Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (115)

Search Parameters:
Keywords = tnfaip1

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1948 KB  
Article
Co-Occurrence of RAD21 and TNFAIP3 Mutations in Cornelia de Lange Syndrome with Pustular Psoriasis: Potential Molecular Interactions
by Beatriz E. Orozco, Cindy V. Orozco, Esperanza Meléndez, María F. Mangones, José Valderrama, Adalberto Lobato, Pilar Garavito-Galofre, Jorge I. Vélez and Oscar M. Vidal
Int. J. Mol. Sci. 2025, 26(21), 10783; https://doi.org/10.3390/ijms262110783 - 6 Nov 2025
Viewed by 189
Abstract
Cornelia de Lange Syndrome (CdLS) is a rare multisystem developmental disorder caused primarily by mutations in cohesin complex genes, including RAD21. Psoriasis is a chronic inflammatory skin disease linked to immune dysregulation, notably involving TNFAIP3 (A20), a negative regulator of [...] Read more.
Cornelia de Lange Syndrome (CdLS) is a rare multisystem developmental disorder caused primarily by mutations in cohesin complex genes, including RAD21. Psoriasis is a chronic inflammatory skin disease linked to immune dysregulation, notably involving TNFAIP3 (A20), a negative regulator of NF-κB signaling. Although case reports have suggested a possible coexistence of CdLS and psoriasis, the underlying molecular basis has remained unexplored. Here we report the first case of molecular co-occurrence of CdLS and generalized pustular psoriasis in a patient with novel heterozygous nonsense variant in RAD21 (c.1306C>T, p.Gln436*), pathogenic for CdLS type 4, and a previously unreported truncating variant in TNFAIP3 (c.2199C>A, p.Cys733*), predicted to disrupt NF-κB regulation and classified as a variant of uncertain significance. Structural protein modeling showed significant conformational disruption in RAD21 and partial truncation of the ZnF domains of TNFAIP3, supporting their functional impact. This study is the first to suggest a possible molecular mechanism that may explain the rare co-occurrence of CdLS and psoriasis: RAD21 deficiency disrupts chromatin architecture and immune gene regulation, while TNFAIP3 loss-of-function removes critical NF-κB inhibition, resulting in synergistic developmental and inflammatory phenotypes. Secondary transcriptomic data analysis further suggests that RAD21 knockdown may downregulate TNFAIP3 expression, providing a possible mechanistic intersection. Our findings provide the first molecular evidence linking RAD21 and TNFAIP3, introducing a novel pathogenic hypothesis connecting cohesin dysfunction and immune dysregulation. This work expands the mutational spectrum of both genes and opens a new avenue for understanding developmental-inflammatory disease overlap. Full article
(This article belongs to the Section Molecular Genetics and Genomics)
Show Figures

Figure 1

27 pages, 2229 KB  
Article
Systemic Sclerosis in Kazakh Patients: A Preliminary Case–Control Immunogenetic Profiling Study
by Lina Zaripova, Abai Baigenzhin, Alyona Boltanova, Zhanna Zhabakova, Maxim Solomadin and Larissa Kozina
Pathophysiology 2025, 32(4), 57; https://doi.org/10.3390/pathophysiology32040057 - 28 Oct 2025
Viewed by 213
Abstract
Background/Objectives: Systemic sclerosis (SSc) is a heterogeneous connective tissue disease characterized by immune dysregulation, vasculopathy, and fibrosis. Objectives: To evaluate the genetic architecture and autoantibody profile in a Kazakh cohort of patients with SSc. Methods: A total of 26 Kazakh patients [...] Read more.
Background/Objectives: Systemic sclerosis (SSc) is a heterogeneous connective tissue disease characterized by immune dysregulation, vasculopathy, and fibrosis. Objectives: To evaluate the genetic architecture and autoantibody profile in a Kazakh cohort of patients with SSc. Methods: A total of 26 Kazakh patients with diffuse SSc were examined for disease activity and organ impairment using EScSG and the modified Rodnan skin score (mRSS). Eighteen healthy volunteers were enrolled in the control group. Antinuclear factor (ANF) was estimated on HEp-2 cells, while antibodies to Scl-70, CENP-B, U1-snRNP, SS-A/Ro52, SS-A/Ro60, Sm/RNP, Sm, SS-B, Rib-P0, and nucleosomes were determined by immunoblotting. The level of IL-6 cytokine was detected using ELISA. To investigate the genetic basis of SSc in Kazakh patients, a custom AmpliSeq panel including targeting immune/fibrosis pathways and 120 genes was used on the Ion Proton sequencer. The statistical analysis of categorical variables was conducted using Fisher’s exact test and Chi-square (χ2) test. Results: The examination of SSc patients (mRSS 16 ± 7.2; EScSG 3.54 ± 2.18) revealed a broad range of antibodies to Scl-70, CENP-B, SS-A/Ro60, SS-A/Ro52, U1-snRNP, and RNP/Sm, which were undetectable in the control group. Genetic analysis identified multiple variants across immune regulatory genes, including likely pathogenic changes in SAMD9L, REL, IL6ST, TNFAIP3, ITGA2, ABCC2, AIRE, IL6R, AFF3, and TREX1. Variants of uncertain clinical significance were detected in LY96, IRAK1, RBPJ, IL6ST, ITGA2, AIRE, IL6R, JAZF1, IKZF3, IL18, IL12B, PRKCQ, PXK, and DNASE1L3. Novel variants at the following genomic coordinates were identified and have not been previously reported in association with SSc: LY96 (chr8:74922341 CT/C), PTPN22 (chr1:114381166 CT/C), IRAK1 (indels at chrX:153278833), and SAMD9L (chr7:92761606 GT/G; chr7:92764981 T/TT). Conclusions: The first immunogenetic investigation of SSc in Kazakhstan revealed a polygenic architecture involving immune signalling pathways that partially overlap with international cohorts while exhibiting region-specific variation. Although the limited sample size and lack of functional validation constrain the interpretability of the findings, the results provide a framework for larger research to confirm the pathogenic mechanisms and establish clinical relevance. Full article
Show Figures

Graphical abstract

20 pages, 5854 KB  
Article
Berbamine Targets TNFAIP3: A Bioactive Compound Alleviates Oxidative Stress and Inflammation in the Comorbidity of Insomnia and Chronic Obstructive Pulmonary Disease Through Multi-Omics Integration
by Xinliao Deng, Shuaiyu Jiang, Ziyi Liu, Xinyu Liu, Tao Lu and Xiaodan Liu
Int. J. Mol. Sci. 2025, 26(20), 10227; https://doi.org/10.3390/ijms262010227 - 21 Oct 2025
Viewed by 560
Abstract
Chronic obstructive pulmonary disease (COPD) and insomnia are highly comorbid, yet their shared pathogenesis and therapeutic targets remain unclear. This study employed multidimensional approaches—including bidirectional Mendelian randomization (MR), transcriptomic analysis, weighted gene co-expression network analysis (WGCNA), and computational drug repositioning—to investigate causal relationships, [...] Read more.
Chronic obstructive pulmonary disease (COPD) and insomnia are highly comorbid, yet their shared pathogenesis and therapeutic targets remain unclear. This study employed multidimensional approaches—including bidirectional Mendelian randomization (MR), transcriptomic analysis, weighted gene co-expression network analysis (WGCNA), and computational drug repositioning—to investigate causal relationships, shared pathways, and therapeutic strategies for COPD–insomnia comorbidity. MR analysis indicated that insomnia is a causal risk factor for COPD (OR = 2.04, 95% CI: 1.18–3.51; p = 0.011), with no reverse causality. Integrated transcriptomics of COPD (GSE148004) and insomnia (GSE208668) identified 230 co-dysregulated genes enriched in immune-inflammatory pathways (e.g., NF-κB signaling and cytokine response) and oxidative stress. Protein–protein interaction networks highlighted TNFAIP3 as a hub gene, confirmed by LASSO regression as a shared diagnostic biomarker. A co-expression network of 190 overlapping genes linked circadian disruption and airway inflammation. Drug repositioning nominated TNFAIP3-targeting agents, and molecular docking revealed high-affinity binding between berbamine and the TNFAIP3 OTU domain (ΔG = −9.25 kcal/mol). TNFAIP3 emerges as a dual regulator of inflammatory signaling and redox homeostasis. Our systems pharmacology approach bridges epidemiological causality and molecular mechanisms, supporting single-agent polypharmacology for COPD–insomnia comorbidity. Full article
(This article belongs to the Special Issue Effects of Bioactive Compounds in Oxidative Stress and Inflammation)
Show Figures

Graphical abstract

23 pages, 3542 KB  
Article
Modulation of Nuclear Factor Kappa B Signaling and microRNA Profiles by Adalimumab in LPS-Stimulated Keratinocytes
by Aleksandra Plata-Babula, Wojciech Kulej, Paweł Ordon, Julia Gajdeczka, Martyna Stefaniak, Artur Chwalba, Piotr Gościniewicz, Tomasz Kulpok and Beniamin Oskar Grabarek
Int. J. Mol. Sci. 2025, 26(20), 10035; https://doi.org/10.3390/ijms262010035 - 15 Oct 2025
Viewed by 379
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by keratinocyte hyperactivation and dysregulated cytokine signaling, with nuclear factor kappa B (NF-κB), a master transcription factor that regulates immune and inflammatory gene expression, playing a central role. Adalimumab, a monoclonal antibody that inhibits tumor [...] Read more.
Psoriasis is a chronic inflammatory skin disease characterized by keratinocyte hyperactivation and dysregulated cytokine signaling, with nuclear factor kappa B (NF-κB), a master transcription factor that regulates immune and inflammatory gene expression, playing a central role. Adalimumab, a monoclonal antibody that inhibits tumor necrosis factor alpha (TNF-α), is widely used in psoriasis therapy, yet its molecular effects on NF-κB-associated genes and microRNAs (miRNAs) in keratinocytes remain insufficiently defined. In this study, immortalized human keratinocytes (HaCaT cells) were exposed to lipopolysaccharide (LPS) to induce inflammatory stress and treated with adalimumab for 2, 8, and 24 h. Transcriptome-wide profiling was performed using messenger RNA (mRNA) and miRNA microarrays, followed by validation with reverse transcription quantitative polymerase chain reaction (RT-qPCR) and enzyme-linked immunosorbent assay (ELISA). Bioinformatic analyses included prediction of miRNA–mRNA interactions, construction of protein–protein interaction (PPI) networks, and gene ontology (GO) enrichment. Adalimumab reversed LPS-induced upregulation of NF-κB-associated genes, including inhibitor of nuclear factor kappa-B kinase subunit beta (IKBKB), interleukin-1 receptor-associated kinase 1 (IRAK1), TNF receptor-associated factor 2 (TRAF2), mitogen-activated protein kinase kinase kinase 7 (MAP3K7), and TNF alpha-induced protein 3 (TNFAIP3), with concordant changes observed at the protein level. Several regulatory miRNAs, notably miR-1297, miR-30a, miR-95-5p, miR-125b, and miR-4329, showed reciprocal expression changes consistent with anti-inflammatory activity. STRING analysis identified IKBKB as a central hub in the PPI network, while GO enrichment highlighted immune regulation, apoptosis, and NF-κB signaling. These findings demonstrate that adalimumab modulates NF-κB activity in keratinocytes through coordinated regulation of gene, protein, and miRNA expression, providing mechanistic insight into TNF-α blockade in psoriasis. Full article
(This article belongs to the Collection Advances in Cell and Molecular Biology)
Show Figures

Figure 1

18 pages, 1448 KB  
Article
Microarray Analysis of Differentially Expressed Genes in Peripheral Blood of Postpartum Women with Gestational Diabetes Mellitus and Type 2 Diabetes
by Samar Sultan
Life 2025, 15(8), 1270; https://doi.org/10.3390/life15081270 - 11 Aug 2025
Viewed by 664
Abstract
The etiology of women with gestational diabetes mellitus (GDM) and a greater risk of developing type 2 diabetes (T2D) after delivery remains unknown. This study aimed to investigate the global gene expression in four postpartum women with previous GDM (pGDM), three with T2D, [...] Read more.
The etiology of women with gestational diabetes mellitus (GDM) and a greater risk of developing type 2 diabetes (T2D) after delivery remains unknown. This study aimed to investigate the global gene expression in four postpartum women with previous GDM (pGDM), three with T2D, and three with a history of normoglycemic pregnancy (controls). Total RNA was extracted from whole blood between March and May 2020. Global mRNA expression was determined using an Affymetrix Human Gene 2.0 ST Array. The expression of the selected focused genes was validated by RT-PCR. The microarray revealed 140 transcripts (p < 0.05, fold change cut-off ≥ 2) in patients with pGDM compared to controls. We identified 583 gene-altered transcripts between patients with T2D and controls. Interestingly, 60 transcripts had genes shared by pGDM or T2D versus the controls. The selected upregulated genes involved in inflammatory response, glycosylation, and death-like domains, according to the functional network analysis of pGDM (TNFAIP6, PDK3) and T2D (MMP9 and CARD6), showed similar trends to those obtained via microarray. Thus, these differentially expressed genes and their corresponding network and pathway analyses in women with pGDM and T2D offer valuable insights into the possible biological mechanisms of the progression of GDM to T2D. Full article
(This article belongs to the Section Genetics and Genomics)
Show Figures

Figure 1

25 pages, 1504 KB  
Article
Systemic Sclerosis with Interstitial Lung Disease: Identification of Novel Immunogenetic Markers and Ethnic Specificity in Kazakh Patients
by Lina Zaripova, Abay Baigenzhin, Zhanar Zarkumova, Zhanna Zhabakova, Alyona Boltanova, Maxim Solomadin and Alexey Pak
Epidemiologia 2025, 6(3), 41; https://doi.org/10.3390/epidemiologia6030041 - 6 Aug 2025
Viewed by 1486
Abstract
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: [...] Read more.
Systemic sclerosis (SSc) is an autoimmune connective tissue disorder characterized by vascular abnormalities, immune dysfunction, and progressive fibrosis. One of the most common manifestations of SSc is interstitial lung disease (ILD), known by a progressive course leading to significant morbidity and mortality. Aim: to investigate autoantibodies, cytokines, and genetic markers in SSc-ILD through a systematic review and analysis of a Kazakh cohort of SSc-ILD patients. Methods: A PubMed search over the past 10 years was performed with “SSc-ILD”, “autoantibodies”, “cytokines”, and “genes”. Thirty patients with SSc were assessed for lung involvement, EScSG score, and modified Rodnan skin score. IL-6 was measured by ELISA, antinuclear factor on HEp-2 cells by indirect immunofluorescence, and specific autoantibodies by immunoblotting. Genetic analysis was performed using a 120-gene AmpliSeq panel on the Ion Proton platform. Results: The literature review identified 361 articles, 26 addressed autoantibodies, 20 genetic variants, and 12 cytokine profiles. Elevated levels of IL-6, TGF-β, IL-33, and TNF-α were linked to SSc. Based on the results of the systemic review, we created a preliminary immunogenic panel for SSc-ILD with following analysis in Kazakh patients with SSc (n = 30). Fourteen of them (46.7%) demonstrated signs of ILD and/or lung hypertension, with frequent detection of antibodies such as Scl-70, U1-snRNP, SS-A, and genetic variants in SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, and CD40 genes. Conclusions: Current research confirmed the presence of the broad range of autoantibodies and variations in IRAK1, TNFAIP3, SAMD9L, REL, IRAK1, LY96, IL6R, ITGA2B, AIRE, TREX1, CD40 genes in of Kazakhstani cohort of SSc-ILD patients. Full article
Show Figures

Figure 1

18 pages, 1544 KB  
Article
Translational Insights into Interferon Alpha’s Effects on Immunomolecular Dynamics in Philadelphia-Negative Myeloproliferative Neoplasms
by Regina García-Delgado, Elena Luque-Lupiáñez, David Mora-Infante, Rodolfo Matías Ortíz-Flores, Borja Cidoncha-Morcillo, Julio Torres-González, Andrés Fontalba-Navas and Alejandro Escamilla-Sánchez
Cancers 2025, 17(14), 2273; https://doi.org/10.3390/cancers17142273 - 8 Jul 2025
Viewed by 1013
Abstract
Background/Objectives: Interferon alpha (IFNα) remains a cornerstone in the management of Philadelphia-negative myeloproliferative neoplasms (Ph-neg MPNs), yet its immunomolecular impact over time is not fully elucidated. The aim of the study was to explore how IFNα therapy dynamically reshapes immune and gene profiles [...] Read more.
Background/Objectives: Interferon alpha (IFNα) remains a cornerstone in the management of Philadelphia-negative myeloproliferative neoplasms (Ph-neg MPNs), yet its immunomolecular impact over time is not fully elucidated. The aim of the study was to explore how IFNα therapy dynamically reshapes immune and gene profiles in Ph-neg MPNs and assess their potential as treatment-related biomarkers. Methods: This single-center, prospective, observational study included a translational substudy conducted within a previously established clinical cohort of 44 IFNα-treated patients, selecting a representative subset of 18 individuals stratified by treatment duration. Cytokine profiling (ELISA) and gene expression (RT-qPCR) analysis were performed using plasma and peripheral blood mononuclear cells (PBMCs), respectively. Results: Patients with prolonged exposure showed reduced pro-inflammatory cytokines and downregulation of inflammatory-signalling STAT1/STAT3 expression. In contrast, those with intermediate exposure exhibited transient TH2/regulatory cytokine peaks and upregulation of immunomodulatory genes such as CXCL10, SOCS3, and TNFAIP3. Spearman correlations revealed functional associations between cytokine and gene expression patterns including notable links such as STAT1–IL-13 and MYB–IL-13. Conclusions: These results describe a sequential immune reprogramming driven by IFNα, supporting the development of dynamic immunomolecular biomarkers of response in Ph-neg MPNs. Full article
(This article belongs to the Section Cancer Immunology and Immunotherapy)
Show Figures

Graphical abstract

16 pages, 843 KB  
Review
The Role of A20 in Cancer: Friend or Foe?
by Jinju Lee and Heesun Cheong
Cells 2025, 14(7), 544; https://doi.org/10.3390/cells14070544 - 4 Apr 2025
Cited by 2 | Viewed by 1927
Abstract
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB [...] Read more.
A20 is a ubiquitin-editing enzyme that has emerged as a key regulator of inflammatory signaling with paradoxical roles in cancer. Acting as both an oncogene and a tumor suppressor gene depending on the cellular context, A20 modulates important cell pathways, such as NF-κB signaling and autophagy. In this review, we summarize the dual roles of A20 in tumorigenesis, highlighting its ability to promote tumor progression in cancers, such as breast and melanoma, while functioning as a tumor suppressor in lymphomas and hepatocellular carcinoma. We discuss the interplay of A20 with autophagy, a process that is important for maintaining cellular homeostasis and influencing tumor dynamics. By integrating recent findings, we provide insight into how dysregulation of A20 and its associated pathways can either suppress or drive cancer development, which may lead to improved therapeutic intervention. Full article
(This article belongs to the Special Issue Cellular Mechanisms of Anti-Cancer Therapies)
Show Figures

Figure 1

24 pages, 4293 KB  
Article
Conformational Analyses of the AHD1-UBAN Region of TNIP1 Highlight Key Amino Acids for Interaction with Ubiquitin
by Michael L. Samulevich, Liam E. Carman, Rambon Shamilov and Brian J. Aneskievich
Biomolecules 2025, 15(3), 453; https://doi.org/10.3390/biom15030453 - 20 Mar 2025
Viewed by 937
Abstract
Tumor necrosis factor ɑ (TNFɑ)-induced protein 3 (TNFAIP3)-interacting protein 1 (TNIP1) is genetically and functionally linked to limiting auto-immune and inflammatory responses. We have shown that TNIP1 (alias A20-binding inhibitor of NF-κB 1, ABIN1), functioning as a hub location to coordinate other proteins [...] Read more.
Tumor necrosis factor ɑ (TNFɑ)-induced protein 3 (TNFAIP3)-interacting protein 1 (TNIP1) is genetically and functionally linked to limiting auto-immune and inflammatory responses. We have shown that TNIP1 (alias A20-binding inhibitor of NF-κB 1, ABIN1), functioning as a hub location to coordinate other proteins in repressing inflammatory signaling, aligns with biophysical traits indicative of its being an intrinsically disordered protein (IDP). IDPs move through a repertoire of three-dimensional structures rather than being in one set conformation. Here we employed bioinformatic analysis and biophysical interventions via amino acid mutations to assess and alter, respectively, conformational flexibility along a crucial region of TNIP1, encompassing the ABIN homology domain 1 and ubiquitin-binding domain in ABIN proteins and NEMO (AHD1-UBAN), by purposeful replacement of key residues. In vitro secondary structure measurements were mostly in line with, but not necessarily to the same degree as, expected results from in silico assessments. Notably, changes in single amino acids outside of the ubiquitin-binding region for gain-of-order effects had consequences along the length of the AHD1-UBAN propagating to that region. This is evidenced by differences in recognition of the partner protein polyubiquitin ≥ 28 residues away, depending on the mutation site, from the previously identified key binding site. These findings serve to demonstrate the role of conformational flexibility in protein partner recognition by TNIP1, thus identifying key amino acids likely to impact the molecular dynamics involved in TNIP1 repression of inflammatory signaling at large. Full article
(This article belongs to the Section Biomacromolecules: Proteins, Nucleic Acids and Carbohydrates)
Show Figures

Figure 1

24 pages, 11432 KB  
Article
Podocyte A20/TNFAIP3 Controls Glomerulonephritis Severity via the Regulation of Inflammatory Responses and Effects on the Cytoskeleton
by Paulina Köhler, Andrea Ribeiro, Mohsen Honarpisheh, Ekaterina von Rauchhaupt, Georg Lorenz, Chenyu Li, Lucas Martin, Stefanie Steiger, Maja Lindenmeyer, Christoph Schmaderer, Hans-Joachim Anders, Dana Thomasova and Maciej Lech
Cells 2025, 14(5), 381; https://doi.org/10.3390/cells14050381 - 5 Mar 2025
Cited by 1 | Viewed by 3057
Abstract
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of [...] Read more.
A20/Tnfaip3, an early NF-κB response gene and key negative regulator of NF-κB signaling, suppresses proinflammatory responses. Its ubiquitinase and deubiquitinase activities mediate proteasomal degradation within the NF-κB pathway. This study investigated the involvement of A20 signaling alterations in podocytes in the development of kidney injury. The phenotypes of A20Δpodocyte (podocyte-specific knockout of A20) mice were compared with those of control mice at 6 months of age to identify spontaneous changes in kidney function. A20Δpodocyte mice presented elevated serum urea nitrogen and creatinine levels, along with increased accumulation of inflammatory cells—neutrophils and macrophages—within the glomeruli. Additionally, A20Δpodocyte mice displayed significant podocyte loss. Ultrastructural analysis of A20 podocyte-knockout mouse glomeruli revealed hypocellularity of the glomerular tuft, expansion of the extracellular matrix, podocytopenia associated with foot process effacement, karyopyknosis, micronuclei, and podocyte detachment. In addition to podocyte death, we also observed damage to intracapillary endothelial cells with vacuolation of the cytoplasm and condensation of nuclear chromatin. A20 expression downregulation and CRISPR-Cas9 genome editing targeting A20 in a podocyte cell line confirmed these findings in vitro, highlighting the significant contribution of A20 activity in podocytes to glomerular injury pathogenesis. Finally, we analyzed TNFAIP3 transcription levels alongside genes involved in apoptosis, anoikis, NF-κB regulation, and cell attachment in glomerular and tubular compartments of kidney biopsies of patients with various renal diseases. Full article
(This article belongs to the Special Issue Innate Immunity in Health and Disease)
Show Figures

Graphical abstract

12 pages, 1951 KB  
Brief Report
Spheroids Composed of Reaggregated Neonatal Porcine Islets and Human Endothelial Cells Accelerate Development of Normoglycemia in Diabetic Mice
by Mohsen Honarpisheh, Yutian Lei, Antonia Follenzi, Alessia Cucci, Cristina Olgasi, Ekaterine Berishvili, Fanny Lebreton, Kevin Bellofatto, Lorenzo Piemonti, Antonio Citro, Francesco Campo, Cataldo Pignatelli, Olivier Thaunat, Elisabeth Kemter, Martin Kraetzl, Eckhard Wolf, Jochen Seissler, Lelia Wolf-van Buerck and VANGUARD Consortium
Cells 2025, 14(5), 366; https://doi.org/10.3390/cells14050366 - 2 Mar 2025
Viewed by 1577
Abstract
The engraftment of transplanted islets depends on the rapid establishment of a novel vascular network. The present study evaluated the effects of cord blood-derived blood outgrowth endothelial cells (BOECs) on the viability of neonatal porcine islets (NPIs) and the post-transplant outcome of grafted [...] Read more.
The engraftment of transplanted islets depends on the rapid establishment of a novel vascular network. The present study evaluated the effects of cord blood-derived blood outgrowth endothelial cells (BOECs) on the viability of neonatal porcine islets (NPIs) and the post-transplant outcome of grafted NPIs. Dispersed NPIs and human BOECs were reaggregated on microwell cell culture plates and tested for their anti-apoptotic and pro-angiogenic capacity by qRT-PCR and immunohistochemistry. The in vivo functionality was analyzed after transplantation into diabetic NOD-SCID IL2rγ−/− (NSG) mice. The spheroids, which contained reaggregated neonatal porcine islet cells (REPIs) and BOECs, exhibited enhanced viability and a significantly elevated gene expression of VEGFA, angiopoetin-1, heme oxygenase-1, and TNFAIP3 (A20) in vitro. The development of normoglycemia was significantly faster in animals transplanted with spheroids in comparison to the only REPI group (median 51.5 days versus 60 days) (p < 0.05). Furthermore, intragraft vascular density was substantially increased (p < 0.01). The co-transplantation of prevascularized REPI-BOEC spheroids resulted in superior angiogenesis and accelerated in vivo function. These findings may provide a novel tool to enhance the efficacy of porcine islet xenotransplantation. Full article
Show Figures

Figure 1

19 pages, 7960 KB  
Article
The Astragalus Membranaceus Herb Attenuates Leukemia by Inhibiting the FLI1 Oncogene and Enhancing Anti-Tumor Immunity
by Kunlin Yu, Yao Tang, Chunlin Wang, Wuling Liu, Maoting Hu, Anling Hu, Yi Kuang, Eldad Zacksenhaus, Xue-Zhong Yu, Xiao Xiao and Yaacov Ben-David
Int. J. Mol. Sci. 2024, 25(24), 13426; https://doi.org/10.3390/ijms252413426 - 14 Dec 2024
Cited by 1 | Viewed by 2631
Abstract
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry [...] Read more.
Astragalus membranaceus (AM) herb is a component of traditional Chinese medicine used to treat various cancers. Herein, we demonstrate a strong anti-leukemic effect of AM injected (Ai) into the mouse model of erythroleukemia induced by Friend virus. Chemical analysis combined with mass spectrometry of AM/Ai identified the compounds Betulinic acid, Kaempferol, Hederagenin, and formononetin, all major mediators of leukemia inhibition in culture and in vivo. Docking analysis demonstrated binding of these four compounds to FLI1, resulting in downregulation of its targets, induction of apoptosis, differentiation, and suppression of cell proliferation. Chemical composition analysis identified other compounds previously known having anti-tumor activity independent of the FLI1 blockade. Among these, Astragaloside-A (As-A) has marginal effect on cells in culture, but strongly inhibits leukemogenesis in vivo, likely through improvement of anti-tumor immunity. Indeed, both IDO1 and TDO2 were identified as targets of As-A, leading to suppression of tryptophane-mediated Kyn production and leukemia suppression. Moreover, As-A interacts with histamine decarboxylase (HDC), leading to suppression of anti-inflammatory genes TNF, IL1B/IL1A, TNFAIP3, and CXCR2, but not IL6. These results implicate HDC as a novel immune checkpoint mediator, induced in the tumor microenvironment to promote leukemia. Functional analysis of AM components may allow development of combination therapy with optimal anti-leukemia effect. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

20 pages, 952 KB  
Review
Critical Analysis of Cytoplasmic Progression of Inflammatory Signaling Suggests Potential Pharmacologic Targets for Wound Healing and Fibrotic Disorders
by Michael L. Samulevich, Liam E. Carman and Brian J. Aneskievich
Biomedicines 2024, 12(12), 2723; https://doi.org/10.3390/biomedicines12122723 - 28 Nov 2024
Cited by 3 | Viewed by 2017
Abstract
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors [...] Read more.
Successful skin wound healing is dependent on an interplay between epidermal keratinocytes and dermal fibroblasts as they react to local extracellular factors (DAMPs, PAMPs, cytokines, etc.) surveyed from that environment by numerous membrane receptors (e.g., TLRs, cytokine receptors, etc.). In turn, those receptors are the start of a cytoplasmic signaling pathway where balance is key to effective healing and, as needed, cell and matrix regeneration. When directed through NF-κB, these signaling routes lead to transient responses to the benefit of initiating immune cell recruitment, cell replication, local chemokine and cytokine production, and matrix protein synthesis. The converse can also occur, where ongoing canonical NF-κB activation leads to chronic, hyper-responsive states. Here, we assess three key players, TAK1, TNFAIP3, and TNIP1, in cytoplasmic regulation of NF-κB activation, which, because of their distinctive and yet inter-related functions, either promote or limit that activation. Their balanced function is integral to successful wound healing, given their significant control over the expression of inflammation-, fibrosis-, and matrix remodeling-associated genes. Intriguingly, these three proteins have also been emphasized in dysregulated NF-κB signaling central to systemic sclerosis (SSc). Notably, diffuse SSc shares some tissue features similar to an excessive inflammatory/fibrotic wound response without eventual resolution. Taking a cue from certain instances of aberrant wound healing and SSc having some shared aspects, e.g., chronic inflammation and fibrosis, this review looks for the first time, to our knowledge, at what those pathologies might have in common regarding the cytoplasmic progression of NF-κB-mediated signaling. Additionally, while TAK1, TNFAIP3, and TNIP1 are often investigated and reported on individually, we propose them here as three proteins whose consequences of function are very highly interconnected at the signaling focus of NF-κB. We thus highlight the emerging promise for the eventual clinical benefit derived from an improved understanding of these integral signal progression modulators. Depending on the protein, its indirect or direct pharmacological regulation has been reported. Current findings support further intensive studies of these points in NF-κB regulation both for their basic function in healthy cells as well as with the goal of targeting them for translational benefit in multiple cutaneous wound healing situations, whether stemming from acute injury or a dysregulated inflammatory/fibrotic response. Full article
(This article belongs to the Special Issue Skin Fibrosis and Cutaneous Wound Healing)
Show Figures

Figure 1

17 pages, 3573 KB  
Article
The Role of TNF Receptor-Associated Factor 5 in the Formation of Germinal Centers by B Cells During the Primary Phase of the Immune Response in Mice
by Mari Hikosaka-Kuniishi, Chieri Iwata, Yusuke Ozawa, Sayaka Ogawara, Tomomi Wakaizumi, Riho Itaya, Ren Sunakawa, Ayaka Sato, Hodaka Nagai, Masashi Morita and Takanori So
Int. J. Mol. Sci. 2024, 25(22), 12331; https://doi.org/10.3390/ijms252212331 - 17 Nov 2024
Cited by 3 | Viewed by 1815
Abstract
TNF receptor-associated factors (TRAFs) function as intracellular adaptor proteins utilized by members of the TNF receptor superfamily, such as CD40. Among the TRAF family proteins, TRAF5 has been identified as a potential regulator of CD40. However, it remains unclear whether TRAF5 regulates the [...] Read more.
TNF receptor-associated factors (TRAFs) function as intracellular adaptor proteins utilized by members of the TNF receptor superfamily, such as CD40. Among the TRAF family proteins, TRAF5 has been identified as a potential regulator of CD40. However, it remains unclear whether TRAF5 regulates the generation of germinal center (GC) B cells and antigen-specific antibody production in the T-dependent (TD) immune response. TRAF5-deficient (Traf5−/−) and TRAF5-sufficient (Traf5+/+) mice were immunized in the footpad with 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin (TNP-KLH) and complete Freund’s adjuvant (CFA). We found that GC B cell generation and antigen-specific IgM and IgG1 production were significantly impaired in Traf5−/− mice compared to Traf5+/+ mice. The expression levels of CD40-target genes Fas and Lta, which are involved in GC formation, were significantly decreased in B220+ cells isolated from immunized Traf5−/− mice. Traf5−/− B cells showed decreased antibody production, proliferation, and induction of CD40-target genes Tnfaip3, Tnfsf4, and Cd80 in response to agonistic Fc-CD40L protein in vitro. Furthermore, administration of TNP-KLH and Fc-CD40L to Traf5−/− mice resulted in a severe loss of GC B cell development. These results highlight the crucial role of TRAF5 in driving CD40-mediated TD immune response in vivo. Full article
(This article belongs to the Special Issue Cytokines in Inflammation and Health)
Show Figures

Figure 1

27 pages, 4646 KB  
Review
Genetic Mutations Associated With TNFAIP3 (A20) Haploinsufficiency and Their Impact on Inflammatory Diseases
by Eva Bagyinszky and Seong Soo A. An
Int. J. Mol. Sci. 2024, 25(15), 8275; https://doi.org/10.3390/ijms25158275 - 29 Jul 2024
Cited by 8 | Viewed by 5703
Abstract
TNF-α-induced protein 3 (TNFAIP3), commonly referred to as A20, is an integral part of the ubiquitin-editing complex that significantly influences immune regulation, apoptosis, and the initiation of diverse immune responses. The A20 protein is characterized by an N-terminal ovarian tumor (OTU) domain and [...] Read more.
TNF-α-induced protein 3 (TNFAIP3), commonly referred to as A20, is an integral part of the ubiquitin-editing complex that significantly influences immune regulation, apoptosis, and the initiation of diverse immune responses. The A20 protein is characterized by an N-terminal ovarian tumor (OTU) domain and a series of seven zinc finger (ZNF) domains. Mutations in the TNFAIP3 gene are implicated in various immune-related diseases, such as Behçet’s disease, polyarticular juvenile idiopathic arthritis, autoimmune thyroiditis, autoimmune hepatitis, and rheumatoid arthritis. These mutations can lead to a spectrum of symptoms, including, but not limited to, recurrent fever, ulcers, rashes, musculoskeletal and gastrointestinal dysfunctions, cardiovascular issues, and respiratory infections. The majority of these mutations are either nonsense (STOP codon) or frameshift mutations, which are typically associated with immune dysfunctions. Nonetheless, missense mutations have also been identified as contributors to these conditions. These genetic alterations may interfere with several biological pathways, notably abnormal NF-κB signaling and dysregulated ubiquitination. Currently, there is no definitive treatment for A20 haploinsufficiency; however, therapeutic strategies can alleviate the symptoms in patients. This review delves into the mutations reported in the TNFAIP3 gene, the clinical progression in affected individuals, potential disease mechanisms, and a brief overview of the available pharmacological interventions for A20 haploinsufficiency. Mandatory genetic testing of the TNFAIP3 gene should be performed in patients diagnosed with autoinflammatory disorders to better understand the genetic underpinnings and guide treatment decisions. Full article
(This article belongs to the Section Molecular Immunology)
Show Figures

Figure 1

Back to TopTop