to [...] Read more.
At present, conventional cold storage facilities in China are poorly suited to on-farm storage demands for agricultural produce, mainly due to their large spatial requirements, complex and labor-intensive installation procedures, limited portability, and insufficient coverage in rural areas. These limitations significantly contribute to post-harvest losses of perishable crops such as cherry tomatoes. To address this challenge, the present study proposes a compact and temporary cold storage system—gas-inflated membrane cold storage (GIMCS)—which exploits the inherent safety, cost-effectiveness, ease of deployment, and adaptability of inflatable membrane structures. A series of mechanical performance tests, including tensile strength, pressure resistance, and burst tests, were conducted on PA/PE (Polyamide/Polyethylene) composite membranes. The optimal configuration was identified as a membrane thickness of 70 μm, a gas column width of 2 cm, and a PA/PE composition ratio of 35%/65%. Thermal performance evaluations further revealed that filling the inflatable structure with 100% CO2 yielded the most effective insulation. Through structural optimization, a cotton-filled gas-inflated membrane cold storage system (CF-GIMCS) incorporating a dual insulation strategy—combining intra-membrane and extra-membrane insulation—was developed. This multilayer configuration significantly reduced conductive and convective heat transfer, resulting in enhanced thermal performance. A comparative evaluation between GIMCS and a conventional cold storage system of equivalent capacity was conducted over a 15-day storage period, considering construction cost, temperature uniformity, and fruit preservation quality. The results showed that the construction cost of GIMCS was only 38% of that of conventional cold storage. The internal temperature distribution of GIMCS was highly uniform, with a maximum horizontal temperature difference of 1.4 °C, demonstrating thermal stability comparable to conventional systems. No statistically significant differences were observed between the two systems in key post-harvest quality indicators, including weight loss and respiration rate. Notably, GIMCS exhibited superior performance in maintaining fruit firmness, with a hardness of 1.30 kg·cm−2 compared to 1.26 kg·cm−2 in conventional storage, indicating a potential advantage in shelf-life extension. Overall, these findings demonstrate that GIMCS represents an affordable, technically robust, and portable cold storage solution capable of delivering preservation performance comparable to—or exceeding—that of conventional cold storage. Its modularity, mobility, and ease of relocation make it particularly well suited to the operational and economic constraints of smallholder farming systems, offering a practical and scalable pathway for improving on-farm cold chain infrastructure. Full article
Show Figures

Figure 1

30 pages, 6438 KB  
Article
The Role of Zinc Oxide Nanoparticles in Boosting Tomato Leaf Quality and Antimicrobial Potency
by Mostafa Ahmed, Sally I. Abd-El Fatah, Abdulrhman Sayed Shaker, Zoltán Tóth and Kincső Decsi
Oxygen 2026, 6(1), 2; https://doi.org/10.3390/oxygen6010002 - 8 Jan 2026
Viewed by 180
Abstract
Salt stress is a major agricultural issue. A promising modern agriculture method is the foliar treatment of zinc oxide nanoparticles (ZnONPs). This approach has shown promise in boosting challenged tomato yields, fruit quality, and leaf extract antibacterial activity against pathogens. A greenhouse experiment [...] Read more.
Salt stress is a major agricultural issue. A promising modern agriculture method is the foliar treatment of zinc oxide nanoparticles (ZnONPs). This approach has shown promise in boosting challenged tomato yields, fruit quality, and leaf extract antibacterial activity against pathogens. A greenhouse experiment was conducted. The previously synthesized and characterized ZnONPs were used to alleviate the harmful effects of NaCl stress. Tomato fruit weight from different treatments was determined, and the gas–liquid chromatography device was used to observe the changes in fatty acid production. The antimicrobial activities of the aqueous and diethyl ether extracts from tomato leaves were determined against six bacterial and six fungal strains. The plants that were salinity-stressed and sprayed with 0.075 and 0.15 g/L ZnONPs showed a better improvement compared to the salinity-stressed plants. Also, the sprayed plants that were not stressed at all showed promising results compared to the control and the other different treatments. Through the process of molecular docking, it was shown that caffeic acid, ferulic acid, p-coumaric acid, sinapic acid, and apigenin-7-glucoside are essential chemicals that possess antibacterial and antifungal effects against the DNA Gyrase inhibitor and the sterol 14-alpha demethylase (CYP51) enzyme, respectively. It is concluded that salt stress can negatively affect the growth, quality, and variant plant features. However, the foliar application of ZnONPs is able to overcome those adverse effects in the stressed plants, and enhance the non-stressed as well. Full article
Show Figures

Figure 1

28 pages, 4190 KB  
Article
Effect of Two Calcium Levels and a Chicken Manure-Based Soil Amendment on Tomato Hybrid Performance
by Carlos David Carretillo Moctezuma, Abraham Francisco Aponte Herrera, José Terrones Salgado, Edgar Pérez Arriaga, Flaviano Godínez-Jaimes, María Guzmán Martínez, José Francisco Díaz-Nájera, Ramón Reyes Carreto, José C. García-Preciado and Juan Antonio Chamú-Baranda
Crops 2026, 6(1), 11; https://doi.org/10.3390/crops6010011 - 8 Jan 2026
Viewed by 168
Abstract
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. [...] Read more.
Calcium (Ca) is essential for tomato (Solanum lycopersicum L.) fruit quality and for preventing physiological disorders such as blossom-end rot. However, high total soil Ca does not necessarily translate into plant-available Ca due to factors such as soil pH and limited mobility. This study evaluated soil Ca availability and the effect of a chicken manure-based soil amendment on the growth and yield of four tomato genotypes (Pony Express F1, Palomo F1, Toro F1, and Perseo F1) grown on a loam–clay–sand soil containing 4886 ppm Ca. In the first cycle, conducted in a shade house, two Ca application levels (0% and 25% of the crop’s requirement) were tested. The 0% treatment outperformed the 25% treatment regarding yield-related traits, indicating that native soil Ca met crop demand; application of 25% Ca reduced total fruit weight and fruit number by 19.7% and 5.9%, respectively, while the 0% treatment produced 40.8% more first-quality fruits. Perseo F1 (Perseo) produced the highest yield of first-quality fruits (20.61 t ha−1), exceeding Pony Express F1 (Pony express), Palomo F1 (Palomo), and Toro F1 (Toro) by 10.8%, 6.6%, and 51.4%, respectively. In a second cycle under open-field conditions, incorporation of the chicken manure amendment significantly enhanced growth and yield: treated plants reached a 0.85 m height 58 days after transplanting, and overall yield increased to 70.08 t ha−1 compared with 50.30 t ha−1 in the control (21.9% increase). These results indicate that, while native soil Ca can satisfy crop requirements under the studied conditions, soil amendment under field conditions substantially improves plant performance and commercial yield potential. Full article
Show Figures

Figure 1

25 pages, 2831 KB  
Article
Lightweight Vision–Transformer Network for Early Insect Pest Identification in Greenhouse Agricultural Environments
by Wenjie Hong, Shaozu Ling, Pinrui Zhu, Zihao Wang, Ruixiang Zhao, Yunpeng Liu and Min Dong
Insects 2026, 17(1), 74; https://doi.org/10.3390/insects17010074 - 8 Jan 2026
Viewed by 333
Abstract
This study addresses the challenges of early recognition of fruit and vegetable diseases and pests in facility horticultural greenhouses and the difficulty of real-time deployment on edge devices, and proposes a lightweight cross-scale intelligent recognition network, Light-HortiNet, designed to achieve a balance between [...] Read more.
This study addresses the challenges of early recognition of fruit and vegetable diseases and pests in facility horticultural greenhouses and the difficulty of real-time deployment on edge devices, and proposes a lightweight cross-scale intelligent recognition network, Light-HortiNet, designed to achieve a balance between high accuracy and high efficiency for automated greenhouse pest and disease detection. The method is built upon a lightweight Mobile-Transformer backbone and integrates a cross-scale lightweight attention mechanism, a small-object enhancement branch, and an alternative block distillation strategy, thereby effectively improving robustness and stability under complex illumination, high-humidity environments, and small-scale target scenarios. Systematic experimental evaluations were conducted on a greenhouse pest and disease dataset covering crops such as tomato, cucumber, strawberry, and pepper. The results demonstrate significant advantages in detection performance, with mAP@50 reaching 0.872, mAP@50:95 reaching 0.561, classification accuracy reaching 0.894, precision reaching 0.886, recall reaching 0.879, and F1-score reaching 0.882, substantially outperforming mainstream lightweight models such as YOLOv8n, YOLOv11n, MobileNetV3, and Tiny-DETR. In terms of small-object recognition capability, the model achieved an mAP-small of 0.536 and a recall-small of 0.589, markedly enhancing detection stability for micro pests such as whiteflies and thrips as well as early-stage disease lesions. In addition, real-time inference performance exceeding 20 FPS was achieved on edge platforms such as Jetson Nano, demonstrating favorable deployment adaptability. Full article
Show Figures

Figure 1

16 pages, 1233 KB  
Article
Organ-Based Accumulation, Translocation, and Associated Health Risk of Al, Ni, and Zn in Tomatoes, Peppers, Eggplants, Cucumbers, and Corn from an Industrial Zone in Düzce, Türkiye
by Harun Demirci, Hakan Sevik, Ismail Koc, Handan Ucun Ozel, Ramazan Erdem, Fatih Adiguzel, Erol Imren and Halil Baris Ozel
Foods 2026, 15(2), 196; https://doi.org/10.3390/foods15020196 - 6 Jan 2026
Viewed by 247
Abstract
Heavy metals are among the most hazardous pollutants to human health and can be particularly harmful when inhaled or ingested. Therefore, the concentrations of heavy metals in fruits and vegetables grown in regions with high levels of heavy metal pollution should be carefully [...] Read more.
Heavy metals are among the most hazardous pollutants to human health and can be particularly harmful when inhaled or ingested. Therefore, the concentrations of heavy metals in fruits and vegetables grown in regions with high levels of heavy metal pollution should be carefully examined. This study investigated the variation in aluminum (Al), nickel (Ni), and zinc (Zn) concentrations by species and organ in tomatoes, peppers, eggplants, cucumbers, and corn grown near the industrial zone in Düzce, a heavily polluted city in Europe. We determined bioconcentration factors (BCFs) and translocation factors (TFs) in plant organs and assessed the health risk through the Target Hazard Quotient (THQ) and Hazard Index (HI). The results show that Al pollution in the region significantly exceeded the World Health Organization (WHO) and European Union (EU) limit values, and accumulated in all plant organs, including fruits. Furthermore, high levels of metals were translocated from the soil into the organs of peppers and tomatoes. The HI indicated a potential non-carcinogenic health risk (HI > 1) from the consumption of tomatoes, cucumbers, and peppers, primarily driven by Ni. Based on these results, it is recommended that local authorities address Al pollution in the region, avoiding the cultivation of tomatoes and peppers and instead cultivating corn and eggplant. We also observed that Zn levels were very high in the aerial parts of the plants, reaching up to 90% compared to Ni and Al. This study underscores the need to reduce Zn absorption rates, as dietary intake can pose a significant threat to human health. Full article
(This article belongs to the Section Food Toxicology)
Show Figures

Figure 1

16 pages, 5630 KB  
Article
Alternative to Groundwater Drip Irrigation for Tomatoes in Cold and Arid Regions of North China by Rainwater Harvesting from Greenhouse Film
by Mengmeng Sun, Jizong Zhang, Jiayi Qin, Huibin Li and Lifeng Zhang
Agronomy 2026, 16(1), 132; https://doi.org/10.3390/agronomy16010132 - 5 Jan 2026
Viewed by 168
Abstract
Groundwater resources are scarce in the cold and arid regions of north China. Moreover, regional water resource replenishment without external sources remains difficult. This water deficit has become a major factor restricting the sustainable development of regional vegetable production. The effective utilization of [...] Read more.
Groundwater resources are scarce in the cold and arid regions of north China. Moreover, regional water resource replenishment without external sources remains difficult. This water deficit has become a major factor restricting the sustainable development of regional vegetable production. The effective utilization of rainwater harvesting for irrigated agricultural production is necessary to suppress droughts and floods in farming under the semi-arid climate of this area in order to both guarantee a stable supply of vegetables to the market in south and north China and promote the balanced development of regional agriculture–resource–environment integration. In this study, based on continuous simulation and Python modeling, we simulated and analyzed the water supply and production effects of irrigation with harvests and stored rainwater on tomatoes under different water supply scenarios from 1992 to 2023. We then designed and tested a water-saving and high-yield project for rainwater-irrigated greenhouses in 2024 and 2025 under natural rainfall conditions in northwestern Hebei Province based on the reference irrigation scheme. The water supply satisfaction rate, water demand satisfaction rate, and volume of water inventory of tomato fields under different water supply scenarios increased with the rainwater tank size, and the corresponding drought yield reduction rate of tomato decreased. Under the actual rainfall scenarios in 2024 and 2025, a 480 m2 greenhouse with a 14.4 m3 rainwater tank for producing tomatoes irrigated with rainwater drip from the greenhouse film collected 127.7 and 120.5 m3 of rainwater, respectively. The volume of the rainwater tank was exceeded 8.3 and 8.0 times, and up to 93.8% and 95.0% of the irrigated groundwater was replaced; additionally, the average yield of the small-fruited tomato ‘Beisi’ was 50,076.6 kg·hm−2 and 48,110.2 kg·hm−2, reaching 96.1% and 92.3% of the expected yield. Conclusion: The irrigation strategy based on the innovative “greenhouse film–rainwater harvesting–groundwater replenishment” model developed in this study has successfully achieved a high substitution rate of groundwater for greenhouse tomato production in the cold and arid regions of north China while ensuring stable yields by mitigating drought and waterlogging risks. This model not only provides a replicable technical framework for sustainable agricultural water resource management in semi-arid areas but also offers critical theoretical and practical support for addressing water scarcity and ensuring food security under global climate change. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

16 pages, 3799 KB  
Article
Phylogenetic Divergence and Domestication Jointly Shape the Tomato Root Microbiome
by Grigorios Thomaidis, Georgios Boutzikas, Athanasios Alexopoulos and Christos Zamioudis
Plants 2026, 15(1), 163; https://doi.org/10.3390/plants15010163 - 5 Jan 2026
Viewed by 335
Abstract
Domestication reduced the genetic diversity in modern crops, often resulting in reduced resilience to biotic and abiotic stress. Evidence is now accumulating that domestication also altered the structure and function of root-associated microbiomes, creating new opportunities to harness beneficial microbes for breeding and [...] Read more.
Domestication reduced the genetic diversity in modern crops, often resulting in reduced resilience to biotic and abiotic stress. Evidence is now accumulating that domestication also altered the structure and function of root-associated microbiomes, creating new opportunities to harness beneficial microbes for breeding and crop improvement. Using multi-region 16S rRNA sequencing, we compared the rhizosphere and endosphere bacterial communities of cultivated tomato (Solanum lycopersicum cv. Moneymaker) with six wild relatives (S. pimpinellifolium, S. huaylasense, S. peruvianum, S. chilense, S. habrochaites, and S. pennellii) spanning the main wild lineages within Solanum sect. Lycopersicon. Bacterial community structure in the rhizosphere was broadly conserved across all seven hosts, and diversity remained comparable among genotypes. Despite this overall stability, the rhizosphere microbiomes were ordered along a gradient consistent with host phylogeny, with Moneymaker clustering near S. pimpinellifolium, the four green-fruited Eriopersicon species forming a cohesive block, and S. pennellii occupying the most distinct position. Within this hierarchy, individual hosts showed specific recruitment preferences, including enrichment of Streptomycetaceae in S. pimpinellifolium, Bacillaceae in S. chilense, and contrasting patterns of nitrifiers among Eriopersicon species and S. pennellii. Differential abundance testing in the endosphere revealed consistent reductions in several bacterial families in wild accessions, alongside the enrichment of Streptomycetaceae and Rhodobiaceae in multiple wild species. Overall, our study suggests that domestication exerted a modest effect on tomato root microbiomes, while wild relatives retained microbial association traits that could be harnessed in microbiome-informed breeding to improve resilience in cultivated tomato. Full article
(This article belongs to the Special Issue Root Development and Adaptations)
Show Figures

Figure 1

17 pages, 4496 KB  
Article
Integrated Effects of Irrigation Amounts, Fertilizer Types, and Tillage Practices on Crop Growth, Yield, and Fruit Quality of Processing Tomato
by Ruyue Zheng, Junwei Tan, Guanhua Huang and Zailin Huo
Water 2026, 18(1), 123; https://doi.org/10.3390/w18010123 - 5 Jan 2026
Viewed by 194
Abstract
Irrigation effects on processing tomato have been comprehensively studied, whereas the integrated effects of irrigation and agronomic measures lack systematic investigations. This study employed a two-year field experiment to investigate the interactive effects of irrigation, fertilizer, and tillage practices on the crop growth, [...] Read more.
Irrigation effects on processing tomato have been comprehensively studied, whereas the integrated effects of irrigation and agronomic measures lack systematic investigations. This study employed a two-year field experiment to investigate the interactive effects of irrigation, fertilizer, and tillage practices on the crop growth, total yield, and fruit quality of processing tomato. The experimental treatments comprised three irrigation levels (full irrigation, mild water deficit, and moderate water deficit), combined with two fertilizer strategies (synthetic fertilizer only and partial substitution of synthetic fertilizer with manure), and two tillage practices (ridge planting and flat planting). It was found that the partial organic fertilizer substitution and the ridge planting significantly improved the total tomato yield by 13.11% and 75.54% on average, respectively, compared to the synthetic fertilizer application and flat planting, although they led to more salt accumulation in the top soil layer. However, the extent of the increase greatly varied over different irrigation levels and years. The mild water deficit led to a yield increase of 9.22% compared to full irrigation, while the moderate water deficit resulted in an obvious yield loss of 25.95%. Moreover, the ridge planting, the partial organic fertilizer substitution, and water deficit had strong positive effects on the fruit quality and the tillage–irrigation interaction had strong effects on the fruit quality, but it showed negligible effects on the tomato yield. In contrast, the tomato yield was very sensitive to the fertilizer–irrigation interaction, while the fruit quality showed nonsignificant sensitivity to the tillage–irrigation interaction. Finally, the combination of ridge planting, partial organic fertilizer substitution, and a mild water deficit was highlighted as a sustainable cropping production system for processing tomato to achieve an enhanced total yield and fruit quality. Full article
(This article belongs to the Section Water, Agriculture and Aquaculture)
Show Figures

Figure 1

Back to TopTop