Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,285)

Search Parameters:
Keywords = tolerance limit

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2659 KiB  
Article
Salt Stress Responses of Different Rice Varieties at Panicle Initiation: Agronomic Traits, Photosynthesis, and Antioxidants
by Yusheng Li, Yuxiang Xue, Zhuangzhuang Guan, Zhenhang Wang, Daijie Hou, Tingcheng Zhao, Xutong Lu, Yucheng Qi, Yanbo Hao, Jinqi Liu, Lin Li, Haider Sultan, Xiayu Guo, Zhiyong Ai and Aibin He
Plants 2025, 14(15), 2278; https://doi.org/10.3390/plants14152278 (registering DOI) - 24 Jul 2025
Abstract
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). [...] Read more.
The utilization of saline–alkali land for rice cultivation is critical for global food security. However, most existing studies on rice salt tolerance focus on the seedling stage, with limited insights into tolerance mechanisms during reproductive growth, particularly at the panicle initiation stage (PI). Leveraging precision salinity-control facilities, this study imposed four salt stress gradients (0, 3, 5, and 7‰) to dissect the differential response mechanisms of six rice varieties (YXYZ: Yuxiangyouzhan, JLY3261: Jingliangyou3261, SLY91: Shuangliangyou91, SLY138: Shuangliangyou138, HLYYHSM: Hualiangyouyuehesimiao, and SLY11:Shuangliangyou111) during PI. The results revealed that increasing salinity significantly reduced tiller number (13.14–68.04%), leaf area index (18.58–57.99%), canopy light interception rate (11.91–44.08%), and net photosynthetic rate (2.63–52.42%) (p < 0.001), accompanied by reactive oxygen species (ROS)-induced membrane lipid peroxidation. Integrative analysis of field phenotypic and physiological indices revealed distinct adaptation strategies: JLY3261 rapidly activated antioxidant enzymes under 3‰ salinity, alleviating lipid peroxidation (no significant difference in H2O2 or malondialdehyde content compared to 0‰ salinity) and maintaining tillering and aboveground biomass. SLY91 tolerated 7‰ salinity via CAT/POD-mediated lipid peroxide degradation, with H2O2 and malondialdehyde contents increasing initially but decreasing with escalating stress. These findings highlight genotype-specific antioxidant strategies underlying salt-tolerance mechanisms and the critical need for integrating phenomics–physiological assessments at reproductive stages into salt-tolerance breeding pipelines. Full article
Show Figures

Figure 1

13 pages, 1092 KiB  
Article
In Vivo Antibiotic Elution and Inflammatory Response During Two-Stage Total Knee Arthroplasty Revision: A Microdialysis Pilot Study
by Julika Johanna Behrens, Alexander Franz, Frank Alexander Schildberg, Markus Rudowitz, Stefan Grote and Frank Sebastian Fröschen
Antibiotics 2025, 14(8), 742; https://doi.org/10.3390/antibiotics14080742 - 24 Jul 2025
Abstract
Introduction: Two-stage revision with an antibiotic-loaded, temporary static cement spacer is a common treatment for periprosthetic joint infection (PJI) of the knee. However, limited data exists on in vivo antibiotic elution kinetics after spacer implantation. This pilot study uses the technique of [...] Read more.
Introduction: Two-stage revision with an antibiotic-loaded, temporary static cement spacer is a common treatment for periprosthetic joint infection (PJI) of the knee. However, limited data exists on in vivo antibiotic elution kinetics after spacer implantation. This pilot study uses the technique of microdialysis (MD) to collect intra-articular knee samples. The aim was to evaluate MD as an intra-articular sampling method to detect spacer-eluted antibiotics within 72 h after surgery and to determine whether they show specific elution kinetics. Methods: Ten patients (six male, four female; age median 71.5 years) undergoing two-stage revision for knee PJI were included. A MD catheter was inserted into the joint during explantation of the infected inlying implant and implantation of a custom-made static spacer coated with COPAL cement (0.5 g gentamicin (G) and 2 g vancomycin (V)). Over 72 h postoperatively, samples were collected and analyzed for spacer-eluted antibiotics, intravenously administered antibiotics (e.g., cefazolin and cefuroxime), metabolic markers (glucose and lactate), and Interleukin-6 (IL-6). Local and systemic levels were compared. Results: All catheters were positioned successfully and well tolerated for 72 h. Antibiotic concentrations in MD samples peaked within the first 24 h (G: median 9.55 µg/mL [95% CI: 0.4–17.36]; V: 37.57 µg/mL [95% CI: 3.26–81.6]) and decreased significantly over 72 h (for both p < 0.05, G: 4.27 µg/mL [95% CI: 2.26–7.2]; V: 9.69 µg/mL [95% CI: 3.86–24]). MD concentrations consistently exceeded blood levels (p < 0.05), while intravenously administered antibiotics showed higher blood concentrations. Glucose in MD samples decreased from 17.71 mg/dL to 0.89 mg/dL (p < 0.05). IL-6 and lactate concentrations showed no difference between MD and blood samples. Conclusions: Monitoring antibiotics eluted by a static spacer with intra-articular MD for 72 h is feasible. Gentamicin and vancomycin levels remained above the minimal inhibitory concentration. Differentiating infection from surgical response using metabolic and immunological markers remains challenging. Prolonged in vivo studies with MD are required to evaluate extended antibiotic release in two-stage exchanges. Full article
Show Figures

Figure 1

13 pages, 2675 KiB  
Article
Material Removal in Mycelium-Bonded Composites Through Laser Processing
by Maciej Sydor, Grzegorz Pinkowski and Agata Bonenberg
J. Compos. Sci. 2025, 9(8), 389; https://doi.org/10.3390/jcs9080389 - 23 Jul 2025
Abstract
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance [...] Read more.
Mycelium-bonded composites (MBCs), or myco-composites, represent a novel engineered material that combines natural lignocellulosic substrates with a fungal matrix. As a sustainable alternative to plastics, MBCs are gaining increasing interest; however, their large-scale industrial adoption remains limited, partly due to low social acceptance resulting from their unattractive appearance. Laser engraving provides a promising method for fabricating intricate patterns and functional surfaces on MBCs, minimizing tool wear, material loss, and environmental impact, while enhancing esthetic and engineering properties. This study investigates the influence of CO2 laser parameters on the material removal rate during the engraving of myco-composites, focusing on the effects of variable laser power, beam defocus, and head feed rate on engraving outcomes. The results demonstrate that laser power and beam focus significantly impact material removal in mycelium-bonded composites. Specifically, increasing the laser power results in greater material removal, which is more pronounced when the beam is focused due to higher energy density. In contrast, a beam defocused by 1 mm produces less intense material removal. These findings highlight the critical role of beam focus—surpassing the influence of power alone—in determining engraving quality, particularly on irregular or uneven surfaces. Moreover, reducing the laser head feed rate at a constant power level increases the material removal rate linearly; however, it also results in excessive charring and localized overheating, revealing the low thermal tolerance of myco-composites. These insights are essential for optimizing laser processing techniques to fully realize the potential of mycelium-bonded composites as sustainable engineering materials, simultaneously maintaining their appearance and functional properties. Full article
(This article belongs to the Special Issue Advances in Laser Fabrication of Composites)
Show Figures

Figure 1

12 pages, 249 KiB  
Data Descriptor
Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji
by Poasa Nauluvula, Bruce L. Webber, Roslyn M. Gleadow, William Aalbersberg, John N. G. Hargreaves, Bianca T. Das, Diogenes L. Antille and Steven J. Crimp
Data 2025, 10(8), 120; https://doi.org/10.3390/data10080120 - 23 Jul 2025
Abstract
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen [...] Read more.
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen cyanide (HCN) before its consumption, but HCN concentrations can vary considerably between varieties. Climate change and low inputs, particularly carbon and nutrients, affect agriculture in Pacific Island countries where cassava is commonly grown alongside traditional crops (e.g., taro). Despite increasing popularity in this region, there is limited experimental data about cassava crop management for different local varieties, their relative toxicity and nutritional value for human consumption, and their interaction with changing climate conditions. To help address this knowledge gap, three field experiments were conducted at the Koronivia Research Station of the Fiji Ministry of Agriculture. Two varieties of cassava with contrasting HCN content were planted at three different times coinciding with the start of the wet (September-October) or dry (April) seasons. A time series of measurements was conducted during the full 18-month or differing 6-month durations of each crop, based on destructive harvests and phenological observations. The former included determination of total biomass, HCN potential, carbon isotopes (δ13C), and elemental composition. Yield and nutritional value were significantly affected by variety and time of planting, and there were interactions between the two factors. Findings from this work will improve cassava management locally and will provide a valuable dataset for agronomic and biophysical model testing. Full article
11 pages, 1453 KiB  
Case Report
Exosome-Based Therapy for Skin Complications in Oncology Patients Treated with EGFR Inhibitors: A Case Report Highlighting the Need for Coordinated Dermato-Oncologic Care
by Lidia Majewska, Karolina Dorosz and Jacek Kijowski
Pharmaceuticals 2025, 18(8), 1090; https://doi.org/10.3390/ph18081090 - 23 Jul 2025
Abstract
Patients undergoing epidermal growth factor receptor inhibitor (EGFRI) therapy frequently experience dermatologic side effects, notably papulopustular rash, which impacts 50–90% of recipients. This rash typically appears on the face, chest, and back within weeks of treatment, resembling acne but stemming from distinct pathophysiological [...] Read more.
Patients undergoing epidermal growth factor receptor inhibitor (EGFRI) therapy frequently experience dermatologic side effects, notably papulopustular rash, which impacts 50–90% of recipients. This rash typically appears on the face, chest, and back within weeks of treatment, resembling acne but stemming from distinct pathophysiological mechanisms, causing significant discomfort and reduced quality of life. Prophylactic measures and symptom-based treatment are recommended, emphasizing patient education, topical agents, and systemic therapies for severe cases. A 41-year-old female with advanced colonic mucinous adenocarcinoma developed severe acneiform rash and pruritus during EGFRI therapy with panitumumab. Initial standard treatment with oral doxycycline was discontinued after two days due to severe gastrointestinal intolerance characterized by intense nausea and dyspepsia. With limited access to dermatological consultation, treatment with rose stem cell-derived exosomes (RSCEs) provided rapid symptom relief. Significant improvement was observed within 24 h, with complete resolution of pruritus and substantial reduction in inflammatory lesions within 72 h. RSCEs demonstrate anti-inflammatory effects through the modulation of pro-inflammatory cytokines including interleukin-6, interleukin-1β, and tumor necrosis factor-α, while promoting fibroblast proliferation and collagen synthesis enhancement. They may represent a possible alternative to corticosteroids, avoiding associated side effects such as skin atrophy, delayed wound healing, and local immunosuppression. This case underscores the potential of innovative treatments like RSCEs in managing EGFRI-induced skin complications when standard therapies are not tolerated, particularly in healthcare systems with limited dermato-oncological resources. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Figure 1

13 pages, 287 KiB  
Review
Cytisinicline vs. Varenicline in Tobacco Addiction: A Literature Review Focused on Emotional Regulation, Psychological Symptoms, and Mental Health
by Óscar Fraile-Martínez, Cielo García-Montero, Miguel A. Ortega, Andrea Varaona, Luis Gutiérrez-Rojas, Melchor Álvarez-Mon and Miguel Ángel Álvarez-Mon
Healthcare 2025, 13(15), 1783; https://doi.org/10.3390/healthcare13151783 - 23 Jul 2025
Abstract
Tobacco use disorder remains a leading cause of preventable mortality, with nicotine playing a central role in the development and maintenance of dependence, mainly through its action on α4β2 nicotinic acetylcholine receptors (nAChRs). Smoking cessation treatments must address both physiological withdrawal and the [...] Read more.
Tobacco use disorder remains a leading cause of preventable mortality, with nicotine playing a central role in the development and maintenance of dependence, mainly through its action on α4β2 nicotinic acetylcholine receptors (nAChRs). Smoking cessation treatments must address both physiological withdrawal and the affective disturbances (such as anxiety, irritability, and mood lability) which often facilitate relapses. This review compares two pharmacotherapies used in smoking cessation, varenicline and cytisinicline (cytisine), with particular focus on their impact on emotional regulation, psychological symptoms, and neuropsychiatric safety. Varenicline, a high-affinity partial agonist at α4β2 nAChRs, has demonstrated superior efficacy in maintaining abstinence and is well-supported by robust clinical data, including in psychiatric populations. However, its use may be limited by adverse effects such as nausea and sleep disorders. Cytisinicline, a structurally similar but less potent partial agonist, has recently gained renewed interest due to its lower cost, favorable tolerability profile, and comparable effectiveness in the general population. Although less extensively studied in patients with serious mental illness, preliminary data suggest cytisinicline may offer a better side effect profile, particularly regarding sleep disturbances and emotional reactivity. Both agents appear to ameliorate withdrawal-related affective symptoms without significantly increasing psychiatric risk. Ultimately, pharmacotherapy choice should be guided by individual clinical features, mental health status, treatment tolerability, and resource availability. Further research is needed to establish cytisinicline’s efficacy and safety across diverse clinical contexts, particularly among individuals with severe psychiatric comorbidities. Full article
12 pages, 674 KiB  
Article
Soybean Response to Saflufenacil Doses, Alone or Combined with Glyphosate, Simulating Tank Contamination
by Leandro Galon, Lucas Tedesco, Rodrigo José Tonin, Aline Diovana Ribeiro dos Anjos, Eduarda Batistelli Giacomolli, Otávio Augusto Dassoler, Felipe Bittencourt Ortiz and Gismael Francisco Perin
Agronomy 2025, 15(8), 1758; https://doi.org/10.3390/agronomy15081758 - 23 Jul 2025
Abstract
Some herbicides, such as saflufenacil, can persist as residues in sprayer tanks even after cleaning, causing phytotoxicity in sensitive crops. This study aimed to simulate potential injury caused by saflufenacil residues, applied alone or combined with glyphosate, on soybean. The field experiment was [...] Read more.
Some herbicides, such as saflufenacil, can persist as residues in sprayer tanks even after cleaning, causing phytotoxicity in sensitive crops. This study aimed to simulate potential injury caused by saflufenacil residues, applied alone or combined with glyphosate, on soybean. The field experiment was conducted using a randomized complete block design with four replicates. The treatments included glyphosate (1440 g ha−1), eight saflufenacil doses ranging from 1.09 to 70.00 g ha−1, each tested alone or combined with glyphosate, and a weed-free control, totaling 18 treatments. Phytotoxicity was assessed at 7, 14, 21, 28, and 35 days after treatment (DAT). Physiological variables were measured at 21 DAT, and grain yield components were evaluated at harvest. Saflufenacil caused increasing phytotoxicity at doses exceeding 4.38 g ha−1 when applied alone and above 2.17 g ha−1 when combined with glyphosate. The highest doses negatively affected soybean physiology and grain yield components. Soybean tolerated up to 2.17 g ha−1 saflufenacil alone and up to 1.09 g ha−1 combined with glyphosate without significant yield loss. These results highlight the importance of thorough and correct cleaning of the sprayer tank and suggest limit residue levels that avoid crop damage, helping to prevent unexpected damage to soybean in crop rotations. Full article
(This article belongs to the Special Issue Weed Biology and Ecology: Importance to Integrated Weed Management)
Show Figures

Figure 1

25 pages, 1882 KiB  
Article
An Assessment of Collector-Drainage Water and Groundwater—An Application of CCME WQI Model
by Nilufar Rajabova, Vafabay Sherimbetov, Rehan Sadiq and Alaa Farouk Aboukila
Water 2025, 17(15), 2191; https://doi.org/10.3390/w17152191 - 23 Jul 2025
Abstract
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions [...] Read more.
According to Victor Ernest Shelford’s ‘Law of Tolerance,’ organisms within ecosystems thrive optimally when environmental conditions are favorable. Applying this principle to ecosystems and agro-ecosystems facing water scarcity or environmental challenges can significantly enhance their productivity. In these ecosystems, phytocenosis adjusts its conditions by utilizing water with varying salinity levels. Moreover, establishing optimal drinking water conditions for human populations within an ecosystem can help mitigate future negative succession processes. The purpose of this study is to evaluate the quality of two distinct water sources in the Amudarya district of the Republic of Karakalpakstan, Uzbekistan: collector-drainage water and groundwater at depths of 10 to 25 m. This research is highly relevant in the context of climate change, as improper management of water salinity, particularly in collector-drainage water, may exacerbate soil salinization and degrade drinking water quality. The primary methodology of this study is as follows: The Food and Agriculture Organization of the United Nations (FAO) standard for collector-drainage water is applied, and the water quality index is assessed using the CCME WQI model. The Canadian Council of Ministers of the Environment (CCME) model is adapted to assess groundwater quality using Uzbekistan’s national drinking water quality standards. The results of two years of collected data, i.e., 2021 and 2023, show that the water quality index of collector-drainage water indicates that it has limited potential for use as secondary water for the irrigation of sensitive crops and has been classified as ‘Poor’. As a result, salinity increased by 8.33% by 2023. In contrast, groundwater quality was rated as ‘Fair’ in 2021, showing a slight deterioration by 2023. Moreover, a comparative analysis of CCME WQI values for collector-drainage and groundwater in the region, in conjunction with findings from Ethiopia, India, Iraq, and Turkey, indicates a consistent decline in water quality, primarily due to agriculture and various other anthropogenic pollution sources, underscoring the critical need for sustainable water resource management. This study highlights the need to use organic fertilizers in agriculture to protect drinking water quality, improve crop yields, and promote soil health, while reducing reliance on chemical inputs. Furthermore, adopting WQI models under changing climatic conditions can improve agricultural productivity, enhance groundwater quality, and provide better environmental monitoring systems. Full article
Show Figures

Figure 1

14 pages, 690 KiB  
Article
Ibrutinib in Combination with Lenalidomide Revlimid/Dexamethasone in Relapsed/Refractory Multiple Myeloma (AFT-15)
by Yvonne Efebera, Vera Suman, Shira Dinner, Taylor O’Donnell, Ashley Rosko, John Mckay, Peter Barth, Patrick Hagen, Saad Usmani, Paul Richardson and Jacob Laubach
Cancers 2025, 17(15), 2433; https://doi.org/10.3390/cancers17152433 - 23 Jul 2025
Abstract
Background: Studies have suggested a synergism between lenalidomide (LEN) and ibrutinib (IBR) in multiple myeloma (MM). Both downregulate IRF4, a key target and master transcriptional factor regulating myeloma cell survival. Method: A 3 + 3 phase I trial was conducted to determine the [...] Read more.
Background: Studies have suggested a synergism between lenalidomide (LEN) and ibrutinib (IBR) in multiple myeloma (MM). Both downregulate IRF4, a key target and master transcriptional factor regulating myeloma cell survival. Method: A 3 + 3 phase I trial was conducted to determine the maximum tolerated dose (MTD) of IBR in combination with LEN + dexamethasone (DEX) in patients with relapsed/refractory (RR) MM who had at least one prior line of therapy. Three dose levels (DLs) were planned. The cycle length was 28 days. IBR was administered orally daily in doses of 560 mg on DL1-2 and 840 mg on DL3, LEN was administered orally on days 1–21 in doses of 15 mg on DL1 and 25 mg on DL2-3, and DEX was administered orally on days 1, 8, 15, and 22 in a dose of 40 mg if age < 75 years or in a dose of 20 mg if it was ≥75 years for DL1-3. Patients with a glomerular filtration rate (GFR) <60 but ≥30 mL/min were treated in accordance with the manufacturer’s instructions with LEN 10 mg. Dose-limiting toxicities (DLTs) included the following: grade 4 neutropenia lasting more than 5 days, thrombocytopenia, febrile neutropenia, nausea, vomiting or diarrhea; grade 3 thrombocytopenia with bleeding or platelet transfusion; and grade 3–4 hyperglycemia or a thrombotic/embolic event, and other nonhematologic toxicities. The overall response rate (ORR) was defined as the percentage of patients with a partial response (PR), very good partial response (VGPR), or complete response (CR) according to IMWG criteria on two consecutive evaluations at least 4 weeks apart. The clinical benefit rate (CBR) was defined as the percentage of patients with stable disease (SD) or a better outcome on two consecutive evaluations at weeks apart. Results: Fourteen patients (DL1: six patients; DL2: three patients; DL3: five patients) were registered for the study from March 2019 to May 2023, prior to its closure due to limited accrual. Thirteen patients are included in the summary of toxicities and response as one patient on DL3 halted participation prior to the start of the treatment. Two patients on DL3 were excluded from the determination of MTD: one having discontinued cycle 1 treatment due to COVID-19 infection and the another having mistakenly taken 280 mg/day of IBR instead of the assigned 840 mg/day dose during cycle 1. Only one patient developed a DLT, on DL1 with grade 3 non-viral hepatitis. The median number of cycles administered was 4 (range: 1–56). Severe toxicities reported included grade 4 lymphocytopenia (1), grade 4 thrombocytopenia (1), and grade 5 sepsis in the setting of PD (1). Disease responses included a VGPR on DL1 and CR on DL3. Thus, the ORR was 15.4% (90% CI: 2.8–41.0%). One patient on DL1 maintained SD for 4.6 years before discontinuing the treatment to undergo an alternative therapy. Another five patients maintained SD for ≥ 2 consecutive cycles. Thus, the CBR was 61.5% (90% CI: 35.5–83.4%). Conclusions: The combination of LEN with IBR in RR MM proved feasible, with manageable toxicities and the majority of discontinuations being due to disease progression. Full article
(This article belongs to the Special Issue Multiple Myeloma: Diagnosis and Therapy)
Show Figures

Figure 1

18 pages, 1266 KiB  
Review
Effectiveness of Lifestyle-Based Approaches for Adults with Multiple Chemical Sensitivity: A Systematic Review
by Isidro Miguel Martín Pérez, David Alejandro Parra Castillo, Carlos Pastor Ruiz de la Fuente and Sebastián Eustaquio Martín Pérez
Therapeutics 2025, 2(3), 13; https://doi.org/10.3390/therapeutics2030013 - 22 Jul 2025
Abstract
Background: Multiple Chemical Sensitivity (MCS) is a complex, disabling condition marked by non-specific symptoms in response to low-level chemical exposures. It often leads to substantial impairments in quality of life, psychological health, and daily functioning. Although non-pharmacological approaches—such as lifestyle and psychological interventions—are [...] Read more.
Background: Multiple Chemical Sensitivity (MCS) is a complex, disabling condition marked by non-specific symptoms in response to low-level chemical exposures. It often leads to substantial impairments in quality of life, psychological health, and daily functioning. Although non-pharmacological approaches—such as lifestyle and psychological interventions—are widely used, their clinical effectiveness remains unclear. Objective: We aim to evaluate the effectiveness of lifestyle-based approaches in improving clinical and psychosocial outcomes in adults with Multiple Chemical Sensitivity. Methods: A systematic review was conducted in accordance with PRISMA guidelines (PROSPERO: CRD420251013537). Literature searches were carried out in MEDLINE (PubMed), CINAHL, Google Scholar, and ResearchGate between March and April 2025. Eligible studies included adults (≥18 years) with a confirmed diagnosis of MCS and reported outcomes such as perceived stress, anxiety, depressive symptoms, or quality of life. Methodological quality and risk of bias were independently assessed using the PEDro scale, NIH Quality Assessment Tool, CEBMa checklist, and Cochrane RoB 2.0. Results: Twelve studies (N = 378) met the inclusion criteria. Cognitive and behavioral therapies demonstrated the most consistent evidence of efficacy, with reductions in symptom severity, maladaptive cognitive patterns, and functional limitations. Mindfulness-based stress reduction showed favorable outcomes, while other mindfulness-based interventions yielded mixed results. Exposure-based therapies contributed to increased chemical tolerance and reduced avoidance behavior. Electromagnetic and biomedical approaches demonstrated preliminary but limited effectiveness. Aromatherapy was well tolerated and perceived as relaxing, though its clinical impact was modest. Conclusions: Cognitive and behavioral therapies appear to be most effective among lifestyle-based interventions for MCS/IEI. However, study heterogeneity limits the generalizability of findings, underscoring the need for more rigorous research. Full article
Show Figures

Figure 1

30 pages, 9107 KiB  
Article
Numerical Far-Field Investigation into Guided Waves Interaction at Weak Interfaces in Hybrid Composites
by Saurabh Gupta, Mahmood Haq, Konstantin Cvetkovic and Oleksii Karpenko
J. Compos. Sci. 2025, 9(8), 387; https://doi.org/10.3390/jcs9080387 - 22 Jul 2025
Abstract
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the [...] Read more.
Modern aerospace engineering places increasing emphasis on materials that combine low weight with high mechanical performance. Fiber metal laminates (FMLs), which merge metal layers with fiber-reinforced composites, meet this demand by delivering improved fatigue resistance, impact tolerance, and environmental durability, often surpassing the performance of their constituents in demanding applications. Despite these advantages, inspecting such thin, layered structures remains a significant challenge, particularly when they are difficult or impossible to access. As with any new invention, they always come with challenges. This study examines the effectiveness of the fundamental anti-symmetric Lamb wave mode (A0) in detecting weak interfacial defects within Carall laminates, a type of hybrid fiber metal laminate (FML). Delamination detectability is analyzed in terms of strong wave dispersion observed downstream of the delaminated sublayer, within a region characterized by acoustic distortion. A three-dimensional finite element (FE) model is developed to simulate mode trapping and full-wavefield local displacement. The approach is validated by reproducing experimental results reported in prior studies, including the author’s own work. Results demonstrate that the A0 mode is sensitive to delamination; however, its lateral resolution depends on local position, ply orientation, and dispersion characteristics. Accurately resolving the depth and extent of delamination remains challenging due to the redistribution of peak amplitude in the frequency domain, likely caused by interference effects in the acoustically sensitive delaminated zone. Additionally, angular scattering analysis reveals a complex wave behavior, with most of the energy concentrated along the centerline, despite transmission losses at the metal-composite interfaces in the Carall laminate. The wave interaction with the leading and trailing edges of the delaminations is strongly influenced by the complex wave interference phenomenon and acoustic mismatched regions, leading to an increase in dispersion at the sublayers. Analytical dispersion calculations clarify how wave behavior influences the detectability and resolution of delaminations, though this resolution is constrained, being most effective for weak interfaces located closer to the surface. This study offers critical insights into how the fundamental anti-symmetric Lamb wave mode (A0) interacts with delaminations in highly attenuative, multilayered environments. It also highlights the challenges in resolving the spatial extent of damage in the long-wavelength limit. The findings support the practical application of A0 Lamb waves for structural health assessment of hybrid composites, enabling defect detection at inaccessible depths. Full article
(This article belongs to the Special Issue Metal Composites, Volume II)
Show Figures

Figure 1

11 pages, 892 KiB  
Article
Sotatercept for Connective Tissue Disease-Associated Pulmonary Arterial Hypertension with Concomitant Interstitial Lung Disease: Efficacy and Safety Insights
by Chebly Dagher, Maria Akiki, Kristin Swanson, Brett Carollo, Garett Fiscus, Harrison W. Farber and Raj Parikh
J. Clin. Med. 2025, 14(15), 5177; https://doi.org/10.3390/jcm14155177 - 22 Jul 2025
Viewed by 41
Abstract
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited [...] Read more.
Background/Objectives: Sotatercept has demonstrated efficacy in pulmonary arterial hypertension (PAH), but its use has not been studied in patients with Group 3 pulmonary hypertension (PH). Additionally, patients with connective tissue disease-associated PAH (CTD-PAH) were underrepresented in the STELLAR trial. Given the limited treatment options for pulmonary hypertension in patients with interstitial lung disease (PH-ILD), this study aimed to evaluate the use of sotatercept in CTD-PAH patients with concomitant ILD. Methods: Eligible patients (n = 7) had a confirmed diagnosis of CTD-PAH with concomitant ILD. The patients were already receiving background PAH therapy. Baseline hemodynamic and clinical measurements were reassessed after 24 weeks of sotatercept therapy. The variables assessed included six-minute walk distance (6MWD), pulmonary vascular resistance (PVR), echocardiographic right ventricular systolic pressure (eRVSP), N-terminal pro-brain natriuretic peptide (NT-proBNP) levels, World Health Organization (WHO) functional class, and supplemental oxygen requirements. Results: The study included seven patients with a mean age of 57 years (range: 39–73 years). After 24 weeks, the mean 6MWT distance increased from 211 m to 348 m (p < 0.01). Mean PVR decreased from 7.77 WU at baseline to 4.53 WU (p < 0.01). Mean eRVSP decreased from 79.43 mmHg to 54.14 mmHg (p < 0.01). NT-proBNP decreased from 3056.86 pg/mL to 1404.29 pg/mL (p < 0.01). The WHO functional class and supplemental oxygen requirements improved in all patients. Conclusions: Sotatercept was tolerated in patients with CTD-PAH and ILD, with no evidence of adverse respiratory effects. When added to foundational PAH therapy, sotatercept resulted in significant improvements across multiple parameters. These findings suggest that sotatercept may be a promising therapeutic option as an adjunctive treatment in this patient population. Full article
(This article belongs to the Section Respiratory Medicine)
Show Figures

Figure 1

16 pages, 3669 KiB  
Article
Functional Analysis of Malus halliana WRKY69 Transcription Factor (TF) Under Iron (Fe) Deficiency Stress
by Hongjia Luo, Wenqing Liu, Xiaoya Wang and Yanxiu Wang
Curr. Issues Mol. Biol. 2025, 47(7), 576; https://doi.org/10.3390/cimb47070576 - 21 Jul 2025
Viewed by 88
Abstract
Fe deficiency in apple trees can lead to leaf chlorosis and impede root development, resulting in significant alterations in signaling, metabolism, and genetic functions, which severely restricts fruit yield and quality. It is well established that WRKY transcription factors (TFs) are of vital [...] Read more.
Fe deficiency in apple trees can lead to leaf chlorosis and impede root development, resulting in significant alterations in signaling, metabolism, and genetic functions, which severely restricts fruit yield and quality. It is well established that WRKY transcription factors (TFs) are of vital significance in mediating plant responses to abiotic stress. Real-time quantitative fluorescence (RT-qPCR) analysis displayed that Fe deficiency stress can significantly induce WRKY69 TF gene expression. However, the potential mechanisms by which the WRKY69 gene involved in Fe deficiency stress remains to be investigated. To address this limitations, the WRKY69 gene (MD09G1235100) was successfully isolated from apple rootstock Malus halliana and performed both homologous and heterologous expression analyses in apple calli and tobacco to elucidate its functional role in response to Fe deficiency stress. The findings indicated that transgenic tobacco plants exhibited enhanced growth vigor and reduced chlorosis when subjected to Fe deficiency stress compared to the wild type (WT). Additionally, the apple calli that were overexpressed WRKY69 also exhibited superior growth and quality. Furthermore, the overexpression of the WRKY69 gene enhanced the ability of tobacco to Fe deficiency stress tolerance by stimulating the synthesis of photosynthetic pigments, increasing antioxidant enzyme activity, and facilitating Fe reduction. Additionally, it increased the resistance of apple calli to Fe deficiency stress by enhancing Fe reduction and elevating the activity of antioxidant enzymes. For example, under Fe deficiency stress, the proline (Pro) contents of the overexpression lines (OE-2, OE-5, OE-6) were 26.18 mg·g−1, 26.13 mg·g−1, and 26.27 mg·g−1, respectively, which were 16.98%, 16.76%, and 17.38% higher than the proline content of 22.38 mg·g−1 in the wild-type lines, respectively. To summarize, a functional analysis of tobacco plants and apple calli displayed that WRKY69 TF serves as a positive regulator under Fe deficiency stress, which provides candidate genetic resources for cultivating apple rootstocks or varieties with strong stress (Fe deficiency) resistance. Full article
Show Figures

Figure 1

21 pages, 6068 KiB  
Article
Comprehensive Genomic Analysis of GRAS Transcription Factors Reveals Salt-Responsive Expression Profiles in Pecan (Carya illinoinensis)
by Ming Xu, Yu Chen and Guoming Wang
Forests 2025, 16(7), 1199; https://doi.org/10.3390/f16071199 - 21 Jul 2025
Viewed by 136
Abstract
Salt stress severely limits the growth and ornamental value of pecan (Carya illinoinensis) in salinized regions, yet the transcriptional mechanisms underlying its stress adaptation remain unclear. In this study, a comprehensive genomic analysis of the GRAS transcription factor family identified 58 [...] Read more.
Salt stress severely limits the growth and ornamental value of pecan (Carya illinoinensis) in salinized regions, yet the transcriptional mechanisms underlying its stress adaptation remain unclear. In this study, a comprehensive genomic analysis of the GRAS transcription factor family identified 58 CiGRAS genes in pecan. These genes were classified into 11 subfamilies and showed conserved motifs and gene structures, with variation in promoter cis-elements suggesting diverse regulatory functions. Chromosomal distribution and duplication analysis indicated that whole-genome and dispersed duplication events were the main drivers of CiGRAS expansion. Transcriptome data revealed tissue-specific expression and strong responsiveness to salt and other stresses. Under 0.6% NaCl treatment, several CiGRAS genes were significantly upregulated, especially at 48 h. Gene co-expression analysis further highlighted GRAS-enriched modules associated with redox regulation and stress signaling. qRT-PCR validation confirmed time-specific induction of seven CiGRAS genes under salt stress. These findings provide insights into the evolutionary dynamics and stress-related roles of CiGRAS genes and offer candidate regulators for improving pecan salt tolerance in ecological greening and landscape applications. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species)
Show Figures

Figure 1

20 pages, 2652 KiB  
Article
Moderate Impact of Increasing Temperatures on Food Intake in Human Populations
by Per M. Jensen and Marten Sørensen
Challenges 2025, 16(3), 34; https://doi.org/10.3390/challe16030034 - 21 Jul 2025
Viewed by 182
Abstract
Increasing temperatures associated with climate change will lead to (periodic) temperature-induced reductions in food intake in human and other mammal populations. Human adults, however, are both tolerant and resilient to periodic nutritional deficits, and the associated health effects should be limited. Intermittent nutritional [...] Read more.
Increasing temperatures associated with climate change will lead to (periodic) temperature-induced reductions in food intake in human and other mammal populations. Human adults, however, are both tolerant and resilient to periodic nutritional deficits, and the associated health effects should be limited. Intermittent nutritional deficits may also cause growth restriction in developing foetuses and young children, which potentially affects their food intake in later life. Therefore, temperature-induced hypophagia can be hypothesised to manifest as later compensatory responses with multiple concomitant (or extended) lags of varying temporal dimensions. We examined the relationship between calorie intake and ambient outdoor temperatures for a time series covering past decades (FAO data for 1961–2013) in 80 countries to determine if humans alter their food intake in response to elevated temperatures. We included eleven different temporal “windows of exposure” of varying lag. These windows considered current and recent exposure, just as lagged effects allowed for a consideration of past effects on mothers, their children, and childhood exposure. It was hypothesised that one of these could provide a basis for predicting future changes in human calorie intake in response to climate change. Our analyses showed no apparent association with temperatures in ten of the eleven hypotheses/models. The remaining hypothesis suggests that current calorie intake is linked to decadal mean temperatures with a lag of approximately three decades, pointing to an impact on mothers and their (developing) children. The impact of an increase in mean temperature varies with temperature amplitudes, and negative impacts are only found in countries with low temperature amplitudes (warmer countries), albeit the impact on calorie intake caused by a 2–3 °C change in temperatures or temperature amplitudes is generally modest. However, in considering calorie intake, we only address quantities of food (with unspecified quality), which insufficiently reflect the full range of nutritional challenges associated with increasing temperatures. Understanding climate-driven changes in human food intake requires global interdisciplinary collaboration across public health, environmental science, and policy. Full article
(This article belongs to the Section Human Health and Well-Being)
Show Figures

Figure 1

Back to TopTop