Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,152)

Search Parameters:
Keywords = time-varying estimation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 3825 KiB  
Article
Nonlinear Observer-Based Distributed Adaptive Fault-Tolerant Control for Vehicle Platoon with Actuator Faults, Saturation, and External Disturbances
by Anqing Tong, Yiguang Wang, Xiaojie Li, Xiaoyan Zhan, Minghao Yang and Yunpeng Ding
Electronics 2025, 14(14), 2879; https://doi.org/10.3390/electronics14142879 - 18 Jul 2025
Abstract
This work studies the issue of distributed fault-tolerant control for a vehicle platoon with actuator faults, saturation, and external disturbances. As the degrees of wear, age, and overcurrent of a vehicle actuator might change during the working process, it is more practical to [...] Read more.
This work studies the issue of distributed fault-tolerant control for a vehicle platoon with actuator faults, saturation, and external disturbances. As the degrees of wear, age, and overcurrent of a vehicle actuator might change during the working process, it is more practical to consider the actuator faults to be time-varying rather than constant. Considering a situation in which actuator faults may cause partial actuator effectiveness loss, a novel adaptive updating mechanism is developed to estimate this loss. A new nonlinear observer is proposed to estimate external disturbances without requiring us to know their upper bounds. Since non-zero initial spacing errors (ISEs) may cause instability of the vehicle platoon, a novel exponential spacing policy (ESP) is devised to mitigate the adverse effects of non-zero ISEs. Based on the developed nonlinear observer, adaptive updating mechanism, radial basis function neural network (RBFNN), and the ESP, a novel nonlinear observer-based distributed adaptive fault-tolerant control strategy is proposed to achieve the objectives of platoon control. Lyapunov theory is utilized to prove the vehicle platoon’s stability. The rightness and effectiveness of the developed control strategy are validated using a numerical example. Full article
Show Figures

Figure 1

14 pages, 1351 KiB  
Article
Fine-Scale Environmental Heterogeneity Drives Intra- and Inter-Site Variation in Taraxacum officinale Flowering Phenology
by Myung-Hyun Kim and Young-Ju Oh
Plants 2025, 14(14), 2211; https://doi.org/10.3390/plants14142211 - 17 Jul 2025
Abstract
Understanding how flowering phenology varies across spatial scales is essential for assessing plant responses to environmental heterogeneity under climate change. In this study, we investigated the flowering phenology of the plant species Taraxacum officinale across five sites in an agricultural region of Wanju, [...] Read more.
Understanding how flowering phenology varies across spatial scales is essential for assessing plant responses to environmental heterogeneity under climate change. In this study, we investigated the flowering phenology of the plant species Taraxacum officinale across five sites in an agricultural region of Wanju, Republic of Korea. Each site contained five 1 m × 1 m quadrats, where the number of flowering heads was recorded at 1- to 2-day intervals during the spring flowering period (February to May). We applied the nlstimedist package in R to model flowering distributions and to estimate key phenological metrics including flowering onset (5%), peak (50%), and end (95%). The results revealed substantial variation in flowering timing and duration at both the intra-site (quadrat-level) and inter-site (site-level) scales. Across all sites, the mean onset, peak, end, and duration of flowering were day of year (DOY) 89.6, 101.5, 117.6, and 28.0, respectively. Although flowering onset showed relatively small variation across sites (DOY 88 to 92), flowering peak (DOY 97 to 108) and end dates (DOY 105 to 128) exhibited larger differences at the site level. Sites with dry soils and regularly mowed Zoysia japonica vegetation with minimal understory exhibited shorter flowering durations, while those with moist soils, complex microtopography, and diverse slope orientations showed delayed and prolonged flowering. These findings suggest that microhabitat variability—including landform type, slope direction, soil water content, and soil temperature—plays a key role in shaping local flowering dynamics. Recognizing this fine-scale heterogeneity is essential for improving phenological models and informing site-specific climate adaptation strategies. Full article
(This article belongs to the Section Plant Ecology)
Show Figures

Figure 1

26 pages, 3149 KiB  
Article
The Spatiotemporal Impact of Socio-Economic Factors on Carbon Sink Value: A Geographically and Temporally Weighted Regression Analysis at the County Level from 2000 to 2020 in China’s Fujian Province
by Tao Wang and Qi Liang
Land 2025, 14(7), 1479; https://doi.org/10.3390/land14071479 - 17 Jul 2025
Abstract
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic [...] Read more.
Evaluating the economic value of carbon sinks is fundamental to advancing carbon market mechanisms and supporting sustainable regional development. This study focuses on Fujian Province in China, aiming to assess the spatiotemporal evolution of carbon sink value and analyze the influence of socio-economic drivers. Carbon sink values from 2000 to 2020 were estimated using Net Ecosystem Productivity (NEP) simulation combined with the carbon market valuation method. Eleven socio-economic variables were selected through correlation and multicollinearity testing, and their impacts were examined using Geographically and Temporally Weighted Regression (GTWR) at the county level. The results indicate that the total carbon sink value in Fujian declined from CNY 3.212 billion in 2000 to CNY 2.837 billion in 2020, showing a spatial pattern of higher values in the southern region and lower values in the north. GTWR analysis reveals spatiotemporal heterogeneity in the effects of socio-economic factors. For example, the influence of urbanization and retail sales of consumer goods shifts direction over time, while the effects of industrial structure, population, road, and fixed asset investment vary across space. This study emphasizes the necessity of incorporating spatial and temporal dynamics into carbon sink valuation. The findings suggest that northern areas of Fujian should prioritize ecological restoration, rapidly urbanizing regions should adopt green development strategies, and counties guided by investment and consumption should focus on sustainable development pathways to maintain and enhance carbon sink capacity. Full article
(This article belongs to the Section Land Use, Impact Assessment and Sustainability)
Show Figures

Figure 1

20 pages, 3369 KiB  
Article
The Role of Tree Size in Root Reinforcement: A Comparative Study of Trema orientalis and Mallotus paniculatus
by Chia-Cheng Fan, Guan-Ting Chen and Guo-Zhang Song
Forests 2025, 16(7), 1175; https://doi.org/10.3390/f16071175 - 16 Jul 2025
Viewed by 42
Abstract
Root reinforcement in soil plays a critical role in maintaining forest slope stability. However, accurately estimating the reinforcement provided by the entire root system of a mature tree remains a time-intensive task. Previous experimental studies on root reinforcement have predominantly focused on small [...] Read more.
Root reinforcement in soil plays a critical role in maintaining forest slope stability. However, accurately estimating the reinforcement provided by the entire root system of a mature tree remains a time-intensive task. Previous experimental studies on root reinforcement have predominantly focused on small trees, leaving a knowledge gap concerning larger specimens. This study integrates field pullout test data of individual roots, analyses of root geometry distribution within root systems, and theoretical frameworks, including root distribution and Root Bundle Models, to develop methods for estimating root reinforcement across varying tree sizes. The findings indicate that root system reinforcement in large trees is substantially greater than in smaller counterparts. The methodology proposed herein provides forest management professionals with a practical tool for evaluating root reinforcement in dominant forest trees, thereby facilitating improved assessment of landslide risks in forested slopes. Full article
Show Figures

Figure 1

26 pages, 6624 KiB  
Article
Data-Efficient Sowing Position Estimation for Agricultural Robots Combining Image Analysis and Expert Knowledge
by Shuntaro Aotake, Takuya Otani, Masatoshi Funabashi and Atsuo Takanishi
Agriculture 2025, 15(14), 1536; https://doi.org/10.3390/agriculture15141536 - 16 Jul 2025
Viewed by 147
Abstract
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. [...] Read more.
We propose a data-efficient framework for automating sowing operations by agricultural robots in densely mixed polyculture environments. This study addresses the challenge of enabling robots to identify suitable sowing positions with minimal labeled data by integrating image-based field sensing with expert agricultural knowledge. We collected 84 RGB-depth images from seven field sites, labeled by synecological farming practitioners of varying proficiency levels, and trained a regression model to estimate optimal sowing positions and seeding quantities. The model’s predictions were comparable to those of intermediate-to-advanced practitioners across diverse field conditions. To implement this estimation in practice, we mounted a Kinect v2 sensor on a robot arm and integrated its 3D spatial data with axis-specific movement control. We then applied a trajectory optimization algorithm based on the traveling salesman problem to generate efficient sowing paths. Simulated trials incorporating both computation and robotic control times showed that our method reduced sowing operation time by 51% compared to random planning. These findings highlight the potential of interpretable, low-data machine learning models for rapid adaptation to complex agroecological systems and demonstrate a practical approach to combining structured human expertise with sensor-based automation in biodiverse farming environments. Full article
Show Figures

Figure 1

22 pages, 5889 KiB  
Article
A Radar-Based Fast Code for Rainfall Nowcasting over the Tuscany Region
by Alessandro Mazza, Andrea Antonini, Samantha Melani and Alberto Ortolani
Remote Sens. 2025, 17(14), 2467; https://doi.org/10.3390/rs17142467 - 16 Jul 2025
Viewed by 59
Abstract
Accurate short-term precipitation forecasting (nowcasting) based on weather radar data is essential for managing weather-related risks, particularly in applications such as airport operations, urban flood prevention, and public safety during outdoor events. This study proposes a computationally efficient nowcasting method based on a [...] Read more.
Accurate short-term precipitation forecasting (nowcasting) based on weather radar data is essential for managing weather-related risks, particularly in applications such as airport operations, urban flood prevention, and public safety during outdoor events. This study proposes a computationally efficient nowcasting method based on a Lagrangian advection scheme, estimating both the translation and rotation of radar-observed precipitation fields without relying on machine learning or resource-intensive computation. The method was tested on a two-year dataset (2022–2023) over Tuscany, using data collected from the Italian Civil Protection Department’s radar network. Forecast performance was evaluated using the Critical Success Index (CSI) and Mean Absolute Error (MAE) across varying spatial domains (1° × 1° to 2° × 2°) and precipitation regimes. The results show that, for high-intensity events (average rate > 1 mm/h), the method achieved CSI scores exceeding 0.5 for lead times up to 2 h. In the case of low-intensity rainfall (average rate < 0.3 mm/h), its forecasting skill dropped after 20–30 min. Forecast accuracy was shown to be highly sensitive to the temporal stability of precipitation intensity. The method performed well under quasi-stationary stratiform conditions, whereas its skill declined during rapidly evolving convective events. The method has low computational requirements, with forecasts generated in under one minute on standard hardware, and it is well suited for real-time application in regional meteorological centres. Overall, the findings highlight the method’s effective balance between simplicity and performance, making it a practical and scalable option for operational nowcasting in settings with limited computational capacity. Its deployment is currently being planned at the LaMMA Consortium, the official meteorological service of Tuscany. Full article
Show Figures

Figure 1

26 pages, 39229 KiB  
Article
Local–Linear Two-Stage Estimation of Local Autoregressive Geographically and Temporally Weighted Regression Model
by Dan Xiang and Zhimin Hong
ISPRS Int. J. Geo-Inf. 2025, 14(7), 276; https://doi.org/10.3390/ijgi14070276 - 16 Jul 2025
Viewed by 48
Abstract
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive [...] Read more.
A geographically and temporally weighted regression (GTWR) model is an effective tool for dealing with spatial heterogeneity and temporal non-stationarity simultaneously. As an important characteristic of spatiotemporal data, spatiotemporal autocorrelation should be considered when constructing spatiotemporally varying coefficient models. The proposed local autoregressive geographically and temporally weighted regression (GTWRLAR) model can simultaneously handle spatiotemporal autocorrelations among response variables and the spatiotemporal heterogeneity of regression relationships. The two-stage weighted least squares (2SLS) estimation can effectively reduce computational complexity. However, the weighted least squares estimation is essentially a Nadaraya–Watson kernel-smoothing approach for nonparametric regression models, and it suffers from a boundary effect. For spatiotemporally varying coefficient models, the three-dimensional spatiotemporal coefficients (longitude, latitude, and time) inherently exhibit larger boundaries than one-dimensional intervals. Therefore, the boundary effect of the 2SLS estimation of GTWRLAR will be more serious. A local–linear geographically and temporally weighted 2SLS (GTWRLAR-L) estimation is proposed to correct the boundary effect in both the spatial and temporal dimensions of GTWRLAR and simultaneously improve parameter estimation accuracy. The simulation experiment shows that the GTWRLAR-L method reduces the root mean square error (RMSE) of parameter estimates compared to the standard GTWRLAR approach. Empirical analyses of carbon emissions in China’s Yellow River Basin (2017–2021) show that GTWRLAR-L enhances the adjusted R2 from 0.888 to 0.893. Full article
Show Figures

Figure 1

18 pages, 3899 KiB  
Article
Multi-Agent-Based Estimation and Control of Energy Consumption in Residential Buildings
by Otilia Elena Dragomir and Florin Dragomir
Processes 2025, 13(7), 2261; https://doi.org/10.3390/pr13072261 - 15 Jul 2025
Viewed by 119
Abstract
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in [...] Read more.
Despite notable advancements in smart home technologies, residential energy management continues to face critical challenges. These include the complex integration of intermittent renewable energy sources, issues related to data latency, interoperability, and standardization across diverse systems, the inflexibility of centralized control architectures in dynamic environments, and the difficulty of accurately modeling and influencing occupant behavior. To address these challenges, this study proposes an intelligent multi-agent system designed to accurately estimate and control energy consumption in residential buildings, with the overarching objective of optimizing energy usage while maintaining occupant comfort and satisfaction. The methodological approach employed is a hybrid framework, integrating multi-agent system architecture with system dynamics modeling and agent-based modeling. This integration enables decentralized and intelligent control while simultaneously simulating physical processes such as heat exchange, insulation performance, and energy consumption, alongside behavioral interactions and real-time adaptive responses. The system is tested under varying conditions, including changes in building insulation quality and external temperature profiles, to assess its capability for accurate control and estimation of energy use. The proposed tool offers significant added value by supporting real-time responsiveness, behavioral adaptability, and decentralized coordination. It serves as a risk-free simulation platform to test energy-saving strategies, evaluate cost-effective insulation configurations, and fine-tune thermostat settings without incurring additional cost or real-world disruption. The high fidelity and predictive accuracy of the system have important implications for policymakers, building designers, and homeowners, offering a practical foundation for informed decision making and the promotion of sustainable residential energy practices. Full article
(This article belongs to the Special Issue Sustainable Development of Energy and Environment in Buildings)
Show Figures

Figure 1

32 pages, 1661 KiB  
Review
Modelling Wood Product Service Lives and Residence Times for Biogenic Carbon in Harvested Wood Products: A Review of Half-Lives, Averages and Population Distributions
by Morwenna J. Spear and Jim Hart
Forests 2025, 16(7), 1162; https://doi.org/10.3390/f16071162 - 15 Jul 2025
Viewed by 257
Abstract
Timber and other biobased materials store carbon that has been captured from the atmosphere during photosynthesis and plant growth. The estimation of these biogenic carbon stocks in the harvested wood products (HWP) pool has received increasing attention since its inclusion in greenhouse gas [...] Read more.
Timber and other biobased materials store carbon that has been captured from the atmosphere during photosynthesis and plant growth. The estimation of these biogenic carbon stocks in the harvested wood products (HWP) pool has received increasing attention since its inclusion in greenhouse gas reporting by the IPCC. It is of particular interest for long service life products such as timber in buildings; however, some aspects require further thought—in particular the handling of service lives as opposed to half-lives. The most commonly used model for calculating changes in the HWP pool uses first order decay based on half-lives. However other approaches are based on average service lives and estimates of residence times in the product pool, enabling different mathematical functions to be used. This paper considers the evolution of the two concepts and draws together data from a wide range of sources to consider service life estimation, which can be either related to design life or practical observations such as local environmental conditions, decay risk or consumer behaviour. As an increasing number of methods emerge for calculating HWP pool dynamics, it is timely to consider how these numerical inputs from disparate sources vary in their assumptions, calculation types, accuracy and results. Two groups are considered: half-lives for first order decay models, and service life and residence time population distributions within models based on other functions. A selection of examples are drawn from the literature to highlight emerging trends and discuss numerical constraints, data availability and areas for further study. The review indicated that issues exist with inconsistent use of nomenclature for half-life, average service life and peak flow from the pool. To ensure better sharing of data between studies, greater clarity in reporting function types used is required. Full article
Show Figures

Figure 1

28 pages, 11429 KiB  
Article
Trajectory Tracking of Unmanned Surface Vessels Based on Robust Neural Networks and Adaptive Control
by Ziming Wang, Chunliang Qiu, Zaopeng Dong, Shaobo Cheng, Long Zheng and Shunhuai Chen
J. Mar. Sci. Eng. 2025, 13(7), 1341; https://doi.org/10.3390/jmse13071341 - 13 Jul 2025
Viewed by 139
Abstract
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a [...] Read more.
In this paper, a robust neural adaptive controller is proposed for the trajectory tracking control problem of unmanned surface vessels (USVs), considering model uncertainty, time-varying environmental disturbance, and actuator saturation. First, measurement errors in acceleration signals are eliminated through filtering techniques and a series of auxiliary variables, and after linearly parameterizing the USV dynamic model, a parameter adaptive update law is developed based on Lyapunov’s second method to estimate unknown dynamic parameters in the USV dynamics model. This parameter adaptive update law enables online identification of all USV dynamic parameters during trajectory tracking while ensuring convergence of the estimation errors. Second, a radial basis function neural network (RBF-NN) is employed to approximate unmodeled dynamics in the USV system, and on this basis, a robust damping term is designed based on neural damping technology to compensate for environmental disturbances and unmodeled dynamics. Subsequently, a trajectory tracking controller with parameter adaptation law and robust damping term is proposed using Lyapunov theory and adaptive control techniques. In addition, finite-time auxiliary variables are also added to the controller to handle the actuator saturation problem. Signal delay compensators are designed to compensate for input signal delays in the control system, thereby enhancing controller reliability. The proposed controller ensures robustness in trajectory tracking under model uncertainties and time-varying environmental disturbances. Finally, the convergence of each signal of the closed-loop system is proved based on Lyapunov theory. And the effectiveness of the control system is verified by numerical simulation experiments. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 3331 KiB  
Article
Automated Cattle Head and Ear Pose Estimation Using Deep Learning for Animal Welfare Research
by Sueun Kim
Vet. Sci. 2025, 12(7), 664; https://doi.org/10.3390/vetsci12070664 - 13 Jul 2025
Viewed by 205
Abstract
With the increasing importance of animal welfare, behavioral indicators such as changes in head and ear posture are widely recognized as non-invasive and field-applicable markers for evaluating the emotional state and stress levels of animals. However, traditional visual observation methods are often subjective, [...] Read more.
With the increasing importance of animal welfare, behavioral indicators such as changes in head and ear posture are widely recognized as non-invasive and field-applicable markers for evaluating the emotional state and stress levels of animals. However, traditional visual observation methods are often subjective, as assessments can vary between observers, and are unsuitable for long-term, quantitative monitoring. This study proposes an artificial intelligence (AI)-based system for the detection and pose estimation of cattle heads and ears using deep learning techniques. The system integrates Mask R-CNN for accurate object detection and FSA-Net for robust 3D pose estimation (yaw, pitch, and roll) of cattle heads and left ears. Comprehensive datasets were constructed from images of Japanese Black cattle, collected under natural conditions and annotated for both detection and pose estimation tasks. The proposed framework achieved mean average precision (mAP) values of 0.79 for head detection and 0.71 for left ear detection and mean absolute error (MAE) of approximately 8–9° for pose estimation, demonstrating reliable performance across diverse orientations. This approach enables long-term, quantitative, and objective monitoring of cattle behavior, offering significant advantages over traditional subjective stress assessment methods. The developed system holds promise for practical applications in animal welfare research and real-time farm management. Full article
Show Figures

Figure 1

18 pages, 12097 KiB  
Article
Adaptive Outdoor Cleaning Robot with Real-Time Terrain Perception and Fuzzy Control
by Raul Fernando Garcia Azcarate, Akhil Jayadeep, Aung Kyaw Zin, James Wei Shung Lee, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2245; https://doi.org/10.3390/math13142245 - 10 Jul 2025
Viewed by 278
Abstract
Outdoor cleaning robots must operate reliably across diverse and unstructured surfaces, yet many existing systems lack the adaptability to handle terrain variability. This paper proposes a terrain-aware cleaning framework that dynamically adjusts robot behavior based on real-time surface classification and slope estimation. A [...] Read more.
Outdoor cleaning robots must operate reliably across diverse and unstructured surfaces, yet many existing systems lack the adaptability to handle terrain variability. This paper proposes a terrain-aware cleaning framework that dynamically adjusts robot behavior based on real-time surface classification and slope estimation. A 128-channel LiDAR sensor captures signal intensity images, which are processed by a ResNet-18 convolutional neural network to classify floor types as wood, smooth, or rough. Simultaneously, pitch angles from an onboard IMU detect terrain inclination. These inputs are transformed into fuzzy sets and evaluated using a Mamdani-type fuzzy inference system. The controller adjusts brush height, brush speed, and robot velocity through 81 rules derived from 48 structured cleaning experiments across varying terrain and slopes. Validation was conducted in low-light (night-time) conditions, leveraging LiDAR’s lighting-invariant capabilities. Field trials confirm that the robot responds effectively to environmental conditions, such as reducing speed on slopes or increasing brush pressure on rough surfaces. The integration of deep learning and fuzzy control enables safe, energy-efficient, and adaptive cleaning in complex outdoor environments. This work demonstrates the feasibility and real-world applicability for combining perception and inference-based control in terrain-adaptive robotic systems. Full article
(This article belongs to the Special Issue Research and Applications of Neural Networks and Fuzzy Logic)
Show Figures

Figure 1

20 pages, 2142 KiB  
Article
Life Estimation of HVDC Extruded Cables Subjected to Extension of Qualification Test Conditions and Comparison with Prequalification Test Conditions
by Bassel Diban, Giovanni Mazzanti and Rolando Ezequiel Diaz
Energies 2025, 18(14), 3651; https://doi.org/10.3390/en18143651 - 10 Jul 2025
Viewed by 176
Abstract
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained [...] Read more.
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained by the authors in the case of the prequalification test (PQT) load cycles. This goal has been achieved in the present investigation by properly modifying a previously developed procedure for the life and reliability estimation of HVDC cables—implemented in MatlabTM environment—to make it applicable to EQT load cycles in addition to PQT and type test load cycles, which are already considered in the former version of the procedure. Considering a 500 kV DC-XLPE cable as the case study, the time-varying temperature profile and electric field profile within the cable insulation are calculated. Then, the fractions of life lost and the life of the cable at five locations within the insulation thickness are evaluated by means of a proper electrothermal life model. A comparison between the electric field distributions, fractions of life lost, and cable life under EQT and PQT is carried out. In this way, important features of the EQT compared to the PQT load cycles are singled out, and eventually, a new modified extension of qualification test (MEQT) is proposed as a feasible and meaningful compromise between the pros and cons of the EQT and PQT. Full article
Show Figures

Figure 1

26 pages, 3079 KiB  
Article
Implementing CAD API Automated Processes in Engineering Design: A Case Study Approach
by Konstantinos Sofias, Zoe Kanetaki, Constantinos Stergiou, Antreas Kantaros, Sébastien Jacques and Theodore Ganetsos
Appl. Sci. 2025, 15(14), 7692; https://doi.org/10.3390/app15147692 - 9 Jul 2025
Viewed by 325
Abstract
Increasing mechanical design complexity and volume, particularly in component-based manufacturing, require scalable, traceable, and efficient design processes. In this research, a modular in-house automation platform using Autodesk Inventor’s Application Programming Interface (API) and Visual Basic for Applications (VBA) is developed to automate recurrent [...] Read more.
Increasing mechanical design complexity and volume, particularly in component-based manufacturing, require scalable, traceable, and efficient design processes. In this research, a modular in-house automation platform using Autodesk Inventor’s Application Programming Interface (API) and Visual Basic for Applications (VBA) is developed to automate recurrent tasks such as CAD file generation, drawing production, structured archiving, and cost estimation. The proposed framework was implemented and tested on three real-world case studies in a turbocharger reconditioning unit with varying degrees of automation. Findings indicate remarkable time savings of up to 90% in certain documentation tasks with improved consistency, traceability, and reduced manual intervention. Moreover, the system also facilitated automatic generation of metadata-rich Excel and Word documents, allowing centralized documentation and access to data. In comparison with commercial automation software, the solution is flexible, cost-effective, and responsive to project changes and thus suitable for small and medium enterprises. Though automation reduced workload and rendered the system more reliable, some limitations remain, especially in fully removing engineering judgment, especially in complex design scenarios. Overall, this study investigates how API-based automation can significantly increase productivity and data integrity in CAD-intensive environments and explores future integration opportunities using AI and other CAD software. Full article
(This article belongs to the Section Mechanical Engineering)
Show Figures

Figure 1

16 pages, 1538 KiB  
Article
Lower Ionospheric Perturbations Associated with Lightning Activity over Low and Equatorial Regions
by Dayanand Bhaskar, Rajat Tripathi, Mahesh N. Shrivastava, Rajesh Singh, Sudipta Sasmal, Abhirup Datta and Ajeet Kumar Maurya
Atmosphere 2025, 16(7), 832; https://doi.org/10.3390/atmos16070832 - 9 Jul 2025
Viewed by 212
Abstract
We present lightning-induced ionospheric perturbations in narrowband very-low-frequency (VLF) signals from the transmitters NWC (21.82° S, 114.17° E, 19.8 kHz) and VTX (8.4° N, 77.8° E, 18.6 kHz) recorded at the low-latitude station Dehradun (DDN; 30.3° N, 78.0° E) over a 12-month period [...] Read more.
We present lightning-induced ionospheric perturbations in narrowband very-low-frequency (VLF) signals from the transmitters NWC (21.82° S, 114.17° E, 19.8 kHz) and VTX (8.4° N, 77.8° E, 18.6 kHz) recorded at the low-latitude station Dehradun (DDN; 30.3° N, 78.0° E) over a 12-month period from September 2020 to October 2021. Early/slow VLF events, VLF LOREs, and step-like VLF LOREs associated with lightning were analyzed for their onset and recovery times. This study utilized data from the World Wide Lightning Location Network (WWLLN), which provides lightning locations and energy estimates. The results show that early/slow VLF events occur most frequently, accounting for approximately 68% of cases, followed by VLF LOREs at 12%, and step-like VLF LOREs at 10%. Furthermore, we observed that 100% of the VLF perturbing events occurred during the nighttime, which is not entirely consistent with previous studies. Moreover, more than 60% of VLF LOREs were associated with lightning energies of approximately 1 kJ, and about 40% were associated with lightning energies of ~10 kJ. Step-like VLF LOREs were linked to WWLLN energies between 1 and 5 kJ. The observed WWLLN energy range is somewhat lower than the energies reported in previous studies. Scattering characteristics revealed that 87.3% of events were associated with wide-angle scattering, while approximately 12.6% were linked to narrow-angle scattering. LWPC version 2.1 was used to simulate these perturbing events and to estimate the reflection height (H′, in km) and the exponential sharpness factor (β, in km−1) corresponding to changes in D-region electron density. The reflection height (H′, in km) and the exponential sharpness factor (β, in km−1) of the D-region varied from 83 to 87 km and from 0.42 to 0.79 km−1 for early/slow VLF events, from 83 to 85 km and from 0.5 to 0.75 km−1 for step-like VLF LOREs, and from 81 to 83 km and from 0.75 to 0.81 km−1 for VLF LOREs, respectively. Full article
(This article belongs to the Section Upper Atmosphere)
Show Figures

Figure 1

Back to TopTop