Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (491)

Search Parameters:
Keywords = till system

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1189 KiB  
Article
Positive Effects of Reduced Tillage Practices on Earthworm Population Detected in the Early Transition Period
by Irena Bertoncelj, Anže Rovanšek and Robert Leskovšek
Agriculture 2025, 15(15), 1658; https://doi.org/10.3390/agriculture15151658 (registering DOI) - 1 Aug 2025
Abstract
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when [...] Read more.
Tillage is a major factor influencing soil biological communities, particularly earthworms, which play a key role in soil structure and nutrient cycling. To address soil degradation, less-intensive tillage practices are increasingly being adopted globally and have shown positive effects on earthworm populations when applied consistently over extended periods. However, understanding of the earthworm population dynamics in the period following the implementation of changes in tillage practices remains limited. This three-year field study (2021–2023) investigates earthworm populations during the early transition phase (4–6 years) following the conversion from conventional ploughing to conservation (<8 cm depth, with residue retention) and no-tillage systems in a temperate arable system in central Slovenia. Earthworms were sampled annually in early October from three adjacent fields, each following the same three-year crop rotation (maize—winter cereal + cover crop—soybeans), using a combination of hand-sorting and allyl isothiocyanate (AITC) extraction. Results showed that reduced tillage practices significantly increased both earthworm biomass and abundance compared to conventional ploughing. However, a significant interaction between tillage and year was observed, with a sharp decline in earthworm abundance and mass in 2022, likely driven by a combination of 2022 summer tillage prior to cover crop sowing and extreme drought conditions. Juvenile earthworms were especially affected, with their proportion decreasing from 62% to 34% in ploughed plots and from 63% to 26% in conservation tillage plots. Despite interannual fluctuations, no-till showed the lowest variability in earthworm population. Long-term monitoring is essential to disentangle management and environmental effects and to inform resilient soil management strategies. Full article
(This article belongs to the Section Agricultural Soils)
Show Figures

Figure 1

19 pages, 2764 KiB  
Article
Reducing Nitrogen Fertilization Rate in Spring Wheat–Pea Rotation Sustains Spring Wheat Yield and Quality
by Upendra M. Sainju and Gautam P. Pradhan
Agronomy 2025, 15(8), 1806; https://doi.org/10.3390/agronomy15081806 - 26 Jul 2025
Viewed by 211
Abstract
The reduced N fertilization rate and N supplied by pea (Pisum sativum L.) residue may sustain subsequent spring wheat (Triticum aestivum L.) growth, yield, and quality. We examined the response of spring wheat growth, yield, and quality to cropping systems and [...] Read more.
The reduced N fertilization rate and N supplied by pea (Pisum sativum L.) residue may sustain subsequent spring wheat (Triticum aestivum L.) growth, yield, and quality. We examined the response of spring wheat growth, yield, and quality to cropping systems and N fertilization rates from 2012 to 2019 in the US northern Great Plains. Cropping systems were conventional till spring wheat–fallow (CTWF), no-till spring wheat–fallow (NTWF), no-till spring wheat–pea (NTWP), and no-till continuous wheat (NTCW), and N fertilization rates to spring wheat were 0, 50, 100, and 150 kg N ha−1. Wheat plant density and straw yield were 13–100% greater for CTWF and NTWF than NTWP and NTCW in most years. Wheat grain yield and protein concentration were also 15–115% greater for CTWF and NTWF than other cropping systems at most N fertilization rates and years. In contrast, wheat grain test weight was 1–2% lower for CTWF and NTWF at most N fertilization rates and years. Increasing N fertilization rate mostly increased grain yield and protein concentration but reduced grain test weight for most cropping systems and years. Although CTWF and NTWF with or without N fertilization increased wheat yield and quality, these practices are not sustainable due to reduced annualized yield, soil health, and environmental quality. Because of similar or greater grain yields and test weights among NTWP with 50 kg N ha−1 and NTWP and NTCW with other N rates, NTWP with reduced N rates may sustain spring wheat yield and grain size but not grain protein in the northern Great Plains. Full article
Show Figures

Figure 1

24 pages, 2712 KiB  
Article
Impacts of Different Tillage and Straw Management Systems on Herbicide Degradation and Human Health Risks in Agricultural Soils
by Yanan Chen, Feng Zhang, Qiang Gao and Qing Ma
Appl. Sci. 2025, 15(14), 7840; https://doi.org/10.3390/app15147840 - 13 Jul 2025
Viewed by 417
Abstract
Pesticide residues pose risks to the environment and human health. Little is known about how tillage and straw management affect herbicide behavior in soil. This study investigated the effects of different tillage practices under varying straw incorporation scenarios on the degradation of five [...] Read more.
Pesticide residues pose risks to the environment and human health. Little is known about how tillage and straw management affect herbicide behavior in soil. This study investigated the effects of different tillage practices under varying straw incorporation scenarios on the degradation of five commonly used herbicides in a long-term experimental field located in the maize belt of Siping, Jilin Province. Post-harvest soil samples were analyzed for residual herbicide concentrations and basic soil physicochemical properties. A human health risk assessment was conducted, and a controlled incubation experiment was carried out to evaluate herbicide degradation dynamics under three management systems: straw incorporation with traditional rotary tillage (ST), straw incorporation with strip tillage (SS), and no-till without straw (CK). Residual concentrations of atrazine ranged from not detected (ND) to 21.10 μg/kg (mean: 5.28 μg/kg), while acetochlor showed the highest variability (2.29–120.61 μg/kg, mean: 25.26 μg/kg). Alachlor levels were much lower (ND–5.71 μg/kg, mean: 0.34 μg/kg), and neither nicosulfuron nor mesotrione was detected. Soil organic matter (17.6–20.89 g/kg) positively correlated with available potassium and acetochlor residues. Health risk assessments indicated negligible non-cancer risks for both adults and children via ingestion, dermal contact, and inhalation. The results demonstrate that tillage methods significantly influence herbicide degradation kinetics, thereby affecting environmental persistence and ecological risks. Integrating straw with ST or SS enhanced the dissipation of atrazine and mesotrione, suggesting their potential as effective residue mitigation strategies. This study highlights the importance of tailoring tillage and straw management practices to pesticide type for optimizing herbicide fate and promoting sustainable agroecosystem management. Full article
Show Figures

Figure 1

28 pages, 13059 KiB  
Article
Transformation of Arable Lands in Russia over Last Half Century—Analysis Based on Detailed Mapping and Retrospective Monitoring of Soil–Land Cover and Decipherment of Big Remote Sensing Data
by Dmitry I. Rukhovich, Polina V. Koroleva, Dmitry A. Shapovalov, Mikhail A. Komissarov and Tung Gia Pham
Sustainability 2025, 17(13), 6203; https://doi.org/10.3390/su17136203 - 7 Jul 2025
Viewed by 475
Abstract
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in [...] Read more.
The change in the socio-political formation of Russia from a socialist planned system to a capitalist market system significantly influenced agriculture and one of its components—arable land. The loss of the sustainability of land management for arable land led to a reduction in sown areas by 38% (from 119.7 to 74.7 million ha) and a synchronous drop in gross harvests of grain and leguminous crops by 48% (from 117 to 61 million tons). The situation stabilized in 2020, with a sowing area of 80.2 million ha and gross harvests of grain and leguminous crops of 120–150 million tons. This process was not formalized legally, and the official (legal) area of arable land decreased by only 8% from 132.8 to 122.3 million ha. Legal conflict arose for 35 million ha for unused arable land, for which there was no classification of its condition categories and no monitoring of the withdrawal time of the arable land from actual agricultural use. The aim of this study was to resolve the challenges in the method of retrospective monitoring of soil–land cover, which allowed for the achievement of the aims of the investigation—to elucidate the history of land use on arable lands from 1985 to 2025 with a time step of 5 years and to obtain a detailed classification of the arable lands’ abandonment degrees. It was also established that on most of the abandoned arable land, carbon sequestration occurs in the form of secondary forests. In the course of this work, it was shown that the reasons for the formation of an array of abandoned arable land and the stabilization of agricultural production turned out to be interrelated. The abandonment of arable land occurred proportionally to changes in the soil’s natural fertility and the degree of land degradation. Economically unprofitable lands spontaneously (without centralized planning) left the sowing zone. The efficiency of land use on the remaining lands has increased and has allowed for the mass application of modern farming systems (smart, precise, landscape-adaptive, differentiated, no-till, strip-till, etc.), which has further increased the profitability of crop production. The prospect of using abandoned lands as a carbon sequestration zone in areas of forest overgrowth has arisen. Full article
Show Figures

Figure 1

20 pages, 3269 KiB  
Article
PSL-IoD: PUF-Based Secure Last-Mile Drone Delivery in Supply Chain Management
by Mohammad D. Alahmadi, Ahmed S. Alzahrani, Azeem Irshad and Shehzad Ashraf Chaudhry
Mathematics 2025, 13(13), 2143; https://doi.org/10.3390/math13132143 - 30 Jun 2025
Viewed by 289
Abstract
The conventional supply chain management has undergone major advancements following IoT-enabled revolution. The IoT-enabled drones in particular have ignited much recent attention for package delivery in logistics. The service delivery paradigm in logistics has seen a surge in drone-assisted package deliveries and tracking. [...] Read more.
The conventional supply chain management has undergone major advancements following IoT-enabled revolution. The IoT-enabled drones in particular have ignited much recent attention for package delivery in logistics. The service delivery paradigm in logistics has seen a surge in drone-assisted package deliveries and tracking. There have been a lot of recent research proposals on various aspects of last-mile delivery systems for drones in particular. Although drones have largely changed the logistics landscape, there are many concerns regarding security and privacy posed to drones due to their open and vulnerable nature. The security and privacy of involved stakeholders needs to be preserved across the whole chain of Supply Chain Management (SCM) till delivery. Many earlier studies addressed this concern, however with efficiency limitations. We propose a Physical Uncloneable Function (PUF)-based secure authentication protocol (PSL-IoD) using symmetric key operations for reliable last-mile drone delivery in SCM. PSL-IoD ensures mutual authenticity, forward secrecy, and privacy for the stakeholders. Moreover, it is protected from machine learning attacks and drone-related physical capture threats due to embedded PUF installations along with secure design of the protocol. The PSL-IoD is formally analyzed through rigorous security assessments based on the Real-or-Random (RoR) model. The PSL-IoD supports 26.71% of enhanced security traits compared to other comparative studies. The performance evaluation metrics exhibit convincing findings in terms of efficient computation and communication along with enhanced security features, making it viable for practical implementations. Full article
Show Figures

Figure 1

23 pages, 3413 KiB  
Article
Short-Term Effects of Mustard (Sinapis alba L.) Cover Crop on Soil Quality in a Maize Production System
by Silvia Quintana-Esteras, Clara Martí, Oriol Ortiz and David Badía
Sustainability 2025, 17(13), 5949; https://doi.org/10.3390/su17135949 - 28 Jun 2025
Viewed by 377
Abstract
Soil health is vital for food security and ecosystem services supporting climate change mitigation. Cover crops (CCs) improve soil quality and crop yields in intensive agriculture. This study assessed the impact of Sinapis alba L. as a CC on ten physical, chemical, and [...] Read more.
Soil health is vital for food security and ecosystem services supporting climate change mitigation. Cover crops (CCs) improve soil quality and crop yields in intensive agriculture. This study assessed the impact of Sinapis alba L. as a CC on ten physical, chemical, and biological soil indicators before maize planting. Three management systems were compared: (i) CC with conventional tillage (CT), (ii) CC under no tillage (NT), and (iii) tilled fallow without CC (TF). Measurements were taken at 60 and 90 days after sowing (DAS) at 0–6 and 0–20 cm depths. The Soil Quality Index (SQI) was higher at the surface under NT (0.69 at 60 DAS; 0.65 at 90 DAS). At 0–20 cm, SQI values increased at 90 DAS but did not differ among treatments. TF also showed improvements (up to +18% at 0–20 cm). Dissolved organic matter increased significantly (1.7–2.5 times), especially under NT and CT. NT enhanced structural stability (+70%) and reduced bulk density (−47%). All glomalin fractions decreased at 90 DAS; however, NT retained higher concentrations of recalcitrant glomalin in the 0–6 cm layer compared to the other treatments. These findings highlight S. alba under no tillage as a promising strategy to improve soil quality, though long-term studies are needed. Full article
Show Figures

Figure 1

41 pages, 9366 KiB  
Article
Soil Bioindicators and Crop Productivity Affected by Legacy Phosphate Fertilization and Azospirillum brasilense Inoculation in No-Till Systems
by Naiane Antunes Alves Ribeiro, Aline Marchetti Silva Matos, Viviane Cristina Modesto, Nelson Câmara de Souza Júnior, Vitória Almeida Moreira Girardi, Iêda de Carvalho Mendes and Marcelo Andreotti
Appl. Sci. 2025, 15(13), 7146; https://doi.org/10.3390/app15137146 - 25 Jun 2025
Viewed by 338
Abstract
Pressure on agroecosystems is increasing with rising agricultural demand, pushing Brazilian agriculture toward more sustainable systems that prioritize soil health. This study aimed to evaluate whether long-term no-till management and inoculation with Azospirillum brasilense influenced soil bioindicators; chemical, biological, and enzymatic attributes; and [...] Read more.
Pressure on agroecosystems is increasing with rising agricultural demand, pushing Brazilian agriculture toward more sustainable systems that prioritize soil health. This study aimed to evaluate whether long-term no-till management and inoculation with Azospirillum brasilense influenced soil bioindicators; chemical, biological, and enzymatic attributes; and how these attributes correlated with crop productivity in a rotational system. The experiment also assessed the residual effects of phosphate fertilization (initially applied in 2013 and reapplied in 2020) and its interaction with inoculation on soil phosphorus fractions and crop performance. This study was conducted on Dystrophic Red Oxisol in the low-altitude Cerrado region under 20 years of no-tillage management, using a randomized block design in a 5 × 2 factorial scheme: five phosphorus doses (0, 30, 60, 120, and 240 kg ha−1 P2O5) and inoculated or non-inoculated grasses, with four replicates. The results showed that inoculation influenced dry matter (DM) production and nutrient cycling, improving soil health despite lower fertility and total DM. The correlation between bioindicators and productivity suggests that soil health indicators can be used to monitor system sustainability. No consistent effects of inoculation or phosphate fertilization were observed for some crop components, indicating complex interactions under long-term conservationist systems. Full article
(This article belongs to the Special Issue Soil Health and Soil Microbiology)
Show Figures

Figure 1

22 pages, 12863 KiB  
Article
The Future of Cotton in Brazil: Agroclimatic Suitability and Climate Change Impacts
by João Antonio Lorençone, Pedro Antonio Lorençone, Lucas Eduardo de Oliveira Aparecido, Guilherme Botega Torsoni, Glauco de Souza Rolim and Fernando Giovannetti Macedo
AgriEngineering 2025, 7(6), 198; https://doi.org/10.3390/agriengineering7060198 - 19 Jun 2025
Viewed by 684
Abstract
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton ( [...] Read more.
Cotton is the most widely consumed natural fiber globally and emits fewer greenhouse gases compared to synthetic alternatives. Brazil is currently the largest cotton exporter, and understanding its potential for sustainable expansion is crucial. This study developed agroclimatic zoning maps for cotton (Gossypium hirsutum L.) across Brazil under current and future climate conditions using data from the World-Clim and MapBiomas platforms. Four climate change scenarios (SSP1-2.6, SSP2-4.5, SSP3-7.0, SSP5-8.5) were assessed over multiple time periods. Results showed that rising temperatures and reduced rainfall will likely reduce cotton suitability in traditional producing regions such as Bahia. However, areas with potential for cotton cultivation, especially in Mato Grosso, which currently accounts for 90% of national production, remain extensive, with agroclimatic conditions indicating a theoretical expansion potential of up to 40 times the current cultivated area. This projection must be interpreted with caution, as it does not account for economic, logistical, or social constraints. Notably, Brazilian cotton is cultivated with minimal irrigation, low fertilizer input, and high adoption of no-till systems, making it one of the least carbon-intensive globally. Full article
Show Figures

Graphical abstract

19 pages, 1840 KiB  
Article
Three Years After Soybean-Cover-Crop Rotation in Conventional and No-Till Practices: What Are the Consequences on Soil Nitrous Oxide Emissions?
by Nokwanda O. Dlamini, Lindsay Banda, Laura M. Cardenas, Aranzazu Louro-Lopez and Jerry C. Dlamini
Nitrogen 2025, 6(2), 45; https://doi.org/10.3390/nitrogen6020045 - 11 Jun 2025
Viewed by 672
Abstract
Nitrous oxide is a potent greenhouse gas due to its long atmospheric lifespan (121 years) that results in a high global warming potential (GWP). Research has shown that no-tillage may be implemented as a mitigation strategy to reduce N2O emissions. The [...] Read more.
Nitrous oxide is a potent greenhouse gas due to its long atmospheric lifespan (121 years) that results in a high global warming potential (GWP). Research has shown that no-tillage may be implemented as a mitigation strategy to reduce N2O emissions. The objective of the was to evaluate how conventional tillage (CT) and no-tillage (NT) can potential influence N2O emissions in soybean rotation in a semi-arid region of the central Free State of South Africa. The effect of conventional and no-till tillage practices on N2O emissions under soybean rotation was evaluated in the 3rd year of a 5-year rotation system, in a semi-arid region of the Free State of South Africa, from December 2022 to December 2023. The experimental area was divided into three blocks and there were two plots in each block: in total there were six plots. The treatments were planted in a soybean rotation system under no-tillage and conventional tillage. The monthly averages of N2O emissions were significantly different from each other during the soybean growing season; the highest emissions were recorded in August/September 2023 from both the NT and CT treatments after harvest. During this time, there were crop residues in the soil that increased soil carbon. There was a positive correlation between N2O emissions and soil carbon content (p = 0.21) and between N2O emissions and soil organic matter (p = 0.43). Emissions were significantly higher in CT (LSD = 0.3) than in NT. The lowest N2O emissions were recorded in December 2023 (LSD = 0.05) and were significantly reduced in the no-till plots compared to those of the conventional tillage plots. Furthermore, the lowest cumulative N2O emissions of 0.26 ± 0.22 kg N2O-N ha−1 were recorded during NT in the winter season and were significantly different from CT (LSD = 0.19). The results from our study indicate that the no-till practices in soybean rotation can decrease N2O emissions. Full article
Show Figures

Graphical abstract

15 pages, 804 KiB  
Article
Weed Seedbank Changes Associated with Temporary Tillage After Long Periods of No-Till
by Fernando Oreja, Marianne Torcat Fuentes, Antonio Barrio, Dario Javier Schiavinato, Virginia Rosso and Elba de la Fuente
Agronomy 2025, 15(6), 1410; https://doi.org/10.3390/agronomy15061410 - 8 Jun 2025
Viewed by 695
Abstract
Long-term no-till systems have led to shifts in weed communities and reduced the effectiveness of herbicide-based control. Occasional tillage is proposed as an alternative strategy to disrupt weed emergence patterns by redistributing seeds within the soil profile. This study aimed to evaluate the [...] Read more.
Long-term no-till systems have led to shifts in weed communities and reduced the effectiveness of herbicide-based control. Occasional tillage is proposed as an alternative strategy to disrupt weed emergence patterns by redistributing seeds within the soil profile. This study aimed to evaluate the impact of occasional tillage on weed seedbank composition and vertical distribution of viable weed seeds and propagules within the soil profile, after more than 20 years of continuous no-till. A paired-plot experiment was conducted in Carlos Casares, Buenos Aires, Argentina, with three replications. Treatments included continuous no-till and occasional tillage (two disk harrow passes in August 2022 and April 2023) combined with three soil depths (0–5, 5–10, and 10–15 cm). Soil samples were collected in spring 2022 and fall 2023, and weed emergence was recorded under semi-controlled conditions. Overall species richness did not differ significantly between tillage treatments but was consistently greater in the upper 0–5 cm soil layer. Weed abundance also declined with depth. Five species, Chenopodium album, Stellaria media, Eleusine indica, Oxybasis macrosperma, and Heliotropium curassavicum, were frequent across treatments. Some species were exclusive to either no-till or tilled plots, for example, Datura ferox, Poa annua, and Veronica peregrina were found only in tilled plots, while Portulaca oleracea, Medicago lupulina, and Trifolium repens were exclusive to no-till plots. These results indicate that occasional tillage alters species composition and vertical seed distribution in the seedbank without significantly reducing total richness or abundance, offering an additional, but not always effective, tool to influence weed community structure in no-till systems. Full article
Show Figures

Figure 1

12 pages, 670 KiB  
Article
Carbon Use Efficiency in the Soil Profile: The Role of Soil Acidity Alleviation, Nitrogen, and Phosphorus Availability
by Karina Mendes Bertolino, Murilo de Souza, Davey L. Jones and Ciro Antonio Rosolem
Agronomy 2025, 15(6), 1299; https://doi.org/10.3390/agronomy15061299 - 26 May 2025
Viewed by 522
Abstract
Soil amendments such as limestone and gypsum can influence microbial carbon use efficiency (CUE) by altering nutrient stoichiometry, particularly nitrogen (N) and phosphorus (P). However, their effects beyond the topsoil, especially under no-till systems, remain unclear. This study assessed microbial CUE through substrate [...] Read more.
Soil amendments such as limestone and gypsum can influence microbial carbon use efficiency (CUE) by altering nutrient stoichiometry, particularly nitrogen (N) and phosphorus (P). However, their effects beyond the topsoil, especially under no-till systems, remain unclear. This study assessed microbial CUE through substrate use efficiency (SUE) following glucose addition as a factor influencing carbon (C) sequestration potential. Two experiments were conducted in tropical soil. The first evaluated the addition of 14C-glucose (G) to soil treated with lime, lime + gypsum, and a control, with or without the addition of N. The second compared limestone + gypsum and control treatments, incorporating G with N and P. Soil microbial respiration (CO2 emission) was measured after 14 and 42 days. In the surface soil (0–10 cm), CUE increased with limestone or limestone + gypsum when N was applied. In the subsoil (40–60 cm), these amendments enhanced CUE compared to untreated soil in the absence of N. Treatments with G+N+P or G+P improved CUE in the surface soil. At the same time, G+N+P increased CUE in the subsoil regardless of acidity alleviation. Differences in 14CO2 evolution indicated higher microbial CUE with acidity correction. Balanced N and P applications significantly enhanced CUE, highlighting the importance of both soil acidity correction and nutrient availability for microbial carbon processing. Full article
(This article belongs to the Section Soil and Plant Nutrition)
Show Figures

Graphical abstract

16 pages, 2308 KiB  
Article
Mechanical Chiseling Versus Root Bio-Tillage on Soil Physical Quality and Soybean Yield in a Long-Term No-Till System
by Gustavo Ferreira da Silva, Bruno Cesar Ottoboni Luperini, Jéssica Pigatto de Queiroz Barcelos, Fernando Ferrari Putti, Sacha J. Mooney and Juliano Carlos Calonego
Agronomy 2025, 15(5), 1249; https://doi.org/10.3390/agronomy15051249 - 21 May 2025
Viewed by 585
Abstract
Occasional mechanical intervention can help alleviate compaction symptoms in no-till systems, but its effects compared to well-established crop rotation systems are uncertain. Thus, the aim of this study was to evaluate the effects of mechanical and biological chiseling of the soil (via millet [...] Read more.
Occasional mechanical intervention can help alleviate compaction symptoms in no-till systems, but its effects compared to well-established crop rotation systems are uncertain. Thus, the aim of this study was to evaluate the effects of mechanical and biological chiseling of the soil (via millet and sunn hemp cover crops) on soil physical properties, root development, and soybean yield in a long-term experiment. The treatments consisted of crops rotations used in the spring harvest: (I) triticale (autumn–winter), millet (spring), and soybean (summer); (II) triticale (autumn–winter), sunn hemp (spring), and soybean (summer); and (III) triticale (autumn–winter), fallow/soil chiseling (spring), and soybean (summer). Mechanical chiseling reduced bulk density and penetration resistance in the upper 0.10 m layer by 6% and 37%, respectively. However, its effects did not extend below this depth. Conversely, millet and sunn hemp maintained higher penetration resistance in surface layers but reduced resistance in deeper layers (0.20–0.40 m) by up to 27% compared to chiseling. These cover crops also improved root growth (up to 71% higher root dry mass), soil microporosity, and total porosity. Notably, sunn hemp enhanced water infiltration (151 mm accumulated) and basic infiltration rate (180 cm h−1), outperforming chiseling by 30% and 85%, respectively. Soybean yield was highest under sunn hemp, with an 18% increase over chiseling. Thus, growing millet and sunn hemp in a long-term production system can improve the soil’s physical properties, ensuring better infiltration, storage, and availability of water in the soil for plants. Full article
Show Figures

Figure 1

15 pages, 1911 KiB  
Review
An Aegean View on Non-Adaptive Radiations
by Spyros Sfenthourakis
Diversity 2025, 17(5), 346; https://doi.org/10.3390/d17050346 - 14 May 2025
Viewed by 1017
Abstract
The diversification of lineages sometimes exhibits patterns that are often described as ‘radiations’, which can be seen at various time scales, but researchers most often focus on a fast divergence of parental forms within short time spans. Adaptive radiations are widely discussed and [...] Read more.
The diversification of lineages sometimes exhibits patterns that are often described as ‘radiations’, which can be seen at various time scales, but researchers most often focus on a fast divergence of parental forms within short time spans. Adaptive radiations are widely discussed and have served as important showcases of Darwinian evolutionary processes. Other types of radiation have been identified, too, and several classifications have been suggested. Among these, ‘non-adaptive radiations’ remain controversial till today. Despite concerns on the conceptual basis of such a process, more and more cases of radiation that are described as ‘non-adaptive’ are published, and the continuously accumulating genetic/genomic data for more and more taxa seem to reveal extensive lineage diversification that is often not attributable to any apparent selective force. Given that allopatric divergence due to stochastic processes is presumably the cause of non-adaptive radiations, insular systems provide a rich pool of case studies. Using examples of lineage divergence from various taxa living on the Aegean islands, I discuss the processes leading to non-adaptive radiations in view of the alternative classifications of radiation by other authors, and show that such patterns may also result from a mixture of adaptive and non-adaptive processes. Full article
Show Figures

Figure 1

38 pages, 3222 KiB  
Review
Sustainable Practices for Enhancing Soil Health and Crop Quality in Modern Agriculture: A Review
by Denis-Constantin Țopa, Sorin Căpșună, Anca-Elena Calistru and Costică Ailincăi
Agriculture 2025, 15(9), 998; https://doi.org/10.3390/agriculture15090998 - 5 May 2025
Viewed by 6798
Abstract
Soil health is the cornerstone of sustainable agriculture, serving as the foundation for crop productivity, environmental resilience, and long-term ecosystem stability. Contemporary agricultural methods, characterized by excessive pesticide and fertilizer application, monoculture, and intensive tillage, have resulted in extensive soil degradation, requiring novel [...] Read more.
Soil health is the cornerstone of sustainable agriculture, serving as the foundation for crop productivity, environmental resilience, and long-term ecosystem stability. Contemporary agricultural methods, characterized by excessive pesticide and fertilizer application, monoculture, and intensive tillage, have resulted in extensive soil degradation, requiring novel strategies to restore and sustain soil functionality. This review examined sustainable practices to enhance soil health and improve crop quality in modern agricultural systems. Preserving soil’s physical, chemical, and biological characteristics is essential for its health, achievable through various agronomic strategies. Practices such as crop rotation, cover cropping, no-till or carbon farming, conservation agriculture (CA), and the use of organic amendments were explored for their ability to restore the soil structure, increase organic matter, and promote biodiversity. These initiatives seek to preserve and enhance soil ecosystems by aligning agricultural practices with ecological principles, ensuring long-term productivity and environmental stability. Enhancing soil health will improve soil functions, supporting the concept that increasing the soil organic carbon (SOC) is necessary. This study determined that conservation tillage is more advantageous for soil health than conventional tillage, a topic that is still controversial among scientists and farmers, and that various tillage systems exhibit distinct interactions. These strategies, through the integrated management of the interaction of plant, soil, microbial, and human activities, would enhance soil health. Full article
Show Figures

Figure 1

15 pages, 4077 KiB  
Article
Influence of Different Soil Types on Dissolved Organic Matter Spectral Characteristics of Soil Leachate After Green Manure Tilling in Saline Soils
by Chengjie Yin, Yuhao Wang, Xiaohui Ji, Wenjun Chi, Xiangjie Jiao, Yuejuan Yang and Xinwei Liu
Agronomy 2025, 15(5), 1049; https://doi.org/10.3390/agronomy15051049 - 26 Apr 2025
Viewed by 399
Abstract
To investigate the changes in the composition and structure of the dissolved organic matter (DOM) of the lysate solutions of different types of soil after green manure tilling treatment, we set up two types of soil materials (fluvo-aquic soil; coastal saline soil) and [...] Read more.
To investigate the changes in the composition and structure of the dissolved organic matter (DOM) of the lysate solutions of different types of soil after green manure tilling treatment, we set up two types of soil materials (fluvo-aquic soil; coastal saline soil) and three green manure tilling treatments (T1: CK—without green manure, T2: tilling Dongmu70 rye, and T3: tilling rapeseed green manure); then, the soil leachate was obtained with a soil column simulation test and its DOM spectral properties were determined. The rapeseed green manure leachate demonstrated a significantly higher humic macromolecule content and aromaticity compared to Dongmu70 rye leachate. Fluorescence Index (FI) values (1.5–2.2) suggest a mixed origin of dissolved organic matter (DOM) from both terrestrial and microbial-derived sources. All Humification Index (HIX) values remained below 1, indicating low humification levels and limited stabilization of DOM within the leachate system, and Biological Index (BIX) values exceeding 1 across all soil layers highlight the predominance of a recent biological metabolism in shaping DOM autochthonous origins. The SUVA260 values in Dongmu70 rye–moist soils and rapeseed green manure–coastal saline soil exhibited reductions of 0.020–2.573 L·(mg·m)−1 relative to pre-drenching levels. After tilling rapeseed green manure, the SUVA254 value of coastal saline soil at the 60–90 cm layer decreased by 1.941 L·(mg·m)−1. This study shows that differences in green manure and soil type affect DOM sources and composition, reducing DOM leaching, with coastal saline soil + rapeseed green manure and fluvo-aquic soil + Dongmu70 rye being the advantageous combinations. The study results provide theoretical guidance for applying green manure coupled with freshwater leaching technology in the context of saline and alkaline land with multiple soil types. Full article
Show Figures

Figure 1

Back to TopTop