Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,646)

Search Parameters:
Keywords = time-frequency filtering

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2009 KB  
Article
Tool Wear Prediction Using Machine-Learning Models for Bone Drilling in Robotic Surgery
by Shilpa Pusuluri, Hemanth Satya Veer Damineni and Poolan Vivekananda Shanmuganathan
Automation 2025, 6(4), 59; https://doi.org/10.3390/automation6040059 (registering DOI) - 16 Oct 2025
Abstract
Bone drilling is a widely encountered process in orthopedic surgeries and keyhole neuro surgeries. We are developing a sensor-integrated smart end-effector for drilling for robotic surgical applications. In manual surgeries, surgeons assess tool wear based on experience and force perception. In this work, [...] Read more.
Bone drilling is a widely encountered process in orthopedic surgeries and keyhole neuro surgeries. We are developing a sensor-integrated smart end-effector for drilling for robotic surgical applications. In manual surgeries, surgeons assess tool wear based on experience and force perception. In this work, we propose a machine-learning (ML)-based tool condition monitoring system based on multi-sensor data to preempt excessive tool wear during drilling in robotic surgery. Real-time data is acquired from the six-component force sensor of a collaborative arm along with the data from the temperature and multi-axis vibration sensor mounted on the bone specimen being drilled upon. Raw data from the sensors may have noises and outliers. Signal processing in the time- and frequency-domain are used for denoising as well as to obtain additional features to be derived from the raw sensory data. This paper addresses the challenging problem of identification of the most suitable ML algorithm and the most suitable features to be used as inputs to the algorithm. While dozens of features and innumerable machine learning and deep learning models are available, this paper addresses the problem of selecting the most relevant features, the most relevant AI models, and the optimal hyperparameters to be used in the AI model to provide accurate prediction on the tool condition. A unique framework is proposed for classifying tool wear that combines machine learning-based modeling with multi-sensor data. From the raw sensory data that contains only a handful of features, a number of additional features are derived using frequency-domain techniques and statistical measures. Using feature engineering, we arrived at a total of 60 features from time-domain, frequency-domain, and interaction-based metrics. Such additional features help in improving its predictive capabilities but make the training and prediction complicated and time-consuming. Using a sequence of techniques such as variance thresholding, correlation filtering, ANOVA F-test, and SHAP analysis, the number of features was reduced from 60 to the 4 features that will be most effective in real-time tool condition prediction. In contrast to previous studies that only examine a small number of machine learning models, our approach systematically evaluates a wide range of machine learning and deep learning architectures. The performances of 47 classical ML models and 6 deep learning (DL) architectures were analyzed using the set of the four features identified as most suitable. The Extra Trees Classifier (an ML model) and the one-dimensional Convolutional Neural Network (1D CNN) exhibited the best prediction accuracy among the models studied. Using real-time data, these models monitored the drilling tool condition in real-time to classify the tool wear into three categories of slight, moderate, and severe. Full article
Show Figures

Figure 1

24 pages, 2221 KB  
Article
Multi-Scale Frequency-Aware Transformer for Pipeline Leak Detection Using Acoustic Signals
by Menghan Chen, Yuchen Lu, Wangyu Wu, Yanchen Ye, Bingcai Wei and Yao Ni
Sensors 2025, 25(20), 6390; https://doi.org/10.3390/s25206390 (registering DOI) - 16 Oct 2025
Abstract
Pipeline leak detection through acoustic signal measurement faces critical challenges, including insufficient utilization of time-frequency domain features, poor adaptability to noisy environments, and inadequate exploitation of frequency-domain prior knowledge in existing deep learning approaches. This paper proposes a Multi-Scale Frequency-Aware Transformer (MSFAT) architecture [...] Read more.
Pipeline leak detection through acoustic signal measurement faces critical challenges, including insufficient utilization of time-frequency domain features, poor adaptability to noisy environments, and inadequate exploitation of frequency-domain prior knowledge in existing deep learning approaches. This paper proposes a Multi-Scale Frequency-Aware Transformer (MSFAT) architecture that integrates measurement-based acoustic signal analysis with artificial intelligence techniques. The MSFAT framework consists of four core components: a frequency-aware embedding layer that achieves joint representation learning of time-frequency dual-domain features through parallel temporal convolution and frequency transformation, a multi-head frequency attention mechanism that dynamically adjusts attention weights based on spectral distribution using frequency features as modulation signals, an adaptive noise filtering module that integrates noise detection, signal enhancement, and adaptive fusion functions through end-to-end joint optimization, and a multi-scale feature aggregation mechanism that extracts discriminative global representations through complementary pooling strategies. The proposed method addresses the fundamental limitations of traditional measurement-based detection systems by incorporating domain-specific prior knowledge into neural network architecture design. Experimental validation demonstrates that MSFAT achieves 97.2% accuracy and an F1-score, representing improvements of 10.5% and 10.9%, respectively, compared to standard Transformer approaches. The model maintains robust detection performance across signal-to-noise ratio conditions ranging from 5 to 30 dB, demonstrating superior adaptability to complex industrial measurement environments. Ablation studies confirm the effectiveness of each innovative module, with frequency-aware mechanisms contributing most significantly to the enhanced measurement precision and reliability in pipeline leak detection applications. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

25 pages, 2727 KB  
Article
Berthing State Estimation for Autonomous Surface Vessels Using Ship-Based 3D LiDAR
by Haichao Wang, Yong Yin, Qianfeng Jing and Chen-Liang Zhang
J. Mar. Sci. Eng. 2025, 13(10), 1975; https://doi.org/10.3390/jmse13101975 - 15 Oct 2025
Abstract
Automated berthing remains a critical challenge for autonomous surface vessels (ASVs), necessitating precise berthing state estimation as a fundamental prerequisite. In this paper, we present a novel berthing state estimation method tailored for ASVs and based on 3D LiDAR technology. Firstly, a berthing [...] Read more.
Automated berthing remains a critical challenge for autonomous surface vessels (ASVs), necessitating precise berthing state estimation as a fundamental prerequisite. In this paper, we present a novel berthing state estimation method tailored for ASVs and based on 3D LiDAR technology. Firstly, a berthing plane acquisition scheme based on point cloud plane fitting is proposed; the feasibility of the scheme was verified by experiments. The point cloud registration algorithm was used to realize the ship pose estimation. Before registration, the preprocessing technology was used to filter out the noise and outliers in the point cloud data to improve the accuracy of pose estimation. A detailed method for calculating the berthing state information is proposed. This method considers the influence of ship roll, pitch, and yaw during berthing, and ensures the accuracy of the obtained state information. Finally, a real-time ship berthing perception framework was constructed using the Robot Operating System (ROS), enabling the continuous output of vital berthing state information, including berthing distance, velocity, approaching angle, and yaw rate, at a frequency of 10 Hz. To validate the effectiveness of our algorithm, extensive real ship experiments were conducted, yielding highly promising results. The average angle error was found to be less than 0.26°, with an average distance error below 0.023 m. Full article
(This article belongs to the Special Issue New Technologies in Autonomous Ship Navigation)
Show Figures

Figure 1

25 pages, 5853 KB  
Article
GPS-Based Relative Navigation for Laser Crosslink Alignment in the VISION CubeSat Mission
by Yeji Kim, Pureum Kim, Han-Gyeol Ryu, Youngho Eun and Sang-Young Park
Aerospace 2025, 12(10), 928; https://doi.org/10.3390/aerospace12100928 (registering DOI) - 15 Oct 2025
Abstract
As the demand for high-speed space-borne data transmission grows, CubeSat-based Free-Space Optical Communication (FSOC) offers a viable solution for achieving a Gbps-speed optical intersatellite link on low-cost platforms. The Very-High-Speed Intersatellite Optical Link System Using an Infrared Optical Terminal and Nanosatellite (VISION) mission [...] Read more.
As the demand for high-speed space-borne data transmission grows, CubeSat-based Free-Space Optical Communication (FSOC) offers a viable solution for achieving a Gbps-speed optical intersatellite link on low-cost platforms. The Very-High-Speed Intersatellite Optical Link System Using an Infrared Optical Terminal and Nanosatellite (VISION) mission aims to establish these high-speed laser crosslinks, which require a precise pointing and relative positioning system at relative distances up to 1000 km. A real-time relative navigation system was developed based on dual-frequency GPS pseudorange and carrier-phase measurements, incorporating an adaptive Kalman filter which uses innovation-based covariance matching to dynamically adjust process noise covariance. Hardware-integrated testing with GPS signal generators and onboard receivers validated its performance under realistic conditions, consistently achieving sub-meter positioning accuracy across baselines up to 1000 km. An integrated orbit–attitude simulation further evaluated the feasibility of the Pointing, Acquisition, and Tracking (PAT) system by combining real-time relative navigation outputs with an attitude control system. Simulation results showed that the PAT system maintained a total pointing error of 274.3 μrad, sufficient to sustain stable high-speed optical links. This study demonstrates that the VISION relative navigation and pointing systems, integrated within the PAT framework, enable precise real-time optical intersatellite communication using CubeSats. Full article
(This article belongs to the Section Astronautics & Space Science)
Show Figures

Figure 1

39 pages, 10642 KB  
Article
An Optimal Two-Stage Tuned PIDF + Fuzzy Controller for Enhanced LFC in Hybrid Power Systems
by Saleh Almutairi, Fatih Anayi, Michael Packianather and Mokhtar Shouran
Sustainability 2025, 17(20), 9109; https://doi.org/10.3390/su17209109 (registering DOI) - 14 Oct 2025
Abstract
Ensuring reliable power system control demands innovative architectural solutions. This research introduces a fault-tolerant hybrid parallel compensator architecture for load frequency control (LFC), combining a Proportional–Integral–Derivative with Filter (PIDF) compensator with a Fuzzy Fractional-Order PI-PD (Fuzzy FOPI–FOPD) module. Particle Swarm Optimization (PSO) determines [...] Read more.
Ensuring reliable power system control demands innovative architectural solutions. This research introduces a fault-tolerant hybrid parallel compensator architecture for load frequency control (LFC), combining a Proportional–Integral–Derivative with Filter (PIDF) compensator with a Fuzzy Fractional-Order PI-PD (Fuzzy FOPI–FOPD) module. Particle Swarm Optimization (PSO) determines optimal PID gains, while the Catch Fish Optimization Algorithm (CFOA) tunes the Fuzzy FOPI–FOPD parameters—both minimizing the Integral Time Absolute Error (ITAE) index. The parallel compensator structure guarantees continuous operation during subsystem faults, substantially boosting grid reliability. Rigorous partial failure tests confirm uncompromised performance-controlled degradation. Benchmark comparisons against contemporary controllers reveal the proposed architecture’s superiority, quantifiable through transient metric enhancements: undershoot suppression (−9.57 × 10−5 p.u. to −1.17 × 10−7 p.u.), settling time improvement (8.8000 s to 3.1511 s), and ITAE reduction (0.0007891 to 0.0000001608), verifying precision and stability gains. Resilience analyses across parameter drift and step load scenarios, simulated in MATLAB/Simulink, demonstrate superior disturbance attenuation and operational stability. These outcomes confirm the solution’s robustness, dependability, and field readiness. Overall, this study introduces a transformative LFC strategy with high practical viability for modern power networks. Full article
Show Figures

Figure 1

24 pages, 10428 KB  
Article
Hybrid Energy Storage Capacity Optimization for Power Fluctuation Mitigation in Offshore Wind–Photovoltaic Hybrid Plants Using TVF-EMD
by Chenghuan Tian, Qinghu Zhang, Dan Mei, Xudong Zhang, Zhengping Li and Erqiang Chen
Processes 2025, 13(10), 3282; https://doi.org/10.3390/pr13103282 - 14 Oct 2025
Abstract
The large-scale integration of coordinated offshore wind and offshore photovoltaic (PV) generation introduces pronounced power fluctuations due to the intrinsic randomness and intermittency of renewable energy sources (RESs). These fluctuations pose significant challenges to the secure, stable, and economical operation of modern power [...] Read more.
The large-scale integration of coordinated offshore wind and offshore photovoltaic (PV) generation introduces pronounced power fluctuations due to the intrinsic randomness and intermittency of renewable energy sources (RESs). These fluctuations pose significant challenges to the secure, stable, and economical operation of modern power systems. To address this issue, this study proposes a hybrid energy storage system (HESS)-based optimization framework that simultaneously enhances fluctuation suppression performance, optimizes storage capacity allocation, and improves life-cycle economic efficiency. First, a K-means fuzzy clustering algorithm is employed to analyze historical RES power data, extracting representative daily fluctuation profiles to serve as accurate inputs for optimization. Second, the time-varying filter empirical mode decomposition (TVF-EMD) technique is applied to adaptively decompose the net power fluctuations. High-frequency components are allocated to a flywheel energy storage system (FESS), valued for its high power density, rapid response, and long cycle life, while low-frequency components are assigned to a battery energy storage system (BESS), characterized by high energy density and cost-effectiveness. This decomposition–allocation strategy fully exploits the complementary characteristics of different storage technologies. Simulation results for an integrated offshore wind–PV generation scenario demonstrate that the proposed method significantly reduces the fluctuation rate of RES power output while maintaining favorable economic performance. The approach achieves unified optimization of HESS sizing, fluctuation mitigation, and life-cycle cost, offering a viable reference for the planning and operation of large-scale offshore hybrid renewable plants. Full article
(This article belongs to the Special Issue Modeling, Simulation and Control in Energy Systems—2nd Edition)
Show Figures

Figure 1

24 pages, 7771 KB  
Article
Cross-Domain OTFS Detection via Delay–Doppler Decoupling: Reduced-Complexity Design and Performance Analysis
by Mengmeng Liu, Shuangyang Li, Baoming Bai and Giuseppe Caire
Entropy 2025, 27(10), 1062; https://doi.org/10.3390/e27101062 - 13 Oct 2025
Viewed by 78
Abstract
In this paper, a reduced-complexity cross-domain iterative detection for orthogonal time frequency space (OTFS) modulation is proposed that exploits channel properties in both time and delay–Doppler domains. Specifically, we first show that in the time-domain effective channel, the path delay only introduces interference [...] Read more.
In this paper, a reduced-complexity cross-domain iterative detection for orthogonal time frequency space (OTFS) modulation is proposed that exploits channel properties in both time and delay–Doppler domains. Specifically, we first show that in the time-domain effective channel, the path delay only introduces interference among samples in adjacent time slots, while the Doppler becomes a phase term that does not affect the channel sparsity. This investigation indicates that the effects of delay and Doppler can be decoupled and treated separately. This “band-limited” matrix structure further motivates us to apply a reduced-size linear minimum mean square error (LMMSE) filter to eliminate the effect of delay in the time domain, while exploiting the cross-domain iteration for minimizing the effect of Doppler by noticing that the time and Doppler are a Fourier dual pair. Furthermore, we apply eigenvalue decomposition to the reduced-size LMMSE estimator, which makes the computational complexity independent of the number of cross-domain iterations, thus significantly reducing the computational complexity. The bias evolution and variance evolution are derived to evaluate the average MSE performance of the proposed scheme, which shows that the proposed estimators suffer from only negligible estimation bias in both time and DD domains. Particularly, the state (MSE) evolution is compared with bounds to verify the effectiveness of the proposed scheme. Simulation results demonstrate that the proposed scheme achieves almost the same error performance as the optimal detection, but only requires a reduced complexity. Full article
Show Figures

Figure 1

21 pages, 2915 KB  
Article
Feature-Shuffle and Multi-Head Attention-Based Autoencoder for Eliminating Electrode Motion Noise in ECG Applications
by Szu-Ting Wang, Wen-Yen Hsu, Shin-Chi Lai, Ming-Hwa Sheu, Chuan-Yu Chang, Shih-Chang Hsia and Szu-Hong Wang
Sensors 2025, 25(20), 6322; https://doi.org/10.3390/s25206322 (registering DOI) - 13 Oct 2025
Viewed by 200
Abstract
Electrocardiograms (ECGs) are critical for cardiovascular disease diagnosis, but their accuracy is often compromised by electrode motion (EM) artifacts—large, nonstationary distortions caused by patient movement and electrode-skin interface shifts. These artifacts overlap in frequency with genuine cardiac signals, rendering traditional filtering methods ineffective [...] Read more.
Electrocardiograms (ECGs) are critical for cardiovascular disease diagnosis, but their accuracy is often compromised by electrode motion (EM) artifacts—large, nonstationary distortions caused by patient movement and electrode-skin interface shifts. These artifacts overlap in frequency with genuine cardiac signals, rendering traditional filtering methods ineffective and increasing the risk of false alarms and misdiagnosis, particularly in wearable and ambulatory ECG applications. To address this, we propose the Feature-Shuffle Multi-Head Attention Autoencoder (FMHA-AE), a novel architecture integrating multi-head self-attention (MHSA) and a feature-shuffle mechanism to enhance ECG denoising. MHSA captures long-range temporal and spatial dependencies, while feature shuffling improves representation robustness and generalization. Experimental results show that FMHA-AE achieves an average signal-to-noise ratio (SNR) improvement of 25.34 dB and a percentage root mean square difference (PRD) of 10.29%, outperforming conventional wavelet-based and deep learning baselines. These results confirm the model’s ability to retain critical ECG morphology while effectively removing noise. FMHA-AE demonstrates strong potential for real-time ECG monitoring in mobile and clinical environments. This work contributes an efficient deep learning approach for noise-robust ECG analysis, supporting accurate cardiovascular assessment under motion-prone conditions. Full article
(This article belongs to the Special Issue AI on Biomedical Signal Sensing and Processing for Health Monitoring)
Show Figures

Figure 1

19 pages, 4859 KB  
Article
A Dual-Mode Adaptive Bandwidth PLL for Improved Lock Performance
by Thi Viet Ha Nguyen and Cong-Kha Pham
Electronics 2025, 14(20), 4008; https://doi.org/10.3390/electronics14204008 - 13 Oct 2025
Viewed by 168
Abstract
This paper proposed an adaptive bandwidth Phase-Locked Loop (PLL) that integrates integer-N and fractional-N switching for energy-efficient RF synthesis in IoT and mobile applications. The architecture exploits wide-bandwidth integer-N mode for rapid lock acquisition, then seamlessly transitions to narrow-bandwidth fractional-N mode for high-resolution [...] Read more.
This paper proposed an adaptive bandwidth Phase-Locked Loop (PLL) that integrates integer-N and fractional-N switching for energy-efficient RF synthesis in IoT and mobile applications. The architecture exploits wide-bandwidth integer-N mode for rapid lock acquisition, then seamlessly transitions to narrow-bandwidth fractional-N mode for high-resolution synthesis and noise optimization. The architecture features a bandwidth-reconfigurable loop filter with intelligent switching control that monitors phase error dynamics. A novel adaptive digital noise filter mitigates ΔΣ quantization noise, replacing conventional synchronous delay lines. The multi-loop structure incorporates a high-resolution digital phase detector to enhance frequency accuracy and minimize jitter across both operating modes. With 180 nm CMOS technology, the PLL consumes 13.2 mW, while achieving 119 dBc/Hz in-band phase noise and 1 psrms integrated jitter. With an operating frequency range at 2.9–3.2 GHz from a 1.8 V supply, the circuit achieves a worst case fractional spur of −62.7 dBc, which corresponds to a figure of merit (FOM) of −228.8 dB. Lock time improvements of 70% are demonstrated compared to single-mode implementations, making it suitable for high-precision, low-power wireless communication systems requiring agile frequency synthesis. Full article
Show Figures

Figure 1

14 pages, 1103 KB  
Article
Are Reusable Dry Electrodes an Alternative to Gelled Electrodes for Canine Surface Electromyography?
by Ana M. Ribeiro, I. Brás, L. Caldeira, J. Caldeira, C. Peham, H. Plácido da Silva and João F. Requicha
Animals 2025, 15(20), 2959; https://doi.org/10.3390/ani15202959 - 13 Oct 2025
Viewed by 164
Abstract
Despite its increasing use in veterinary rehabilitation, practical constraints—such as skin preparation and single-use electrodes—limit the wider adoption of surface electromyography (sEMG). Having conventional pre-gelled Ag/AgCl electrodes as reference, we made a pioneering comparison of the performance of reusable soft polymeric dry electrodes [...] Read more.
Despite its increasing use in veterinary rehabilitation, practical constraints—such as skin preparation and single-use electrodes—limit the wider adoption of surface electromyography (sEMG). Having conventional pre-gelled Ag/AgCl electrodes as reference, we made a pioneering comparison of the performance of reusable soft polymeric dry electrodes for recording paraspinal muscle activity in dogs during treadmill walking. Twelve clinically healthy Dachshunds from both genders were evaluated under two conditions, namely: (i) dry electrodes on untrimmed hair; and (ii) pre-gelled electrodes after trichotomy. Signals were acquired from the longissimus dorsi muscle at 1 kHz, processed with standardized filtering and rectification, and analyzed in both time and frequency domains. Dry electrodes yielded higher amplitude and Root Mean Square (RMS) values, but slightly lower power spectral density metrics when compared to pre-gelled electrodes. Nevertheless, frequency-domain results were broadly comparable between configurations. Dry electrodes reduce the preparation time, avoid hair clipping, and allow reusability without major signal degradation. While pre-gelled electrodes may still offer marginally superior stability during movement, our results suggest that soft polymeric dry electrodes present a feasible, less invasive, and more sustainable alternative for canine sEMG. These findings support further validation of dry electrodes in clinical populations, particularly for neuromuscular assessment in intervertebral disk disease. Full article
Show Figures

Figure 1

25 pages, 3977 KB  
Article
Multi-Sensor Data Fusion and Vibro-Acoustic Feature Engineering for Health Monitoring and Remaining Useful Life Prediction of Hydraulic Valves
by Xiaomin Li, Liming Zhang, Tian Tan, Xiaolong Wang, Xinwen Zhao and Yanlong Xu
Sensors 2025, 25(20), 6294; https://doi.org/10.3390/s25206294 - 11 Oct 2025
Viewed by 314
Abstract
The reliability of hydraulic valves is critical for the safety and efficiency of industrial systems. While vibration and pressure sensors are widely deployed for condition monitoring, leveraging the heterogeneous data from these multi-sensor systems for accurate remaining useful life (RUL) prediction remains challenging [...] Read more.
The reliability of hydraulic valves is critical for the safety and efficiency of industrial systems. While vibration and pressure sensors are widely deployed for condition monitoring, leveraging the heterogeneous data from these multi-sensor systems for accurate remaining useful life (RUL) prediction remains challenging due to noise, outliers, and inconsistent sampling rates. This study proposes a sensor data-driven framework that integrates multi-step signal preprocessing, time–frequency feature fusion, and a machine learning model to address these challenges. Specifically, raw data from vibration and pressure sensors are first harmonized through a multi-step preprocessing pipeline including Hampel filtering for impulse noise, Robust Scaler for outlier mitigation, Butterworth low-pass filtering for effective frequency band retention, and resampling to a unified rate. Subsequently, vibro-acoustic features are extracted from the preprocessed sensor signals, including Fast Fourier Transform (FFT)-based frequency domain features and Wavelet Packet Decomposition (WPD)-based time–frequency features, to comprehensively characterize the valve’s degradation. A health indicator (HI) is constructed by fusing the most sensitive features. Finally, a Kernel Principal Component Analysis (KPCA)-optimized Random Forest model is developed for HI prediction, which strongly correlates with RUL. Validated on the UCI hydraulic condition monitoring dataset through 20-run Monte-Carlo cross-validation, our method achieves a root mean square error (RMSE) of 0.0319 ± 0.0090, a mean absolute error (MAE) of 0.0109 ± 0.0014, and a coefficient of determination (R2) of 0.9828 ± 0.0097, demonstrating consistent performance across different data partitions. These results confirm the framework’s effectiveness in translating multi-sensor data into actionable insights for predictive maintenance, offering a viable solution for industrial health management systems. Full article
Show Figures

Figure 1

29 pages, 2790 KB  
Article
A New Hybrid Adaptive Self-Loading Filter and GRU-Net for Active Noise Control in a Right-Angle Bending Pipe of an Air Conditioner
by Wenzhao Zhu, Zezheng Gu, Xiaoling Chen, Ping Xie, Lei Luo and Zonglong Bai
Sensors 2025, 25(20), 6293; https://doi.org/10.3390/s25206293 - 10 Oct 2025
Viewed by 302
Abstract
The air-conditioner noise in a rehabilitation room can seriously affect the mental state of patients. However, the existing single-layer active noise control (ANC) filters may fail to attenuate the complicated harmonic noise, and the deep recursive ANC method may fail to work in [...] Read more.
The air-conditioner noise in a rehabilitation room can seriously affect the mental state of patients. However, the existing single-layer active noise control (ANC) filters may fail to attenuate the complicated harmonic noise, and the deep recursive ANC method may fail to work in real time. To solve the problem, in a bending-pipe model, a new hybrid adaptive self-loading filtered-x least-mean-square (ASL-FxLMS) and convolutional neural network-gate recurrent unit (CNN-GRU) network is proposed. At first, based on the recursive GRU translation core, an improved CNN-GRU network with multi-head attention layers is proposed. Especially for complicated harmonic noises with more or fewer frequencies than harmonic models, the attenuation performance will be improved. In addition, its structure is optimized to decrease the computing load. In addition, an improved time-delay estimator is applied to improve the real-time ANC performance of CNN-GRU. Meanwhile, an adaptive self-loading FxLMS algorithm has been developed to deal with the uncertain components of complicated harmonic noise. Moreover, to achieve balance attenuation, robustness, and tracking performance, the ASL-FxLMS and CNN-GRU are connected by a convex combination structure. Furthermore, theoretical analysis and simulations are also conducted to show the effectiveness of the proposed method. Full article
(This article belongs to the Section Sensor Networks)
Show Figures

Figure 1

25 pages, 14038 KB  
Article
Infrared Target Detection Based on Image Enhancement and an Improved Feature Extraction Network
by Peng Wu, Zhen Zuo, Shaojing Su and Boyuan Zhao
Drones 2025, 9(10), 695; https://doi.org/10.3390/drones9100695 - 10 Oct 2025
Viewed by 252
Abstract
Small unmanned aerial vehicles (UAVs) pose significant security challenges due to their low detectability in infrared imagery, particularly when appearing as small, low-contrast targets against complex backgrounds. This paper presents a novel infrared target detection framework that addresses these challenges through two key [...] Read more.
Small unmanned aerial vehicles (UAVs) pose significant security challenges due to their low detectability in infrared imagery, particularly when appearing as small, low-contrast targets against complex backgrounds. This paper presents a novel infrared target detection framework that addresses these challenges through two key innovations: an improved Gaussian filtering-based image enhancement module and a hierarchical feature extraction network. The proposed image enhancement module incorporates a vertical weight function to handle abnormal feature values while preserving edge information, effectively improving image contrast and reducing noise. The detection network introduces the SODMamba backbone with Deep Feature Perception Modules (DFPMs) that leverage high-frequency components to enhance small target features. Extensive experiments on the custom SIDD dataset demonstrate that our method achieves superior detection performance across diverse backgrounds (urban, mountain, sea, and sky), with mAP@0.5 reaching 96.0%, 74.1%, 92.0%, and 98.7%, respectively. Notably, our model maintains a lightweight profile with only 6.2M parameters and enables real-time inference, which is crucial for practical deployment. Real-world validation experiments confirm the effectiveness and efficiency of the proposed approach for practical UAV detection applications. Full article
Show Figures

Figure 1

19 pages, 4112 KB  
Article
Seismic Intensity Prediction with a Low-Computational-Cost Transformer-Based Tracking Method
by Honglei Wang, Zhixuan Bai, Ruxue Bai, Liang Zhao, Mengsong Lin and Yamin Han
Sensors 2025, 25(20), 6269; https://doi.org/10.3390/s25206269 - 10 Oct 2025
Viewed by 211
Abstract
The prediction of seismic intensity in an accurate and timely manner is needed to provide scientific guidance for disaster relief. Traditional seismic intensity prediction methods rely on seismograph equipment, which is limited by slow response times and high equipment costs. In this study, [...] Read more.
The prediction of seismic intensity in an accurate and timely manner is needed to provide scientific guidance for disaster relief. Traditional seismic intensity prediction methods rely on seismograph equipment, which is limited by slow response times and high equipment costs. In this study, we introduce a low-computational-cost transformer-based (LCCTV) visual tracking method to predict seismic intensity in surveillance videos. To this end, an earthquake video dataset is proposed. It is captured in the laboratory environment, where the seismic level is obtained through seismic station simulation. With the proposed dataset, a low-computational-cost transformer-based visual tracking method is first proposed to estimate the movement trajectory of the calibration board target in videos in real time. In order to further improve the recognition accuracy, we then utilize a Butterworth filter to smooth the generated movement trajectory so as to remove low-frequency interference signals. Finally, the seismic intensity is predicted based on the velocity and acceleration derived from the smoothed movement trajectory. Experimental results demonstrated that the LCCTV outperformed other state-of-the-art approaches. The findings confirm that the proposed LCCTV can serve as a low-cost, scalable solution for seismic intensity analysis. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

21 pages, 3311 KB  
Article
Dual-Domain Impulse Complexity Index-Guided Projection Iterative-Methods-Based Optimizer-Feature Mode Decomposition (DICI-Guided PIMO-FMD): A Robust Approach for Bearing Fault Diagnosis Under Strong Noise Conditions
by Dongning Chen, Qinggui Xian, Chengyu Yao, Ranyang Deng and Tai Yuan
Sensors 2025, 25(19), 6174; https://doi.org/10.3390/s25196174 - 5 Oct 2025
Viewed by 366
Abstract
Bearings are core components in many types of industrial equipment, and their operating environment is often accompanied by strong background noise. This results in a low Signal-to-Noise Ratio (SNR) in the collected vibration signals, making it difficult for traditional methods to extract fault [...] Read more.
Bearings are core components in many types of industrial equipment, and their operating environment is often accompanied by strong background noise. This results in a low Signal-to-Noise Ratio (SNR) in the collected vibration signals, making it difficult for traditional methods to extract fault information effectively. Given that bearing failures often manifest as periodic impact signals, a Feature Mode Decomposition (FMD) method has been proposed by researchers which optimizes filter design through correlated kurtosis to enhance the ability to capture fault impact components. However, the decomposition performance of FMD is significantly affected by its parameters (mode number and filter length), and relies on manual settings, resulting in insufficient stability of the results. Therefore, this paper proposes a Dual-domain Impulse Complexity Index (DICI) that combines time-domain impulse characteristics and frequency-domain complexity as an evaluation criterion for FMD parameter optimization. Further, the projection-iterative-methods-based optimizer (PIMO) is adopted to achieve adaptive optimization of parameters. Subsequently, sensitive components are selected based on the maximum Fault Frequency Correlation (FFC) criterion, and their envelope spectra are calculated to recognize bearing fault modes. Simulation and real-signal verification show that the proposed method outperforms several established signal-processing approaches under low SNR conditions. Full article
(This article belongs to the Special Issue Smart Sensors for Machine Condition Monitoring and Fault Diagnosis)
Show Figures

Figure 1

Back to TopTop