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Abstract

Small unmanned aerial vehicles (UAVs) pose significant security challenges due to their
low detectability in infrared imagery, particularly when appearing as small, low-contrast
targets against complex backgrounds. This paper presents a novel infrared target detection
framework that addresses these challenges through two key innovations: an improved
Gaussian filtering-based image enhancement module and a hierarchical feature extraction
network. The proposed image enhancement module incorporates a vertical weight function
to handle abnormal feature values while preserving edge information, effectively improving
image contrast and reducing noise. The detection network introduces the SODMamba
backbone with Deep Feature Perception Modules (DFPMs) that leverage high-frequency
components to enhance small target features. Extensive experiments on the custom SIDD
dataset demonstrate that our method achieves superior detection performance across
diverse backgrounds (urban, mountain, sea, and sky), with mAP@0.5 reaching 96.0%,
74.1%, 92.0%, and 98.7%, respectively. Notably, our model maintains a lightweight profile
with only 6.2M parameters and enables real-time inference, which is crucial for practical
deployment. Real-world validation experiments confirm the effectiveness and efficiency of
the proposed approach for practical UAV detection applications.

Keywords: infrared target detection; image enhancement; deep feature perception

1. Introduction
The proliferation of small unmanned aerial vehicles (UAVs) has created unprecedented

security challenges for critical infrastructure protection, border surveillance, and public
safety [1]. While UAVs offer numerous beneficial applications in areas such as delivery
services, agricultural monitoring, and search and rescue operations, their potential misuse
for illicit activities, including smuggling, espionage, and attacks on sensitive facilities,
necessitates robust detection and tracking systems [2].

Infrared imaging has emerged as a crucial technology for UAV detection due to its
ability to operate in day/night conditions and various weather scenarios [3]. However,
detecting small UAVs in infrared imagery presents significant technical challenges. UAVs
typically appear as small targets with limited thermal signatures, occupying only a few
pixels in the image [4]. The problem is further compounded by complex backgrounds,
atmospheric interference, and the inherent limitations of infrared sensors, including low
signal-to-noise ratio and poor contrast [5].
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Traditional infrared image processing methods often struggle to balance noise re-
duction with feature preservation, leading to blurred target edges and reduced detection
accuracy [6]. Moreover, conventional object detection algorithms designed for visible-light
imagery fail to adequately address the unique characteristics of infrared small target detec-
tion, particularly the lack of texture information and the prevalence of false alarms from
background clutter [7].

Recent advances in deep learning have shown promise for infrared target detection,
with methods such as YOLO variants achieving reasonable performance in certain sce-
narios [8]. However, these architectures face fundamental challenges when applied to
the specific problem of infrared small target (IST) detection, particularly for UAVs. The
core issue stems from the inherent conflict between the design of standard CNNs and the
nature of ISTs. Firstly, the extensive down-sampling (e.g., to 32 × 32 stride) in backbones
like YOLO critically erodes the limited pixel-level evidence of ISTs, which may comprise
only a few pixels. This irreversible information loss at the earliest stages makes subse-
quent detection exceedingly difficult. Secondly, the anchor-based proposal mechanisms in
many YOLO versions are poorly suited for small infrared targets, as predefined anchors
often vastly exceed the target size, leading to poor matching and learning inefficiency.
Furthermore, the loss functions (e.g., IoU) and feature fusion strategies optimized for larger
objects in natural images fail to effectively leverage the faint, high-frequency cues that
are paramount for distinguishing ISTs from cluttered backgrounds. Consequently, these
approaches struggle with the extremely small and low-signature targets that characterize
UAV detection scenarios [9]. While computational burden is a concern, these architectural
limitations are a primary bottleneck. The need for real-time processing further constrains
the complexity of viable solutions, as practical deployment requires processing speeds
sufficient for responsive countermeasures [10].

This paper addresses these challenges through a comprehensive framework that
combines advanced image preprocessing with specialized feature extraction tailored for
infrared small target detection. Our main contributions are as follows:

(1) An improved Gaussian filtering algorithm that incorporates a vertical weight
function within a robust estimation model to adaptively re-weight the contribution of each
pixel during convolution. This core modification preserves edge information significantly
better than conventional filtering, thereby providing higher-quality images for subsequent
detection tasks.

(2) A novel SODMamba backbone architecture featuring Deep Feature Perception
Modules (DFPMs) that exploit high-frequency components to enhance small target features
while suppressing background noise.

(3) Comprehensive evaluation on a custom SIDD dataset containing 4737 infrared
images across four distinct scenarios, demonstrating superior performance compared to
state-of-the-art methods.

(4) Real-world validation using a complete UAV detection system, confirming the
practical applicability of our approach with real-time processing capabilities.

The remainder of this paper is organized as follows: Section 2 reviews related work in
infrared image enhancement and target detection. Section 3 presents our proposed method
in detail. Sections 4 and 5 describe experimental results on benchmark and real-world
datasets. Finally, Section 6 concludes the paper and discusses future directions.
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2. Related Work
2.1. Infrared Image Enhancement

Infrared images inherently suffer from low contrast, high noise levels, and limited dy-
namic range due to sensor limitations and environmental factors [11]. Various enhancement
techniques have been proposed to improve image quality for subsequent processing tasks.

Traditional enhancement methods have evolved significantly in recent years. Li
et al. [12] proposed an infrared image enhancement method based on adaptive histogram
partition and brightness correction, which effectively addresses over-enhancement issues
in traditional histogram equalization. Wang et al. [13] introduced a detail-preserving image
enhancement algorithm using guided filtering and multi-scale decomposition, demonstrat-
ing superior performance in preserving edge information while improving contrast. Deep
learning approaches have revolutionized infrared image enhancement. Kuang et al. [14]
developed a single infrared image enhancement method using deep convolutional neural
networks, achieving significant improvements over traditional methods. More recently, Li
et al. [15] proposed an infrared image enhancement network based on multi-scale feature
extraction and attention mechanisms, which adaptively enhances different image regions
based on their characteristics. Hybrid approaches combining traditional and learning-
based methods have shown promise. Zhang et al. [16] introduced a method that integrates
physical models with deep learning for infrared image enhancement, leveraging domain
knowledge to improve network performance. Liu et al. [17] proposed a two-stage en-
hancement framework that combines Retinex theory with deep neural networks, achieving
balanced enhancement across different scene types.

2.2. Infrared Small Target Detection

Infrared small target detection remains a challenging problem due to the limited
information available from small targets and complex backgrounds. Recent advances have
focused on both traditional and deep learning approaches.

Model-based Methods: Recent model-based methods have focused on exploiting local
contrast and structural information. Han et al. [18] proposed a local contrast measure based
on multi-scale patch-based contrast, achieving robust detection in complex backgrounds.
Wei et al. [19] introduced a multi-scale gray difference weighted image entropy method
that effectively suppresses background clutter while preserving small targets. The infrared
patch-tensor (IPT) model has gained attention for its effectiveness. Zhang et al. [20] pro-
posed a non-convex rank approximation minimization method for infrared small target
detection, demonstrating superior performance in suppressing background edges. Dai
et al. [21] extended this work with a weighted infrared patch-tensor model that adaptively
adjusts to local image characteristics.

Deep Learning Methods: Deep learning has transformed infrared small target de-
tection capabilities. Li et al. [22] proposed a dense nested attention network (DNANet)
specifically designed for infrared small target detection, utilizing multi-level features with
attention mechanisms. This work demonstrated significant improvements over traditional
methods, particularly in complex scenes.

Transformer-based architectures have recently been applied to this domain. Wang
et al. [23] introduced UIU-Net, combining transformer blocks with CNN features for in-
frared small target detection, achieving state-of-the-art performance. Zhang et al. [24]
proposed ISNet, an infrared small target detection network with scale and location sensi-
tivity, addressing the challenge of targets at different scales. The asymmetric contextual
modulation (ACM) approach by Dai et al. [25] has been particularly influential, intro-
ducing a novel way to model the relationship between targets and backgrounds in in-
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frared images. This method has inspired several subsequent works focusing on contextual
information exploitation.

2.3. Infrared Drone Detection Methods

The detection of unmanned aerial vehicles (UAVs) using infrared imaging has emerged
as a critical technology in counter-drone systems due to its all-weather capability and
passive detection nature. Unlike traditional infrared small target detection, drone detection
presents unique challenges that require specialized approaches.

Current infrared drone detection methods can be broadly categorized into traditional
and deep learning-based approaches. Traditional methods typically rely on temporal or
spatial filtering techniques. Background subtraction methods, such as those proposed by
Zheng et al. [26], proposed a novel approach inspired by the human visual system (HVS),
where block compressed sampling theory was used first, then small abnormal regions in
the modulation map were detected by a high-speed local contrast method and defined
as candidate targets. However, these methods struggle with dynamic backgrounds and
require careful parameter tuning.

Deep learning-based approaches have recently dominated this field. Convolutional
neural networks (CNNs), particularly YOLO variants, have been widely adopted due
to their real-time performance. However, their performance is inherently limited by the
convolutional operations’ local receptive field, which struggles to capture the global con-
text crucial for distinguishing small drones from noisy backgrounds. To address this,
Transformer-based architectures have been explored for their superior global modeling
capabilities through self-attention mechanisms. Yuan et al. [27] introduced a spatial-channel
cross transformer network. Its core is a spatial-channel interactive transformer block (SCTB)
designed to establish correlations between encoder and decoder features, predicting contex-
tual differences between target and background in deeper layers. Liu et al. [28] proposed a
parallel transformer–CNN hybrid (TCM) module for learned image compression, showcas-
ing an effective design for combining local modeling from CNN and non-local modeling
from transformer. Wang et al. [29] proposed a lightweight infrared small target detection
method based on a linear transformer, which consists of two parts, namely a multi-scale lin-
ear transformer and a lightweight dual feature pyramid network, to achieve high accuracy
and low delay in infrared small target detection.

Despite these advances, infrared drone detection methods face several fundamental
limitations. Extreme Scale Variation: Drones can appear as small as 4 × 4 pixels at long
distances, making feature extraction extremely challenging. This scale issue is exacerbated
by the rapid changes in apparent size as drones approach or recede from the camera. Low
Signal-to-Noise Ratio: Thermal signatures of drones are often weak and inconsistent due to
varying operational conditions, weather effects, and different drone materials. This results
in poor thermal contrast against backgrounds. Dataset Limitations: The lack of large-scale,
diverse infrared drone datasets covering various scenarios, seasons, and weather conditions
hinders the development of robust models.

Our work addresses these limitations by proposing a specialized image enhancement
module that improves thermal contrast and an efficient network architecture that maintains
high accuracy while meeting real-time requirements.

2.4. YOLO-Based Detection for Infrared Applications

The YOLO family of detectors has been extensively adopted for infrared applications
due to its real-time capabilities. Recent versions have shown particular promise for small
target detection tasks.YOLOv5 adaptations have been successful in infrared domains. Ding
et al. [30] proposed an improved YOLOv5 for infrared small target detection, incorporating



Drones 2025, 9, 695 5 of 25

multi-scale feature fusion and attention mechanisms. Their method achieved significant
improvements in detecting small UAVs while maintaining real-time performance. YOLOv7
and YOLOv8 have introduced architectural improvements beneficial for infrared detection.
Wang et al. [31] adapted YOLOv7 for infrared maritime target detection, demonstrating
robust performance in challenging maritime environments. The integration of the E-ELAN
(Extended Efficient Layer Aggregation Network) structure proved particularly effective for
small target feature extraction. Recent work has focused on loss function improvements
for small targets. Xu et al. [32] proposed Normalized Wasserstein Distance (NWD) for tiny
object detection, addressing the sensitivity of IoU-based metrics for small objects. This
approach has been successfully applied to infrared UAV detection scenarios.

2.5. UAV Detection Systems

Comprehensive UAV detection systems combining multiple technologies have
emerged. Shi et al. [33] developed an anti-UAV system integrating radar and electro-
optical sensors, demonstrating the benefits of multi-modal fusion. Their work highlighted
the importance of infrared imaging for all-weather operation. Real-time processing re-
quirements have driven system design innovations. Liu et al. [34] proposed a lightweight
neural network for real-time UAV detection in infrared images. This work demonstrated
the feasibility of deploying deep learning models in resource-constrained environments.
Despite these advances, existing methods still face challenges in detecting extremely small
UAVs (less than 32 × 32 pixels) against complex backgrounds while maintaining real-time
performance. Our work addresses these limitations through a comprehensive approach
combining enhanced preprocessing with specialized feature extraction designed specifically
for infrared small target characteristics.

3. Proposed Method
3.1. Overall Framework

The proposed architecture presents a comprehensive object detection framework that
integrates advanced image preprocessing with a hierarchical feature extraction backbone.
The overall structure consists of four main components: an image enhancement module,
the SODMamba backbone, a path aggregation feature pyramid network (PAFPN), and a
multi-scale detection head.

Figure 1 shows the diagram of the proposed infrared target detection.The input image
first passes through an image enhancement module, which performs preprocessing opera-
tions. This module employs an improved Gaussian filtering technique that incorporates a
vertical weight function to effectively handle abnormal feature values and achieve superior
denoising performance. This enhancement step ensures more stable and reliable feature
extraction in subsequent stages. The enhanced image is then fed into the SODMamba
backbone, which adopts a hierarchical architecture with four distinct levels (L1–L4). The
backbone begins with a Simple Stem containing an ODSSBlock for initial feature extraction.
Each subsequent level incorporates a deep feature perception module (DFPM) paired with
an ODSSBlock, enabling the network to capture both local and global feature representa-
tions effectively. The DFPM modules leverage high-frequency perception capabilities to
enhance feature discrimination. At the final stage, an SPPF module aggregates multi-scale
contextual information.

The extracted features from levels P3, P4, and P5 are then processed through the
PAFPN, which facilitates bidirectional feature fusion. The PAFPN employs a combination
of upsampling operations, concatenation mechanisms, and ODSSBlocks to merge features
across different scales, ensuring rich semantic and spatial information is preserved through-
out the network. Finally, the detection head processes the multi-scale features through
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three parallel branches corresponding to different spatial resolutions: 80 × 80 for small
objects, 40 × 40 for medium objects, and 20 × 20 for large objects. This multi-scale design
enables the network to effectively detect objects of varying sizes within the input image,
producing the final detection output.
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Figure 1. The diagram of the proposed infrared target detection.

3.2. Image Enhancement Module

Infrared images suffer from significant noise interference and blurred edge features,
which are detrimental to feature extraction and learning-based detection. While Gaussian
filtering demonstrates good performance in noise removal, the traditional Gaussian filter-
ing method operates on the fundamental principle of convolution based on the Gaussian
function, where the filter kernel weights are determined by the Gaussian function. During
the filtering process, the gray value of each pixel in the image is replaced by the weighted
average of pixels within its neighborhood, with weights calculated according to the Gaus-
sian distribution; pixels closer to the central pixel receive higher weights. As a linear
filtering method, Gaussian filtering inevitably loses some high-frequency information of
the image while removing noise, such as edges and details, resulting in blurred image
features that are unfavorable for subsequent object detection operations. Figure 2 shows
examples of infrared images.

 

 
Figure 2. Examples of infrared images.

This paper presents an improved Gaussian filtering algorithm for infrared image
enhancement. The proposed enhancement algorithm builds upon conventional Gaussian
filtering by integrating grayscale transformation enhancement and maximum variance
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thresholding techniques while incorporating a vertical weight function to better preserve im-
age features, thereby providing higher-quality images for subsequent target detection tasks.

To mitigate the feature blurring issues inherent in traditional Gaussian filtering ap-
proaches for image processing, grayscale transformation enhancement and maximum
variance thresholding methods are employed as preprocessing techniques. The former
adjusts the grayscale dynamic range to accentuate contrast between bright and dark re-
gions while enhancing detailed features. The latter improves feature extraction accuracy
and reduces noise interference by segmenting the image into background and foreground
components, ultimately yielding infrared images with enhanced visual clarity and more
prominent features that facilitate subsequent processing operations.

For tangent orientation determination, a grayscale means square deviation calculation
method utilizing one-dimensional templates is adopted. By quantifying the local grayscale
dispersion, this approach effectively reduces noise interference while maintaining consis-
tency between tangent and texture directions, thereby further improving the efficacy of
subsequent edge feature extraction.

Regarding the enhancement of Gaussian filtering, the introduction of a vertical weight
function eliminates the influence of anomalous feature values, resulting in superior noise
suppression and improved image processing stability.

3.2.1. Image Preprocessing

A series of preprocessing operations was applied to the image, including grayscale
transformation, enhancement, and binarization processing. After linear stretching of the
original image’s grayscale values, this approach effectively addresses issues of under-
exposure and low contrast, resulting in clearer images with more prominent features.
The subsequent operation involves binarization processing, which segments the image
into background and target regions. The employed method is the maximum variance
thresholding technique, with the specific procedure as follows:

Let T denote the total number of pixels in the image to be processed, with an average
grayscale value g. Let a represent the segmentation threshold between background and
target. The proportion of pixels belonging to the target relative to the entire image is
denoted as E0(a), with its average grayscale value χ0(a). Similarly, the proportion of pixels
belonging to the background relative to the entire image is denoted as E1(a), with its
average grayscale value χ1(a). The following equations are established:

g = E0(a) ∗ χ0(a) + E1(a) ∗ χ1(a) (1)

Subsequently, the inter-class variance between the background and foreground pixels
is calculated using the following equation.

δ = E0(a)[g − χ0(a)]2 + E1(a)[g − χ1(a)]2 (2)

By substituting Equation (1) into Equation (2), the final formula for inter-class variance
is obtained as

δ = E0(a)E1(a)[χ0(a)− χ1(a)]2 (3)

Finally, through an iterative approach, an optimal threshold a is identified that maximizes
the inter-class variance, which serves as the required threshold for binarization processing.

3.2.2. Improved Gaussian Filtering for Image Enhancement

Traditional Gaussian filtering often yields poor performance when dealing with ab-
normal feature values in images, struggling to eliminate their influence and consequently
affecting subsequent object detection. To address this issue, we improved the traditional
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Gaussian filtering algorithm by incorporating a vertical weight function. This modifica-
tion enables better handling of abnormal feature values, achieves improved denoising
performance, and enhances the stability of processing results. The robust Gaussian filter is
expressed as follows:∫ a1

a2

[ε(φ)− φ(α)]2γ(α)η(α − φ)D(φ) ⇒ {φ(α)} (4)

where α is an independent variable representing the position of the image contour. ε(φ)

represents the surface profile; φ(α) denotes the low-frequency baseline signal; η(α − φ) is
the newly introduced vertical weight function; D(φ) indicates the convolution operation
of the Gaussian weight function; γ(α) represents the frequency response function; and a1,
a2 are the integration limits. The appropriate vertical weight function γ(α) is obtained
through iterative operations.

The robust Gaussian filtering centerline is then calculated using the following formula:

φ(α)′ =

∫ a1
a2

ε(α − φ)γ(α)η(α − φ)D(φ)∫ a1
a2

η(φ)γ(α)D(φ)
(5)

where η(α − φ) represents the convolution operation of the surface profile; η(φ) denotes
the frequency response function.

Discretizing the above results yields

φ(i) =

x2
∑
x1

ε(α − φ)γ(α)η(α)

x2
∑
x1

γ(α)η(α)

(6)

where η(α) is the Gaussian weight function.
During the iterative process of φ(i), Gaussian filtering is applied to both γ(α) and

ε(α − φ)γ(α), while introducing a residual function, resulting in the following expression:

WE = 5.6328 × mid( |λ(α)− φ(α) |) (7)

where mid denotes the median value, and λ(α) represents the integral function.
Finally, a robust estimation model is constructed. This section employs the Tukey

biweight estimator as the vertical weight function, which achieves better model stability
and effectively excludes the influence of abnormal feature values. The Tukey biweight
estimator is expressed as

γ(α) =

{(
1 − U2)2 U ≤ 1

0 U > 1
(8)

where U represents the ratio of the deviation-related parameter to the parameter median.
The final robust estimation model is formulated as

γ(α + 1) =
[
1 −

(
∆o(α)

WE

)] ∣∣∣ ∆o(α)
WE

∣∣∣ < 1

γ(α + 1) = 0
∣∣∣ ∆o(α)

WE

∣∣∣ ≥ 1

∆o(α) = |λ(α)− φ(α) |

(9)

The improvement in traditional Gaussian filtering explained in this section is achieved
by constructing a robust estimation model for Gaussian filtering. Through iterative pro-
cesses, the influence of abnormal feature values is eliminated, resulting in better denoising
performance and improved image quality.
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3.3. SODMamba Backbone Network

The SODMamba backbone serves as the primary feature extraction engine of our pro-
posed network, designed to hierarchically capture and refine features from the enhanced
infrared image. As illustrated in Figure 1, the backbone adopts a multi-level architecture
(L1–L4), progressively processing the input through a series of specialized modules. It
begins with the Simple Stem for initial patch embedding and feature dimension adjust-
ment. Subsequently, each level integrates ODSSBlocks for robust local feature modeling,
interspersed with deep feature perception modules (DFPMs) to specifically amplify the
high-frequency cues critical for small drone targets. This design ensures a balanced focus on
both local details and global context, making it particularly adept at handling the challenges
of infrared small target detection.

3.3.1. Deep Feature Perception Module (DFPM)

Figure 3 shows the structure of DFPM. DFPM leverages the characteristic that small
target features primarily correspond to high-frequency components in images. It extracts
high-frequency responses from input feature maps through a high-pass filter, filtering out
low-frequency background information. Subsequently, the high-frequency responses are
utilized to generate channel attention weights and spatial attention weights, respectively:
channel weights highlight channels containing more small target features, while spatial
weights focus on regions where small targets are located. Finally, weighted fusion enhances
the representation of small targets in the original features.
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Figure 3. The structure of DFPM.

DFPM consists of three core components:
High-Frequency Feature Generator: Extracts high-frequency responses through dis-

crete cosine transform (DCT) and a high-pass filter (controlled by the parameter α for
filtering range). In our experiments, we employed a 5 × 5 high-pass filter kernel and set
α = 0.25. This value was empirically determined to optimally preserve the high-frequency
cues of small targets while effectively suppressing low-frequency background noise. The
parameter α determines the fraction of low-frequency DCT coefficients to be filtered out.

Channel Path (CP): Applies global average pooling (GAP) and global max pooling
(GMP) to high-frequency responses, generates channel weights through convolutional
layers, and dynamically allocates importance to each channel;

Spatial Path (SP): Aggregates channel information of high-frequency responses
through 1 × 1 convolution to generate spatial masks, localizing pixel regions contain-
ing small targets. The outputs from both paths are element-wise multiplied and added,
and then processed through a 3 × 3 convolution to obtain enhanced features.
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When DFPM is integrated into the backbone, it further enhances high-frequency
details of small targets in detection network output features while suppressing background
noise. Through dynamic weight allocation, it enables the detection network to focus more
on small target regions, improving detection accuracy for small targets in complex scenes
and reducing missed detections and false positives.

3.3.2. Simple Stem

Figure 4 shows the structure of Simple Stem. Traditional sampling process, a convo-
lution kernel with size 4 and stride 4 is typically used to segment the input image into
non-overlapping patches for subsequent processing. However, this aggressive downsam-
pling can lead to a significant loss of fine-grained spatial information and high-frequency
details, which is particularly detrimental for detecting small targets that may only span a
few pixels [35]. We propose a Simple Stem approach, redesigning the initial layers with two
sequential convolutions of kernel size 3 and stride 2. This design generates overlapping
patches, which helps to preserve more detailed information from the input image, especially
crucial edge and texture features that are essential for identifying small infrared targets.
While halving the hidden layer channels after each convolution to maintain computational
efficiency, this overlapping patch strategy provides a richer feature representation for the
subsequent network layers.

Si
m

pl
e 

St
em

Batch N
orm

Conv

A
ctivation

Conv

Batch N
orm

k=3

stride=2

k=3

stride=2

Figure 4. The structure of Simple Stem.

3.3.3. ODSSBlock

ODSSBlock is comprised of three sub-modules: LSBlock, RGBlock, and SS2D. Through
sequential processing of input images, it preserves richer and deeper feature information,
facilitating subsequent deep learning and establishing more reliable models. Meanwhile,
batch normalization ensures efficient and stable training and inference processes. Figure 5
illustrates the overall structure of ODSSBlock.

Through batch normalization, layer normalization, and residual connections, ODSS-
Block enables effective information flow when stacked in deep architectures. The overall
formulation is as follows:

Zl−2 = ϕ̂
(

BN
(

Conv1×1

(
Zl−3

)))
(10)

where ϕ̂ denotes the activation function, BN represents batch normalization, Conv1×1

indicates depthwise convolution, and Zl−3 is the input image.

Zl−1 = SS2D
(

LN
(

Zl−2
))

+ Zl−2 (11)

Zl = RG
(

LN
(

Zl−1
))

+ Zl−1 (12)

where SS2D and RG represent the corresponding modules, and LN denotes layer normalization.
Figure 6 shows the structure of SS2D. SS2D consists of three main steps: Scan Expan-

sion, S6 Block, and Scan Merge, with the algorithm workflow illustrated below:
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Figure 6. The structure of SS2D.

Scan Expansion expands the input image in different directions to generate four
distinct sub-images. When viewed from the four corners of the image, the expansion direc-
tions of the four sub-images are symmetrical, originating from each corner and proceeding
clockwise in an S-shaped pattern to complete image expansion. The advantage of multi-
directional image expansion is comprehensive coverage of all image regions, enabling
better feature extraction, providing richer information, and improving the efficiency and
effectiveness of multi-dimensional image feature capture. After image expansion, the S6
Block processes the sub-images through feature extraction, and finally, the four sub-images
are recombined through Scan Merge to output an image of the same size as the original.

Figure 7 shows the structure of S6 Block. The core of S6 Block is the State Space Model
(SSM), which maps input vectors x(t) to output vectors y(t) through implicit intermediate
states h(t), enabling parameter updates and learning. The basic operational workflow is
as follows:
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Figure 7. The structure of S6 Block.

3.4. PAFPN Module

Following the backbone, the path aggregation feature pyramid network (PAFPN)
module acts as the neck of our detection architecture, responsible for effectively fusing the
multi-scale features extracted from the backbone’s different levels (P3, P4, and P5). The
PAFPN facilitates bidirectional (top-down and bottom-up) information flow. It employs
upsampling operations and concatenation to merge semantically strong features from
higher levels with spatially rich features from lower levels. This process is further refined
through ODSSBlocks, enhancing the representational power of the fused features. The
output is a set of strengthened feature maps at multiple scales, each containing rich semantic
information and precise spatial details, which are then fed into the detection head for precise
target localization and classification.

4. Experiments on the Dataset
4.1. Dataset and Metrics
4.1.1. Dataset

To address the insufficient datasets in current drone target detection research, we
selected publicly available infrared image datasets from ground/aerial backgrounds and
partial data from the 1st CVPR Anti-UAV dataset to create a custom dataset. Targets in
different scenes and scales are classified and annotated at the pixel level to construct the
SIDD dataset. All images were meticulously annotated at the pixel level. The annotation
was performed using the LabelMe annotation tool. The labeling criterion for a positive
sample was defined as any visible drone within the image. For each drone instance, a
polygon mask was drawn to tightly enclose all visible parts of the drone body, including
the rotors, even in cases of partial occlusion or extreme blur. Images containing no drones
were excluded from the dataset. To simulate realistic drone intrusion scenarios as closely
as possible, the SIDD dataset is divided into four scenarios to investigate the impact of
different backgrounds on low-altitude infrared drone target detection accuracy. Table 1.
Shows the number of training and test sets in SIDD. The SIDD dataset contains 4737 infrared
images with 640 × 512 pixel resolution with different backgrounds, including 1093 urban
scene images, 2151 mountain scene images, 713 sea surface scene images, and 780 sky scene
images. The dataset was split with 80% for algorithm training and 20% for testing.

Table 1. The number of training and test sets in SIDD.

Different Background Training Set Test Set Total Number

Urban scene 874 219 1093
Mountain scene 1720 431 2151

Sea scene 570 143 713
Sky scene 624 156 780

Total number 3788 949 4737
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Figure 8 shows sample images from the SIDD dataset, displaying urban, mountain,
sea surface, and sky scenarios from top to bottom. In all four scenarios, a quadrotor drone
serves as the detection target, with drone targets marked by red circles.

(a)
urban 
scene

(b)
mountain 

scene

(c)
sea 

scene

(d)
sky 

scene

 

Figure 8. The examples of the SIDD dataset.

4.1.2. Metrics

This paper treats drone target detection as an instance segmentation task. Therefore,
classic instance segmentation evaluation metrics were used to compare the performance of
different algorithms, including average precision (AP) and model parameters, to assess the
detection performance of various algorithms.

Average Precision: In instance segmentation tasks, IoU is typically used to determine
whether prediction results are positive samples. IoU refers to the ratio of intersection to
union between the predicted target mask and the ground truth region.

IoU =
Soverlop

Sunion
(13)

The definition of precision and recall is as follows:

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(14)

where TP (true positive) refers to the number of samples correctly predicted as positive
by the model. FP (false positive) refers to the number of samples predicted as positive
but actually negative. FN (false negative) refers to the number of samples predicted as
negative but actually positive. The precision–recall (P-R) curve is a visualization method
for evaluating detection algorithm performance, plotted with precision as the x-axis and
recall as the y-axis. The mAP (mean average precision) value is obtained by calculating the
area under the P-R curve to assess detection accuracy.

mAP =
∫

P(R)dR (15)
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This study uses mAPs to evaluate the model’s detection capability for small targets
(targets smaller than 32 × 32 pixels in the image), mAP@0.5:0.95 to evaluate the average
value when IoU thresholds are {0.5, 0.55, · · · , 0.95}, and mAP@0.5 to evaluate the value
when the IoU threshold is 0.5.

Model Parameters: The numerical values of parameters contained in the model,
including weight matrices in convolutional and fully connected layers used in the model.
The size of model parameters reflects the model complexity to some extent.

4.2. Implementation Details

The experiments in this chapter were conducted on the Ubuntu 18.04 operating system
with the PyTorch 1.8.0 deep learning framework. All detection algorithms were trained
for 50 epochs on a custom SIDD dataset. During training, 2 images were processed per
iteration, with an initial learning rate of 0.0025, weight decay of 0.005, and AdaGrad as
the training optimizer. The hardware setup consists of an NVIDIA GeForce RTX3060 GPU
(Santa Clara, CA, USA) with 6 GB graphics memory, an AMD Ryzen 7-5800H CPU (Santa
Clara, CA, USA), and 16 GB system memory.

4.3. Image Enhancement Results

We conducted experimental verification of the improved Gaussian filtering infrared
enhancement algorithm on the aforementioned datasets. To more intuitively demonstrate
the experimental results, this section presents a comparison between the original dataset
images and the processed images. In each group of images, the left side shows the unpro-
cessed image, while the right side displays the image after improved Gaussian filtering
and infrared enhancement processing. The following four tables present the experimental
contrast data, with the contrast formula defined as follows:

STD =

√
1

MN ∑M
i=1 ∑N

j=1(I(i, j)− µ)2 (16)

where STD represents contrast, and µ represents pixel values.
Figures 9–12 show the comparison results in the urban, mountain, sea and sky scene

respectively. Tables 2–5 show the contrast data in the urban, mountain, sea and sky
scene respectively. To provide a more comprehensive assessment following the reviewer’s
suggestion, we employed two additional standard image quality metrics: peak signal-
to-noise ratio (PSNR) and structural similarity index (SSIM). The PSNR measures the
ratio between the maximum possible power of a signal and the power of distorting noise,
expressed in decibels (dB). A higher PSNR value typically indicates lower distortion and
higher fidelity to the original image. The SSIM assesses the perceptual quality by measuring
the similarity between two images based on their luminance, contrast, and structure. Its
value ranges from −1 to 1, with a value closer to 1 indicating higher structural similarity.

Based on the analysis of the experimental data and images above, among the four sce-
narios, the urban scene exhibited the highest noise levels in the original images, presenting
the greatest processing difficulty. This is reflected in the lower post-enhancement PSNR
and SSIM values for this scenario, as the algorithm worked aggressively to suppress noise
and enhance contrast, inevitably altering the image structure significantly. The sea and sky
scenes demonstrated more favorable results in terms of absolute contrast improvement,
with the sea scene also showing relatively higher PSNR values, indicating a better balance
between enhancement and fidelity in these less cluttered environments. For the mountain
scene, while the original image quality was relatively high and the processing results were
satisfactory, the inherent similarity between the target and background textures limited the



Drones 2025, 9, 695 15 of 25

absolute contrast gain. The moderate PSNR and SSIM values here indicate a perceptible
but less drastic transformation compared to the urban scene.

 

Figure 9. Comparison results in the urban scene. (a–d) shows four didderent images of original
image and enhanced image.

 

Figure 10. Comparison results in the mountain scene. (a–d) shows four didderent images of original
image and enhanced image.

 

 

Figure 11. Comparison results in the sea scene. (a–d) shows four didderent images of original image
and enhanced image.

a b

c d  

Figure 12. Comparison results in the sky scene. (a–d) shows four didderent images of original image
and enhanced image.
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Table 2. Contrast data in the urban scene.

Scene Image
Number

Original
Contrast

Enhanced
Contrast PSNR SSIM

Urban

a 27.60 74.27 5.24 0.06
b 36.50 67.76 7.47 0.16
c 35.87 47.53 7.84 0.13
d 36.98 55.90 7.96 0.16

Table 3. Contrast data in the mountain scene.

Scene Image
Number

Original
Contrast

Enhanced
Contrast PSNR SSIM

mountain

a 36.82 43.02 5.58 0.09
b 39.52 49.58 7.69 0.12
c 35.87 40.60 7.92 0.18
d 46.05 55.79 9.24 0.14

Table 4. Contrast data in the sea scene.

Scene Image
Number

Original
Contrast

Enhanced
Contrast PSNR SSIM

sea

a 46.57 63.70 8.23 0.22
b 41.28 62.08 7.72 0.14
c 40.73 48.19 10.38 0.12
d 43.36 46.99 11.12 0.15

Table 5. Contrast data in the sky scene.

Scene Image
Number

Original
Contrast

Enhanced
Contrast PSNR SSIM

sky

a 33.00 44.13 7.61 0.04
b 33.22 43.03 5.56 0.05
c 31.69 45.32 5.65 0.04
d 37.53 53.03 8.78 0.12

Crucially, the interpretation of the low PSNR and SSIM values requires an under-
standing of the enhancement objective. These metrics measure fidelity to the original
image. However, the goal of our algorithm is not faithful reconstruction but rather strategic
alteration to optimize the image for subsequent target detection. The significant reduction
in these fidelity metrics is a direct consequence of the aggressive contrast stretching and
noise suppression that define our approach. This is a justified trade-off, as the ultimate
validation is the superior detection performance achieved using the enhanced images, as
conclusively demonstrated in Section 4.4.

Overall, the improved Gaussian filtering-based infrared enhancement algorithm
achieved its primary goal of producing images with higher contrast and reduced noise,
providing more distinct features for the detection network, despite the inherent reduction
in similarity to the original images as captured by PSNR and SSIM.

4.4. Target Detection Results Compared with Other Methods

The detection performance of various models in the urban scene is shown in Table 6.
The three key metrics of the proposed method in this paper reached 66.1%, 66.8%, and
96%, respectively, all ranking first. With only 6.2 M parameters, significantly smaller than
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most models, it demonstrates substantial advantages in both detection performance and
real-time capability.

Table 6. Detection performance of various models in the urban scene.

Different Methods
Urban Scene

mAP@0.5:0.95 mAP@0.5 mAPs Paras (M)

BoxInst 0.197 0.538 0.197 273.8
CondInst 0.565 0.936 0.564 272.6
SOLOv2 0.620 0.936 0.607 372.0

Mask-Rcnn 0.629 0.937 0.621 353.3
YOLOv5n-seg 0.473 0.936 0.465 4.1

YOLOv7 0.440 0.877 0.435 76.3
YOLOv8n-seg 0.477 0.927 0.474 9.6

Yolact++ 0.423 0.902 -- 199.0
Proposed method 0.668 0.960 0.661 6.2

The detection performance for the mountain scene is presented in Table 7. The three
key metrics of the proposed method reached 42.6%, 42.6%, and 74.1%, respectively, with
the first two metrics ranking first, demonstrating strong small target detection capability.
The third metric also performed well, only slightly lower than Mask-RCNN.

Table 7. Detection performance of various models in the mountain scene.

Different Methods
Mountain Scene

mAP@0.5:0.95 mAP@0.5 mAPs Paras (M)

BoxInst -- 0.013 -- 273.8
CondInst 0.284 0.731 0.284 272.6
SOLOv2 -- -- -- 372.0

Mask-Rcnn 0.416 0.749 0.416 353.3
YOLOv5n-seg 0.245 0.689 0.245 4.1

YOLOv7 0.269 0.746 0.269 76.3
YOLOv8n-seg 0.253 0.664 0.253 9.6

Yolact++ 0.177 0.625 -- 199.0
Proposed method 0.426 0.741 0.426 6.2

Table 8 shows the detection performance for the sea scene. The proposed method’s
three key metrics reached 45.8%, 45.8%, and 92%, respectively. While performance re-
mained good, compared to the previous two scenarios, the first two metrics ranked second,
0.5% lower than Mask-RCNN, still demonstrating high small target detection capability.
The third metric was 1.3% lower than Mask-RCNN and 1% lower than YOLOv7.

The detection performance for the sky scene is shown in Table 9. The proposed
method’s three key metrics reached 73.4%, 73.4%, and 98.7%, respectively, all ranking
first. Due to the simple sky background, all models showed high performance overall,
but the proposed method still demonstrated exceptional target detection performance and
real-time capability.

Based on the data from these four scenarios, it can be concluded that the proposed
method shows significant improvement in small target detection, particularly in scenarios
where other models perform poorly, while maintaining extremely high processing speed
and high precision.

The qualitative comparison of experimental results: The qualitative comparison of
experimental results under four different backgrounds is shown in Figure 13, arranged
from top to bottom as urban, mountain, ocean, and sky backgrounds, and from left to
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right showing the experimental results of the various models. Red boxes indicate correct
target detection results, yellow circles indicate incorrect detection results, and no display
indicates undetected targets. For ease of overall comparison, the detected target portions
are magnified in the upper right corner marked by red boxes.

Table 8. Detection performance of various models in the sea scene.

Different Methods
Sea Scene

mAP@0.5:0.95 mAP@0.5 mAPs Paras (M)

BoxInst -- -- -- 273.8
CondInst 0.292 0.819 0.292 272.6
SOLOv2 -- -- -- 372.0

Mask-Rcnn 0.463 0.933 0.463 353.3
YOLOv5n-seg 0.342 0.886 0.342 4.1

YOLOv7 0.335 0.930 0.355 76.3
YOLOv8n-seg 0.337 0.829 0.337 9.6

Yolact++ 0.163 0.445 -- 199.0
Proposed method 0.458 0.920 0.458 6.2

Table 9. Detection performance of various models in the sky scene.

Different Methods
Sky Scene

mAP@0.5:0.95 mAP@0.5 mAPs Paras (M)

BoxInst 0.395 0.806 0.397 273.8
CondInst 0.673 0.977 0.648 272.6
SOLOv2 0.686 0.934 0.664 372.0

Mask-Rcnn 0.711 0.987 0.703 353.3
YOLOv5n-seg 0.572 0.966 0.533 4.1

YOLOv7 0.580 0.974 0.561 76.3
YOLOv8n-seg 0.591 0.957 0.565 9.6

Yolact++ 0.561 0.958 -- 199.0
Proposed method 0.734 0.987 0.734 6.2

Yolact++ YOLOv5n-seg Proposed methodYOLOv8n-segInput image BoxInst CondInst Mask-rcnn

(a)

(b)

(c)

(d)  

Figure 13. Original image and detection results. (a–d) shows four didderent images of original image
and detection image.

The comparative experiments show that the BoxInst algorithm produced detection
errors in ocean backgrounds, Mask-RCNN produced detection errors in mountain back-
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grounds, and YOLACT++ produced incorrect detection results in urban backgrounds.
Overall, the proposed method demonstrated superior detection performance, achieving
good detection results across all background types.

Combining quantitative and qualitative experimental results, the proposed method
effectively completes low-altitude small UAV target detection tasks in complex scenarios
while maintaining a small parameter size and high real-time performance, comprehensively
improving target detection performance.

4.5. Ablation Studies

To justify the contribution of the proposed image enhancement method, we carried
out an ablation study comparing the final detection performance (mAP) of the full model
against versions using: (a) no image enhancement, (b) a simple baseline like contrast-limited
adaptive histogram equalization (CLAHE), and (c) the proposed image enhancement. The
results of the ablation study on image enhancement methods are presented in Table 10.
The quantitative comparison unequivocally demonstrates the contribution of our proposed
enhanced Gaussian filtering method to the final detection performance. Across all four
challenging scenarios, our method consistently achieved the highest scores in all three
metrics (mAP@0.5:0.95, mAP@0.5, and mAPs).

Table 10. Detection performance of various models in the sky scene.

Image Enhancement
Methods

Urban Scene

mAP@0.5:0.95 mAP@0.5 mAPs

no image enhancement 0.607 0.916 0.606
with CLAHE 0.612 0.940 0.639

with proposed image enhancement 0.668 0.960 0.661

Image enhancement
methods

Mountain scene

mAP@0.5:0.95 mAP@0.5 mAPs

no image enhancement 0.397 0.677 0.331
with CLAHE 0.415 0.723 0.414

with proposed image enhancement 0.426 0.741 0.426

Image enhancement
methods

Sea scene

mAP@0.5:0.95 mAP@0.5 mAPs

no image enhancement 0.401 0.904 0.430
with CLAHE 0.449 0.915 0.440

with proposed image enhancement 0.458 0.920 0.458

Image enhancement
methods

Sky scene

mAP@0.5:0.95 mAP@0.5 mAPs

no image enhancement 0.713 0.971 0.725
with CLAHE 0.729 0.972 0.734

with proposed image enhancement 0.734 0.987 0.734

Notably, the performance gain is most substantial in the most complex urban environ-
ment, where our method outperforms both “no enhancement” and CLAHE by a significant
margin. This indicates that our method is particularly effective at handling severe noise
and clutter, which are predominant in such scenes. While CLAHE also provides a notice-
able improvement over no enhancement, its effect is less pronounced than our method,
especially for the more stringent mAP@0.5:0.95 metric. This suggests that our proposed
enhancement offers a more robust and targeted improvement, likely due to its integrated
noise suppression and edge-preserving capabilities, which are crucial for preparing the
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image for small target detection. The results in the simpler sky scene, where all methods
perform well, further confirm that our enhancement does not degrade performance in
already favorable conditions. In conclusion, this ablation study validates that our proposed
image enhancement module is a key contributor to the state-of-the-art performance of the
overall detection framework, justifying its design complexity through superior results.

5. Experiments
5.1. Experimental System Setup
5.1.1. Data Acquisition Platform

The remote data acquisition platform consists of a UAV, payload, and airborne com-
munication module, as shown in Figure 14.

optoelectronic 
pod

radio

GPS

 

Figure 14. Schematic diagram of the remote data acquisition platform structure.

The optoelectronic pod employed is the Q30TIRM electro-optical reconnaissance
pod (China), featuring high precision and stabilization capabilities. Its integrated shock
absorption and gimbal design significantly enhances image acquisition stability and quality.
Equipped with a 25mm lens supporting infrared imaging at 640 × 480 resolution, the
payload offers picture-in-picture switching and electronic zoom functions, facilitating
effective image acquisition for subsequent algorithm processing and validation.

During image acquisition, the payload was mounted on the UAV, which remained
grounded throughout. The payload was connected to the onboard communication module
via Ethernet, transmitting captured data through the terminal communication module to
the processing platform for algorithm validation. The real-world validation dataset was
captured under diverse but representative environmental conditions to test the robustness
of our system. Data collection sessions were conducted during both day and night to cover
varying illumination conditions. The weather during capture was clear and dry, with an
ambient temperature ranging from approximately 15 ◦C to 25 ◦C. The terrain surrounding
the stationary UAV included a mix of open fields, asphalt paving, and low vegetation,
providing a variety of background thermal signatures.

5.1.2. Data Processing Platform

The data processing platform comprises a display control terminal, processing plat-
form, communications antenna, and switch, as illustrated in Figure 15.
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Figure 15. Schematic diagram of data processing platform structure.

The display control terminal visualizes infrared images transmitted from the terminal
communication module along with angle and GPS parameters, while also controlling
payload and shooting angles to ensure effective image capture. The backend processor
hosts algorithms and performs real-time target detection on received images for algorithm
validation. The terminal communication link receives images and connects to the switch,
integrating all modules for coordinated command execution.

5.2. Dataset Construction

This section validates the improved algorithm’s performance in practical applications.
Instead of public datasets, we constructed a dataset using real-time infrared images cap-
tured by the payload, ensuring high timeliness and authenticity. Figure 16 shows sample
images with UAV targets annotated in white boxes.

 
Figure 16. Sample images from the real-time dataset.

The images demonstrate that at larger pitch angles with sky backgrounds, interference
is minimal and image quality is high; at smaller pitch angles with urban backgrounds,
interference increases and image quality decreases.

5.3. Validation of Gaussian Filtering-Based Infrared Image Enhancement Algorithm

This section employs comparative experiments between original real-time images and
enhanced images processed by the improved infrared enhancement algorithm. Results
show significantly reduced noise interference and more prominent targets in enhanced
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images. Figure 17 illustrates comparisons between the original and enhanced images.
Table 11 shows the UAV image contrast data.

Original
image

Enhanced
image

a b c d

 
Figure 17. Comparison between enhanced and original images. (a–d) shows four didderent images
of original image and enhanced image.

Table 11. UAV image contrast data.

Image
Number

Original
Contrast

Enhanced
Contrast PSNR SSIM

a 31.04 38.73 7.12 0.05
b 31.03 38.77 7.19 0.05
c 15.29 41.79 8.10 0.04
d 31.17 44.48 8.05 0.04

Under real experimental conditions, overall image contrast is low. After enhancement
processing, contrast improvements remain modest, with increases of only 7.69, 7.74, 26.5,
and 13.31 in the examples shown. Enhanced images still exhibit contrast issues and
suboptimal quality, showing some effectiveness compared to public dataset results, but
with overall performance degradation.

5.4. Validation of Proposed Method

Experiments across different IoU thresholds and target types demonstrate that the
proposed method has superior detection performance. For small targets, it achieves 54.7%
average precision, outperforming YOLOv5n-seg by 17.5% and YOLOv8n-seg by 11%. Un-
der stricter criteria (averaged IoU threshold 0.5–0.95), it maintains 51.2% average precision,
exceeding YOLOv5n-seg and YOLOv8n-seg by 17.1% and 13.9%, respectively. Overall
detection accuracy reaches 97.2%, surpassing YOLOv5n-seg and YOLOv8n-seg by 14%
and 5%, respectively, confirming the proposed method’s robust performance under real
conditions. Detailed results are shown in Table 12.

Table 12. Target detection performance of algorithms on the real-time dataset.

Different Methods mAPs mAP@0.5 mAP@0.5:0.95

YOLOv5n-seg 0.372 0.832 0.341
YOLOv8n-seg 0.437 0.922 0.373

Proposed method 0.547 0.972 0.512

Figure 18 demonstrates the proposed method’s detection results on the real-time
dataset. Despite significant interference, small target size, and indistinct features in real-
time images, the proposed improved algorithm accurately detects target positions, exhibit-
ing excellent detection performance.
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Figure 18. Sample detection results of the proposed method.

6. Conclusions
This paper presented a comprehensive framework for infrared UAV target detection

that addresses the fundamental challenges of small target detection in complex back-
grounds. Through the integration of an improved Gaussian filtering-based image enhance-
ment module and a specialized deep learning architecture, we achieved significant im-
provements in both detection accuracy and processing efficiency. The proposed improved
Gaussian filtering algorithm successfully addressed the limitations of traditional filtering
approaches by incorporating a vertical weight function that effectively handles abnormal
feature values. Experimental results demonstrated substantial contrast improvements
across diverse scenarios, with the enhanced images showing clearer target features and
reduced noise interference. This preprocessing step proved crucial for improving the per-
formance of subsequent detection algorithms. Our SODMamba backbone, featuring deep
feature perception modules (DFPMs) and ODSSBlocks, demonstrated exceptional capabil-
ity in extracting and preserving small target features. The DFPM’s focus on high-frequency
components proved particularly effective for enhancing small UAV signatures while sup-
pressing background clutter. The hierarchical architecture with multi-scale detection heads
enabled robust detection across varying target sizes and distances. Comprehensive experi-
ments on the custom SIDD dataset validated the superiority of our approach. The method
achieved outstanding performance across all four scenarios (urban, mountain, sea, and
sky), with particularly notable improvements in challenging urban environments where
existing methods struggled. Real-world validation using a complete UAV detection system
further confirmed the practical value of our approach. Despite the additional challenges of
real-time data acquisition and processing, the system maintained robust detection perfor-
mance, demonstrating its readiness for deployment in actual security applications. Despite
these strengths, the current computational footprint of the model may present a challenge
for deployment on extremely resource-constrained edge devices.

Future work will focus on several directions: (1) extending the method to handle even
smaller targets and longer detection ranges, (2) incorporating temporal information for
improved tracking capabilities, (3) optimizing the model for edge deployment through
techniques such as model pruning, quantization, and knowledge distillation to significantly
reduce its computational and memory requirements without substantial loss in perfor-
mance, and (4) exploring the integration with other sensor modalities for more robust
multi-sensor fusion systems.
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6. Liu, S.; Liu, D.; Srivastava, G.; Polap, D.; Woźniak, M. Overview and methods of correlation filter algorithms in object tracking.

Complex Intell. Syst. 2021, 7, 1895–1917. [CrossRef]
7. Li, Y.; Hou, Q.; Zheng, Z.; Cheng, M.M.; Yang, J.; Li, X. Large selective kernel network for remote sensing object detection. In

Proceedings of the IEEE/CVF International Conference on Computer Vision, Paris, France, 2–6 October 2023; pp. 16794–16805.
8. Zhu, X.; Lyu, S.; Wang, X.; Zhao, Q. TPH-YOLOv5: Improved YOLOv5 based on transformer prediction head for object detection

on drone-captured scenarios. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC,
Canada, 11–17 October 2021; pp. 2778–2788.

9. Chen, C.; Zheng, Z.; Xu, T.; Guo, S.; Feng, S.; Yao, W.; Lan, Y. YOLO-based UAV technology: A review of the research and its
applications. Drones 2023, 7, 190. [CrossRef]

10. Zhang, R.; Shao, Z.; Huang, X.; Wang, J.; Li, D. Object detection in UAV images via global density fused convolutional network.
Remote Sens. 2020, 12, 3140. [CrossRef]

11. Wang, X.; Gao, L.; Song, J.; Shen, H. Beyond frame-level CNN: Saliency-aware 3-D CNN with LSTM for video action recognition.
IEEE Signal Process. Lett. 2017, 24, 510–514. [CrossRef]

12. Li, S.; Jin, W.; Li, L.; Li, Y. An improved contrast enhancement algorithm for infrared images based on adaptive double plateaus
histogram equalization. Infrared Phys. Technol. 2018, 90, 164–174. [CrossRef]

13. Wang, B.J.; Liu, S.Q.; Li, Q.; Zhou, H.X. A real-time contrast enhancement algorithm for infrared images based on plateau
histogram. Infrared Phys. Technol. 2006, 48, 77–82. [CrossRef]

14. Kuang, X.; Sui, X.; Liu, Y.; Chen, Q.; Gu, G. Single infrared image enhancement using a deep convolutional neural network.
Neurocomputing 2019, 332, 119–128. [CrossRef]

15. Li, J.; Feng, X.; Hua, Z. Low-light image enhancement via progressive-recursive network. IEEE Trans. Circuits Syst. Video Technol.
2021, 31, 4227–4240. [CrossRef]

16. Zhang, T.; Wu, H.; Liu, Y.; Peng, L.; Yang, C.; Peng, Z. Infrared small target detection based on non-convex optimization with
Lp-norm constraint. Remote Sens. 2019, 11, 559. [CrossRef]

17. Liu, J.; He, Z.; Chen, Z.; Shao, L. Tiny and dim infrared target detection based on weighted local contrast. IEEE Geosci. Remote
Sens. Lett. 2018, 15, 1780–1784. [CrossRef]

18. Han, J.; Moradi, S.; Faramarzi, I.; Liu, C.; Zhang, H.; Zhao, Q. A local contrast method for infrared small-target detection utilizing
a tri-layer window. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1822–1826. [CrossRef]

19. Wei, Y.; You, X.; Li, H. Multiscale patch-based contrast measure for small infrared target detection. Pattern Recognit. 2016,
58, 216–226. [CrossRef]

https://doi.org/10.3390/s20143856
https://www.ncbi.nlm.nih.gov/pubmed/32664365
https://doi.org/10.1109/LRA.2021.3056059
https://doi.org/10.1109/TMM.2021.3128047
https://doi.org/10.1109/MGRS.2021.3115137
https://doi.org/10.1109/TITS.2022.3177627
https://doi.org/10.1007/s40747-020-00161-4
https://doi.org/10.3390/drones7030190
https://doi.org/10.3390/rs12193140
https://doi.org/10.1109/LSP.2016.2611485
https://doi.org/10.1016/j.infrared.2018.03.010
https://doi.org/10.1016/j.infrared.2005.04.008
https://doi.org/10.1016/j.neucom.2018.11.081
https://doi.org/10.1109/TCSVT.2021.3049940
https://doi.org/10.3390/rs11050559
https://doi.org/10.1109/LGRS.2018.2856762
https://doi.org/10.1109/LGRS.2019.2954578
https://doi.org/10.1016/j.patcog.2016.04.002


Drones 2025, 9, 695 25 of 25

20. Zhang, L.; Peng, Z. Infrared small target detection based on partial sum of the tensor nuclear norm. Remote Sens. 2019, 11, 382.
[CrossRef]

21. Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Attentional local contrast networks for infrared small target detection. IEEE Trans. Geosci.
Remote Sens. 2021, 59, 9813–9824. [CrossRef]

22. Li, B.; Xiao, C.; Wang, L.; Wang, Y.; Lin, Z.; Li, M.; An, W.; Guo, Y. Dense nested attention network for infrared small target
detection. IEEE Trans. Image Process. 2023, 32, 1745–1758. [CrossRef] [PubMed]

23. Wang, K.; Du, S.; Liu, C.; Cao, Z. Interior attention-aware network for infrared small target detection. IEEE Trans. Geosci. Remote
Sens. 2022, 60, 5002013.

24. Zhang, M.; Zhang, R.; Yang, Y.; Bai, H.; Zhang, J.; Guo, J. ISNet: Shape matters for infrared small target detection. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 877–886.

25. Dai, Y.; Wu, Y.; Zhou, F.; Barnard, K. Asymmetric contextual modulation for infrared small target detection. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 950–959.

26. Cui, Z.; Yang, J.; Li, J.; Jiang, S. An infrared small target detection framework based on local contrast method. Measurement 2016,
91, 405–413. [CrossRef]

27. Yuan, S.; Qin, H.; Yan, X.; Yan, X. SCTransNet: Spatial-Channel Cross Transformer Network for Infrared Small Target Detection.
IEEE Trans. Geosci. Remote Sens. 2024, 62, 5002615. [CrossRef]

28. Liu, J.; Sun, H.; Katto, J. Learned Image Compression with Mixed Transformer-CNN Architectures. In Proceedings of the 2023
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canad, 17–24 June 2023.

29. Wang, B.; Wang, Y.; Mao, Q.; Cao, J.; Zhang, H.; Zhang, L. Lightweight Infrared Small Target Detection Method Based on Linear
Transformer. Remote Sens. 2025, 17, 2016. [CrossRef]

30. Ding, L.; Xu, X.; Cao, Y.; Zhai, G.; Wang, F.; Qian, Z. Detection and tracking of infrared small target by jointly using SSD and
pipeline filter. Digit. Signal Process. 2021, 110, 102949. [CrossRef]

31. Wang, C.Y.; Bochkovskiy, A.; Liao, H.Y.M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object
detectors. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada,
17–24 June 2023; pp. 7464–7475.

32. Xu, C.; Wang, J.; Yang, W.; Yu, L. Normalized Wasserstein distance for tiny object detection. arXiv 2021, arXiv:2110.13389.
33. Shi, X.; Yang, C.; Xie, W.; Liang, C.; Shi, Z.; Chen, J. Anti-drone system with multiple surveillance technologies: Architecture,

implementation, and challenges. IEEE Commun. Mag. 2018, 56, 68–74. [CrossRef]
34. Liu, Y.; Liao, L.; Wu, H.; Qin, J.; He, L.; Yang, G.; Zhang, H.; Zhang, J. Trajectory and image-based detection and identification of

UAV. Vis. Comput. 2021, 37, 1769–1780. [CrossRef]
35. Yuan, L.; Chen, Y.; Wang, T.; Yu, W.; Shi, Y.; Jiang, Z.H.; Tay, F.E.; Feng, J.; Yan, S. Tokens-to-Token ViT: Training Vision

Transformers from Scratch on ImageNet. In Proceedings of the 2021 IEEE/CVF International Conference on Computer Vision
(ICCV), Montreal, QC, Canada, 10–17 October 2021.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/rs11040382
https://doi.org/10.1109/TGRS.2020.3044958
https://doi.org/10.1109/TIP.2022.3199107
https://www.ncbi.nlm.nih.gov/pubmed/35994532
https://doi.org/10.1016/j.measurement.2016.05.071
https://doi.org/10.1109/TGRS.2024.3383649
https://doi.org/10.3390/rs17122016
https://doi.org/10.1016/j.dsp.2020.102949
https://doi.org/10.1109/MCOM.2018.1700430
https://doi.org/10.1007/s00371-020-01937-y

	Introduction 
	Related Work 
	Infrared Image Enhancement 
	Infrared Small Target Detection 
	Infrared Drone Detection Methods 
	YOLO-Based Detection for Infrared Applications 
	UAV Detection Systems 

	Proposed Method 
	Overall Framework 
	Image Enhancement Module 
	Image Preprocessing 
	Improved Gaussian Filtering for Image Enhancement 

	SODMamba Backbone Network 
	Deep Feature Perception Module (DFPM) 
	Simple Stem 
	ODSSBlock 

	PAFPN Module 

	Experiments on the Dataset 
	Dataset and Metrics 
	Dataset 
	Metrics 

	Implementation Details 
	Image Enhancement Results 
	Target Detection Results Compared with Other Methods 
	Ablation Studies 

	Experiments 
	Experimental System Setup 
	Data Acquisition Platform 
	Data Processing Platform 

	Dataset Construction 
	Validation of Gaussian Filtering-Based Infrared Image Enhancement Algorithm 
	Validation of Proposed Method 

	Conclusions 
	References

