Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,488)

Search Parameters:
Keywords = tipping

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 1526 KiB  
Article
Effects of Different Phosphorus Addition Levels on Physiological and Growth Traits of Pinus massoniana (Masson Pine) Seedlings
by Zhenya Yang and Hui Wang
Forests 2025, 16(8), 1265; https://doi.org/10.3390/f16081265 (registering DOI) - 2 Aug 2025
Abstract
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive [...] Read more.
Soil phosphorus (P) availability is an important determinant of productivity in Pinus massoniana (Masson pine) forests. The mechanistic bases governing the physiological and growth responses of Masson pine to varying soil P conditions remain insufficiently characterized. This study aims to decipher the adaptive strategies of Masson pine to different soil P levels, focusing on root morphological–architectural plasticity and the allocation dynamics of nutrient elements and photosynthetic assimilates. One-year-old potted Masson pine seedlings were exposed to four P addition treatments for one year: P0 (0 mg kg−1), P1 (25 mg kg−1), P2 (50 mg·kg−1), and P3 (100 mg kg−1). In July and December, measurements were conducted on seedling organ biomass, root morphological indices [root length (RL), root surface area (RSA), root diameter (RD), specific root length (SRL), and root length ratio (RLR) for each diameter grade], root architectural indices [number of root tips (RTs), fractal dimension (FD), root branching angle (RBA), and root topological index (TI)], as well as the content of nitrogen (N), phosphorus (P), carbon (C), and non-structural carbohydrates (NSCs) in roots, stems, and leaves. Compared with the P0 treatment, P2 and P3 significantly increased root biomass, root–shoot ratio, RL, RSA, RTs, RLR of finer roots (diameter ≤ 0.4 mm), nutrient accumulation ratio in roots, and starch (ST) content in roots, stems and leaves. Meanwhile, they decreased soluble sugar (SS) content, SS/ST ratio, C and N content, and N/P and C/P ratios in stems and leaves, as well as nutrient accumulation ratio in leaves. The P3 treatment significantly reduced RBA and increased FD and SRL. Our results indicated that Masson pine adapts to low P by developing shallower roots with a reduced branching intensity and promoting the conversion of ST to SS. P’s addition effectively alleviates growth limitations imposed by low P, stimulating root growth, branching, and gravitropism. Although a sole P addition promotes short-term growth and P uptake, it triggers a substantial consumption of N, C, and SS, leading to significant decreases in N/P and C/P ratios and exacerbating N’s limitation, which is detrimental to long-term growth. Under high-P conditions, Masson pine strategically prioritizes allocating limited N and SS to roots, facilitating the formation of thinner roots with low C costs. Full article
Show Figures

Figure 1

16 pages, 10446 KiB  
Article
Transient Vortex Dynamics in Tip Clearance Flow of a Novel Dishwasher Pump
by Chao Ning, Yalin Li, Haichao Sun, Yue Wang and Fan Meng
Machines 2025, 13(8), 681; https://doi.org/10.3390/machines13080681 (registering DOI) - 2 Aug 2025
Abstract
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. [...] Read more.
Blade tip leakage vortex (TLV) is a critical phenomenon in hydraulic machinery, which can significantly affect the internal flow characteristics and deteriorate the hydraulic performance. In this paper, the blade tip leakage flow and TLV characteristics in a novel dishwasher pump were investigated. The correlation between the vorticity distribution in various directions and the leakage vortices was established within a rotating coordinate system. The results show that the TLV in a composite impeller can be categorized into initial and secondary leakage vortices. The initial leakage vortex originates from the evolution of two corner vortices that initially form at different locations within the blade tip clearance. This vortex induces pressure fluctuations at the impeller inlet; its shedding is identified as the primary contributor to localized energy loss within the flow passage. These findings provide insights into TLVs in complex pump geometries and provide solutions for future pump optimization strategies. Full article
Show Figures

Figure 1

14 pages, 2428 KiB  
Article
Fracture Behavior of Steel-Fiber-Reinforced High-Strength Self-Compacting Concrete: A Digital Image Correlation Analysis
by Maoliang Zhang, Junpeng Chen, Junxia Liu, Huiling Yin, Yan Ma and Fei Yang
Materials 2025, 18(15), 3631; https://doi.org/10.3390/ma18153631 (registering DOI) - 1 Aug 2025
Abstract
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, [...] Read more.
In this study, steel fibers were used to improve the mechanical properties of high-strength self-compacting concrete (HSSCC), and its effect on the fracture mechanical properties was investigated by a three-point bending test with notched beams. Coupled with the digital image correlation (DIC) technique, the fracture process of steel-fiber-reinforced HSSCC was analyzed to elucidate the reinforcing and fracture-resisting mechanisms of steel fibers. The results indicate that the compressive strength and flexural strength of HSSCC cured for 28 days exhibited an initial decrease and then an enhancement as the volume fraction (Vf) of steel fibers increased, whereas the flexural-to-compressive ratio linearly increased. All of them reached their maximum of 110.5 MPa, 11.8 MPa, and 1/9 at 1.2 vol% steel fibers, respectively. Steel fibers significantly improved the peak load (FP), peak opening displacement (CMODP), fracture toughness (KIC), and fracture energy (GF) of HSSCC. Compared with HSSCC without steel fibers (HSSCC-0), the FP, KIC, CMODP, and GF of HSSCC with 1.2 vol% (HSSCC-1.2) increased by 23.5%, 45.4%, 11.1 times, and 20.1 times, respectively. The horizontal displacement and horizontal strain of steel-fiber-reinforced HSSCC both increased significantly with an increasing Vf. HSSCC-0 experienced unstable fracture without the occurrence of a fracture process zone during the whole fracture damage, whereas the fracture process zone formed at the notched beam tip of HSSCC-1.2 at its initial loading stage and further extended upward in the beams of high-strength self-compacting concrete with a 0.6% volume fraction of steel fibers and HSSCC-1.2 as the load approaches and reaches the peak. Full article
25 pages, 5840 KiB  
Article
Creating Micro-Habitat in a Pool-Weir Fish Pass with Flexible Hydraulic Elements: Insights from Field Experiments
by Mehmet Salih Turker and Serhat Kucukali
Water 2025, 17(15), 2294; https://doi.org/10.3390/w17152294 (registering DOI) - 1 Aug 2025
Abstract
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches [...] Read more.
The placement of hydraulic elements in existing pool-type fishways to make them more suitable for Cyprinid fish is an issue of increasing interest in fishway research. Hydrodynamic characteristics and fish behavior at the representative pool of the fishway with bottom orifices and notches were assessed at the Dagdelen hydropower plant in the Ceyhan River Basin, Türkiye. Three-dimensional velocity measurements were taken in the pool of the fishway using an Acoustic Doppler velocimeter. The measurements were taken with and without a brush block at two different vertical distances from the bottom, which were below and above the level of bristles tips. A computational fluid dynamics (CFD) analysis was conducted for the studied fishway. The numerical model utilized Large Eddy Simulation (LES) combined with the Darcy–Forchheimer law, wherein brush blocks were represented as homogenous porous media. Our results revealed that the relative submergence of bristles in the brush block plays a very important role in velocity and Reynolds shear stress (RSS) distributions. After the placement of the submerged brush block, flow velocity and the lateral RSS component were reduced, and a resting area was created behind the brush block below the bristles’ tips. Fish movements in the pool were recorded by underwater cameras under real-time operation conditions. The heatmap analysis, which is a 2-dimensional fish spatial presence visualization technique for a specific time period, showed that Capoeta damascina avoided the areas with high turbulent fluctuations during the tests, and 61.5% of the fish presence intensity was found to be in the low Reynolds shear regions in the pool. This provides a clear case for the real-world ecological benefits of retrofitting existing pool-weir fishways with such flexible hydraulic elements. Full article
(This article belongs to the Section Hydraulics and Hydrodynamics)
Show Figures

Figure 1

15 pages, 6663 KiB  
Patent Summary
Modernization of the DISA 55D41 Wind Tunnel for Micro-Scale Probe Testing
by Emilia Georgiana Prisăcariu, Iulian Vlăducă, Oana Maria Dumitrescu, Sergiu Strătilă and Raluca Andreea Roșu
Inventions 2025, 10(4), 66; https://doi.org/10.3390/inventions10040066 (registering DOI) - 1 Aug 2025
Abstract
Originally introduced in the 1960s by DISA Elektronik as a calibration tunnel for hot-wire anemometers, the Type 55D41 has now been reengineered into a versatile and modern aerodynamic test platform. While retaining key legacy components, such as the converging nozzle and the 55D42 [...] Read more.
Originally introduced in the 1960s by DISA Elektronik as a calibration tunnel for hot-wire anemometers, the Type 55D41 has now been reengineered into a versatile and modern aerodynamic test platform. While retaining key legacy components, such as the converging nozzle and the 55D42 power unit, the upgraded system features a redesigned modular test section with optical-grade quartz windows. This enhancement enables compatibility with advanced flow diagnostics and visualization methods, including PTV, DIC, and schlieren imaging. The modernized facility maintains the precision and flow stability that made the original design widely respected, while expanding its functionality to meet the demands of contemporary experimental research. Its architecture supports the aerodynamic characterization of micro-scale static pressure probes used in aerospace, propulsion, and micro gas turbine applications. Special attention is given to assessing the influence of probe tip geometry (e.g., conical, ogive), port positioning, and stem interference on measurement accuracy. Full article
(This article belongs to the Section Inventions and Innovation in Advanced Manufacturing)
Show Figures

Figure 1

17 pages, 1448 KiB  
Article
Nursery Propagation Systems for High-Quality Strawberry (Fragaria × ananassa Duch.) Plug Plant Production from Micropropagated, Soilless-Grown Mother Plants
by Valentina Morresi, Franco Capocasa, Francesca Balducci, Jacopo Diamanti and Bruno Mezzetti
Horticulturae 2025, 11(8), 888; https://doi.org/10.3390/horticulturae11080888 (registering DOI) - 1 Aug 2025
Abstract
The commercial propagation of strawberries is increasingly constrained by the incidence of both established and emerging soilborne pathogens, particularly under soil cultivation systems. Micropropagation represents an effective strategy to ensure the production of virus-free, true-to-type mother plants suitable for high-efficiency propagation. In this [...] Read more.
The commercial propagation of strawberries is increasingly constrained by the incidence of both established and emerging soilborne pathogens, particularly under soil cultivation systems. Micropropagation represents an effective strategy to ensure the production of virus-free, true-to-type mother plants suitable for high-efficiency propagation. In this study, micropropagated mother plants of four short-day cultivars (‘Francesca’, ‘Silvia’, ‘Lauretta’, and ‘Dina’) and one ever-bearing advanced selection (‘AN12,13,58’) were cultivated under a controlled soilless system. Quantitative parameters including number of runners per plant, runner length, and number of tips per runner and per plant were assessed to evaluate propagation performance. Micropropagated mother plants exhibited a significantly higher stoloniferous potential compared to in vivo-derived mother plants (frigo plants type A), with the latter producing approximately 50% fewer propagules. Rooted tips of ‘Dina’ were further assessed under different fertigation regimes. The NPK 20–20–20 nutrient solution enhanced photosynthetic activity and shoot and root biomass (length, diameter, and volume via WinRHIZO analysis). These results confirm the suitability of micropropagated mother plants grown in soilless conditions for efficient, high-quality clonal propagation and support the integration of such systems into certified nursery production schemes. Full article
(This article belongs to the Section Propagation and Seeds)
Show Figures

Graphical abstract

15 pages, 1018 KiB  
Article
Biostimulatory Effects of Bacillus subtilis and Pseudomonas corrugata on Phytochemical and Antioxidant Properties of In Vitro-Propagated Plants of Nardostachys jatamansi (D. Don) DC
by Janhvi Mishra Rawat, Mrinalini Agarwal, Shivani Negi, Jigisha Anand, Prabhakar Semwal, Balwant Rawat, Rajneesh Bhardwaj and Debasis Mitra
Bacteria 2025, 4(3), 38; https://doi.org/10.3390/bacteria4030038 (registering DOI) - 1 Aug 2025
Abstract
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In [...] Read more.
Plant growth-promoting rhizobacteria (PGPRs) are well known for their capacity to enhance the growth and survival of in vitro-grown plants. However, their effect on Nardostachys jatamansi (D. Don) DC., a critically endangered medicinal plant in the Indian Himalayan Region, is still unknown. In this study, a simple, reproducible protocol for in vitro propagation of N. jatamansi was established using shoot tip explants, cultured on Murashige and Skoog (MS) medium supplemented with different plant growth regulators, including N6-benzylaminopurine, thidiazuron (TDZ), and naphthalene acetic acid (NAA). MS media supplemented with 2.0 μM TDZ and 0.5 µM NAA created a significant shoot induction with an average of 6.2 shoots per explant. These aseptically excised individual shoots produced roots on MS medium supplemented with Indole Butyric Acid or NAA within 14 days of the transfer. The PGPR, viz., Bacillus subtilis and Pseudomonas corrugata, inoculation resulted in improved growth, higher chlorophyll content, and survival of in vitro-rooted plants (94.6%) after transfer to the soil. Moreover, the PGPRs depicted a two-fold higher total phenolics (45.87 mg GAE/g DW) in plants. These results clearly demonstrate the beneficial effects of P. corrugata and B. subtilis on the growth, survival, and phytochemical content of N. jatamansi. Full article
(This article belongs to the Special Issue Harnessing of Soil Microbiome for Sustainable Agriculture)
Show Figures

Figure 1

20 pages, 3293 KiB  
Article
Does Beach Sand Nourishment Have a Negative Effect on Natural Recovery of a Posidonia oceanica Seagrass Fringing Reef? The Case of La Vieille Beach (Saint-Mandrier-sur-Mer) in the North-Western Mediterranean
by Dominique Calmet, Pierre Calmet and Charles-François Boudouresque
Water 2025, 17(15), 2287; https://doi.org/10.3390/w17152287 - 1 Aug 2025
Abstract
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th [...] Read more.
Posidonia oceanica seagrass, endemic to the Mediterranean Sea, provides ecological goods and ecosystem services of paramount importance. In shallow and sheltered bays, P. oceanica meadows can reach the sea surface, with leaf tips slightly emerging, forming fringing and barrier reefs. During the 20th century, P. oceanica declined conspicuously in the vicinity of large ports and urbanized areas, particularly in the north-western Mediterranean. The main causes of decline are land reclamation, anchoring, bottom trawling, turbidity and pollution. Artificial sand nourishment of beaches has also been called into question, with sand flowing into the sea, burying and destroying neighbouring meadows. A fringing reef of P. oceanica, located at Saint-Mandrier-sur-Mer, near the port of Toulon (Provence, France), is severely degraded. Analysis of aerial photos shows that, since the beginning of the 2000s, it has remained stable in some parts or continued to decline in others. This contrasts with the trend towards recovery, observed in France, thanks to e.g., the legally protected status of P. oceanica, and the reduction of pollution and coastal developments. The sand nourishment of the study beach, renewed every year, with the sand being washed or blown very quickly (within a few months) from the beach into the sea, burying the P. oceanica meadow, seems the most likely explanation. Other factors, such as pollution, trampling by beachgoers and overgrazing, may also play a role in the decline. Full article
(This article belongs to the Section Oceans and Coastal Zones)
Show Figures

Figure 1

24 pages, 6731 KiB  
Article
Combined Impacts of Acute Heat Stress on the Histology, Antioxidant Activity, Immunity, and Intestinal Microbiota of Wild Female Burbot (Lota Lota) in Winter: New Insights into Heat Sensitivity in Extremely Hardy Fish
by Cunhua Zhai, Yutao Li, Ruoyu Wang, Haoxiang Han, Ying Zhang and Bo Ma
Antioxidants 2025, 14(8), 947; https://doi.org/10.3390/antiox14080947 (registering DOI) - 31 Jul 2025
Abstract
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. [...] Read more.
Temperature fluctuations caused by climate change and global warming pose a threat to fish. The burbot (lota lota) population is particularly sensitive to increased water temperature, but the systematic impacts of high-temperature exposure on their liver and intestinal health remain unclear. In January of 2025, we collected wild adult burbot individuals from the Ussuri River (water temperature: about 2 °C), China. The burbot were exposed to 2 °C, 7 °C, 12 °C, 17 °C, and 22 °C environments for 96 h; then, the liver and intestinal contents were subsequently collected for histopathology observation, immunohistochemistry, biochemical index assessment, and transcriptome/16S rDNA sequencing analysis. There was obvious liver damage including hepatocyte necrosis, fat vacuoles, and cellular peripheral nuclei. Superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-Px) activities were elevated and subsequently decreased. Additionally, the malondialdehyde (MDA) level significantly increased with increasing temperature. These results indicate that 7 °C (heat stress temperature), 12 °C (tipping point for normal physiological metabolism status), 17 °C (tipping point for individual deaths), and 22 °C (thermal limit) are critical temperatures in terms of the physiological response of burbot during their breeding period. In the hepatic transcriptome profiling, 6538 differentially expressed genes (DEGs) were identified, while KEGG enrichment analysis showed that high-temperature stress could affect normal liver function by regulating energy metabolism, immune, and apoptosis-related pathways. Microbiomics also revealed that acute heat stress could change the intestinal microbe community structure. Additionally, correlation analysis suggested potential regulatory relationships between intestinal microbe taxa and immune/apoptosis-related DEGs in the liver. This study revealed the potential impact of environmental water temperature changes in cold habitats in winter on the physiological adaptability of burbot during the breeding period and provides new insights for the ecological protection of burbot in the context of global climate change and habitat warming. Full article
(This article belongs to the Special Issue Antioxidant Response in Aquatic Animals)
Show Figures

Figure 1

20 pages, 11920 KiB  
Article
Enhancing Tip Detection by Pre-Training with Synthetic Data for Ultrasound-Guided Intervention
by Ruixin Wang, Jinghang Wang, Wei Zhao, Xiaohui Liu, Guoping Tan, Jun Liu and Zhiyuan Wang
Diagnostics 2025, 15(15), 1926; https://doi.org/10.3390/diagnostics15151926 - 31 Jul 2025
Abstract
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, [...] Read more.
Objectives: Automatic tip localization is critical in ultrasound (US)-guided interventions. Although deep learning (DL) has been widely used for precise tip detection, existing methods are limited by the availability of real puncture data and expert annotations. Methods: To address these challenges, we propose a novel method that uses synthetic US puncture data to pre-train DL-based tip detectors, improving their generalization. Synthetic data are generated by fusing clinical US images of healthy controls with tips created using generative DL models. To ensure clinical diversity, we constructed a dataset from scans of 20 volunteers, covering 20 organs or anatomical regions, obtained with six different US machines and performed by three physicians with varying expertise levels. Tip diversity is introduced by generating a wide range of synthetic tips using a denoising probabilistic diffusion model (DDPM). This method synthesizes a large volume of diverse US puncture data, which are used to pre-train tip detectors, followed by subsequently training with real puncture data. Results: Our method outperforms MSCOCO pre-training on a clinical puncture dataset, achieving a 1.27–7.19% improvement in AP0.1:0.5 with varying numbers of real samples. State-of-the-art detectors also show performance gains of 1.14–1.76% when applying the proposed method. Conclusions: The experimental results demonstrate that our method enhances the generalization of tip detectors without relying on expert annotations or large amounts of real data, offering significant potential for more accurate visual guidance during US-guided interventions and broader clinical applications. Full article
(This article belongs to the Section Machine Learning and Artificial Intelligence in Diagnostics)
Show Figures

Figure 1

21 pages, 1623 KiB  
Article
Derivation of Human Toxicokinetic Parameters and Chemical-Specific Adjustment Factor of Citrinin Through a Human Intervention Trial and Hierarchical Bayesian Population Modeling
by Lia Visintin, Camilla Martino, Sarah De Saeger, Eugenio Alladio, Marthe De Boevre and Weihsueh A. Chiu
Toxins 2025, 17(8), 382; https://doi.org/10.3390/toxins17080382 (registering DOI) - 31 Jul 2025
Viewed by 84
Abstract
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method [...] Read more.
Background: Citrinin (CIT) is a mycotoxin produced by various fungi contaminating stored cereals and fruits. While biomonitoring and food occurrence data indicate widespread exposure, its public health risks remain unclear due to the lack of human toxicokinetic (TK) data. Methods: A UHPLC-MS/MS method was validated for CIT quantification in capillary blood (VAMS Mitra® tips), feces, and urine obtaining LLOQs ≤ 0.05 ng/mL. A human TK study was conducted following a single oral bolus of 200 ng/kg bw CIT. Individual capillary blood (VAMS Mitra® tips), feces, and urine samples were collected for 48 h after exposure. Samples were analyzed to determine CIT’s TK profile. Results: TK modeling was performed using a multi-compartmental structure with a hierarchical Bayesian population approach, allowing robust parameter estimation despite the lack of standards for CIT metabolites. Conclusions: The derived TK parameters align with preliminary human data and significantly advance CIT exposure assessment via biomonitoring. A human inter-individual toxicokinetic variability (HKAF) of 1.92 was calculated based on the derived AUC, indicating that EFSA’s current default uncertainty factor for TK variability is adequately protective for at least 95% of the population. Full article
(This article belongs to the Special Issue Mycotoxins in Food and Feeds: Human Health and Animal Nutrition)
Show Figures

Figure 1

34 pages, 6142 KiB  
Review
Grain Boundary Engineering for High-Mobility Organic Semiconductors
by Zhengran He, Kyeiwaa Asare-Yeboah and Sheng Bi
Electronics 2025, 14(15), 3042; https://doi.org/10.3390/electronics14153042 (registering DOI) - 30 Jul 2025
Viewed by 77
Abstract
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and [...] Read more.
Grain boundaries are among the most influential structural features that control the charge transport in polycrystalline organic semiconductors. Acting as both charge trapping sites and electrostatic barriers, they disrupt molecular packing and introduce energetic disorder, thereby limiting carrier mobility, increasing threshold voltage, and degrading the stability of organic thin-film transistors (OTFTs). This review presents a detailed discussion of grain boundary formation, their impact on charge transport, and experimental strategies for engineering their structure and distribution across several high-mobility small-molecule semiconductors, including pentacene, TIPS pentacene, diF-TES-ADT, and rubrene. We explore grain boundary engineering approaches through solvent design, polymer additives, and external alignment methods that modulate crystallization dynamics and domain morphology. Then various case studies are discussed to demonstrate that optimized processing can yield larger, well-aligned grains with reduced boundary effects, leading to great mobility enhancements and improved device stability. By offering insights from structural characterization, device physics, and materials processing, this review outlines key directions for grain boundary control, which is essential for advancing the performance and stability of organic electronic devices. Full article
(This article belongs to the Special Issue Feature Papers in Electronic Materials)
Show Figures

Figure 1

50 pages, 937 KiB  
Review
Precision Neuro-Oncology in Glioblastoma: AI-Guided CRISPR Editing and Real-Time Multi-Omics for Genomic Brain Surgery
by Matei Șerban, Corneliu Toader and Răzvan-Adrian Covache-Busuioc
Int. J. Mol. Sci. 2025, 26(15), 7364; https://doi.org/10.3390/ijms26157364 - 30 Jul 2025
Viewed by 192
Abstract
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model [...] Read more.
Precision neurosurgery is rapidly evolving as a medical specialty by merging genomic medicine, multi-omics technologies, and artificial intelligence (AI) technology, while at the same time, society is shifting away from the traditional, anatomic model of care to consider a more precise, molecular model of care. The general purpose of this review is to contemporaneously reflect on how these advances will impact neurosurgical care by providing us with more precise diagnostic and treatment pathways. We hope to provide a relevant review of the recent advances in genomics and multi-omics in the context of clinical practice and highlight their transformational opportunities in the existing models of care, where improved molecular insights can support improvements in clinical care. More specifically, we will highlight how genomic profiling, CRISPR-Cas9, and multi-omics platforms (genomics, transcriptomics, proteomics, and metabolomics) are increasing our understanding of central nervous system (CNS) disorders. Achievements obtained with transformational technologies such as single-cell RNA sequencing and intraoperative mass spectrometry are exemplary of the molecular diagnostic possibilities in real-time molecular diagnostics to enable a more directed approach in surgical options. We will also explore how identifying specific biomarkers (e.g., IDH mutations and MGMT promoter methylation) became a tipping point in the care of glioblastoma and allowed for the establishment of a new taxonomy of tumors that became applicable for surgeons, where a change in practice enjoined a different surgical resection approach and subsequently stratified the adjuvant therapies undertaken after surgery. Furthermore, we reflect on how the novel genomic characterization of mutations like DEPDC5 and SCN1A transformed the pre-surgery selection of surgical candidates for refractory epilepsy when conventional imaging did not define an epileptogenic zone, thus reducing resective surgery occurring in clinical practice. While we are atop the crest of an exciting wave of advances, we recognize that we also must be diligent about the challenges we must navigate to implement genomic medicine in neurosurgery—including ethical and technical challenges that could arise when genomic mutation-based therapies require the concurrent application of multi-omics data collection to be realized in practice for the benefit of patients, as well as the constraints from the blood–brain barrier. The primary challenges also relate to the possible gene privacy implications around genomic medicine and equitable access to technology-based alternative practice disrupting interventions. We hope the contribution from this review will not just be situational consolidation and integration of knowledge but also a stimulus for new lines of research and clinical practice. We also hope to stimulate mindful discussions about future possibilities for conscientious and sustainable progress in our evolution toward a genomic model of precision neurosurgery. In the spirit of providing a critical perspective, we hope that we are also adding to the larger opportunity to embed molecular precision into neuroscience care, striving to promote better practice and better outcomes for patients in a global sense. Full article
(This article belongs to the Special Issue Molecular Insights into Glioblastoma Pathogenesis and Therapeutics)
Show Figures

Figure 1

14 pages, 1487 KiB  
Article
On the Interplay Between Roughness and Elastic Modulus at the Nanoscale: A Methodology Study with Bone as Model Material
by Alessandro Gambardella, Gregorio Marchiori, Melania Maglio, Marco Boi, Matteo Montesissa, Jessika Bertacchini, Stefano Biressi, Nicola Baldini, Gianluca Giavaresi and Marco Bontempi
J. Funct. Biomater. 2025, 16(8), 276; https://doi.org/10.3390/jfb16080276 - 29 Jul 2025
Viewed by 194
Abstract
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the [...] Read more.
Atomic force microscopy (AFM)-based nanoindentation enables investigation of the mechanical response of biological materials at a subcellular scale. However, quantitative estimates of mechanical parameters such as the elastic modulus (E) remain unreliable because the influence of sample roughness on E measurements at the nanoscale is still poorly understood. This study re-examines the interpretation of roughness from a more rigorous perspective and validates an experimental methodology to extract roughness at each nanoindentation site—i.e., the local roughness γs—with which the corresponding E value can be accurately correlated. Cortical regions of a murine tibia cross-section, characterized by complex nanoscale morphology, were selected as a testbed. Eighty non-overlapping nanoindentations were performed using two different AFM tips, maintaining a maximum penetration depth of 10 nm for each measurement. Our results show a slight decreasing trend of E versus γs (Spearman’s rank correlation coefficient ρ = −0.27187). A total of 90% of the E values are reliable when γs < 10 nm (coefficient of determination R2 > 0.90), although low γs values are associated with significant dispersion around E (γs = 0) = E0 = 1.18 GPa, with variations exceeding 50%. These findings are consistent with a qualitative tip-to-sample contact model that accounts for the pronounced roughness heterogeneity typical of bone topography at the nanoscale. Full article
(This article belongs to the Section Biomaterials and Devices for Healthcare Applications)
Show Figures

Figure 1

10 pages, 1153 KiB  
Article
Clinical Trends and Hospital Mortality of Transjugular Intrahepatic Portosystemic Shunt (TIPS) in Germany: A Descriptive Analysis Between 2019 and 2023
by Sven H. Loosen, Christian Weigel, Anselm Kunstein, Peter Minko, Gerald Antoch, Johannes G. Bode, Tom Luedde, Christoph Roderburg and Karel Kostev
Diagnostics 2025, 15(15), 1902; https://doi.org/10.3390/diagnostics15151902 - 29 Jul 2025
Viewed by 158
Abstract
Background/Objectives: The transjugular intrahepatic portosystemic shunt (TIPS) is an established treatment for complications of portal hypertension in patients with liver cirrhosis. While its use has increased and indications have broadened in recent years, recent comprehensive data on patient characteristics, trends, and in-hospital mortality [...] Read more.
Background/Objectives: The transjugular intrahepatic portosystemic shunt (TIPS) is an established treatment for complications of portal hypertension in patients with liver cirrhosis. While its use has increased and indications have broadened in recent years, recent comprehensive data on patient characteristics, trends, and in-hospital mortality in Germany are lacking. This study aimed to evaluate current clinical patterns and mortality outcomes associated with TIPS. Methods: This nationwide cross-sectional study used anonymized hospital data from the German InEK database between 2019 and 2023. TIPS procedures were identified using relevant OPS codes. Patient demographics, liver cirrhosis stage (Child–Pugh), hepatic encephalopathy grade, comorbid conditions, and in-hospital mortality were analyzed descriptively. Analyses were conducted using SAS 9.4. Results: A total of 12,905 TIPS procedures were documented. Annual case numbers rose from 2180 in 2019 to 2954 in 2023. Most patients were male (66.3%) and aged 60–74 years. Ascites (68.6%) was the most frequent associated diagnosis, followed by variceal bleeding (16.4%) and hepatorenal syndrome (14.9%). The average hospital stay decreased from 19.6 to 16.8 days. Overall in-hospital mortality was 8.5%, increasing with age (13.0% in ≥75 years), Child–Pugh C cirrhosis (14.9%), PCCL grade 4 (17.6%), hepatorenal syndrome (16.7%), and grade 4 hepatic encephalopathy (56.1%). Conclusions: TIPS usage in Germany has increased over the past five years, with a shift toward earlier disease stages. Higher in-hospital mortality in clinically complex patients underscores the importance of careful patient selection and tailored management strategies in high-risk groups. Full article
(This article belongs to the Special Issue Diagnosis and Management of Liver Diseases, Third Edition)
Show Figures

Figure 1

Back to TopTop