Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (437)

Search Parameters:
Keywords = three-dimensional excitation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 29785 KiB  
Article
Multi-Scale Feature Extraction with 3D Complex-Valued Network for PolSAR Image Classification
by Nana Jiang, Wenbo Zhao, Jiao Guo, Qiang Zhao and Jubo Zhu
Remote Sens. 2025, 17(15), 2663; https://doi.org/10.3390/rs17152663 (registering DOI) - 1 Aug 2025
Viewed by 50
Abstract
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based [...] Read more.
Compared to traditional real-valued neural networks, which process only amplitude information, complex-valued neural networks handle both amplitude and phase information, leading to superior performance in polarimetric synthetic aperture radar (PolSAR) image classification tasks. This paper proposes a multi-scale feature extraction (MSFE) method based on a 3D complex-valued network to improve classification accuracy by fully leveraging multi-scale features, including phase information. We first designed a complex-valued three-dimensional network framework combining complex-valued 3D convolution (CV-3DConv) with complex-valued squeeze-and-excitation (CV-SE) modules. This framework is capable of simultaneously capturing spatial and polarimetric features, including both amplitude and phase information, from PolSAR images. Furthermore, to address robustness degradation from limited labeled samples, we introduced a multi-scale learning strategy that jointly models global and local features. Specifically, global features extract overall semantic information, while local features help the network capture region-specific semantics. This strategy enhances information utilization by integrating multi-scale receptive fields, complementing feature advantages. Extensive experiments on four benchmark datasets demonstrated that the proposed method outperforms various comparison methods, maintaining high classification accuracy across different sampling rates, thus validating its effectiveness and robustness. Full article
Show Figures

Figure 1

18 pages, 7509 KiB  
Article
A New Kv1.3 Channel Blocker from the Venom of the Ant Tetramorium bicarinatum
by Guillaume Boy, Laurence Jouvensal, Nathan Téné, Jean-Luc Carayon, Elsa Bonnafé, Françoise Paquet, Michel Treilhou, Karine Loth and Arnaud Billet
Toxins 2025, 17(8), 379; https://doi.org/10.3390/toxins17080379 - 30 Jul 2025
Viewed by 186
Abstract
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, [...] Read more.
Ant venoms are rich sources of bioactive molecules, including peptide toxins with potent and selective activity on ion channels, which makes them valuable for pharmacological research and therapeutic development. Voltage-dependent potassium (Kv) channels, critical for regulating cellular excitability or cell cycle progression control, are targeted by a diverse array of venom-derived peptides. This study focuses on MYRTXA4-Tb11a, a peptide from Tetramorium bicarinatum venom, which was previously shown to have a strong paralytic effect on dipteran species without cytotoxicity on insect cells. In the present study, we show that Tb11a exhibited no or low cytotoxicity toward mammalian cells either, even at high concentrations, while electrophysiological studies revealed a blockade of hKv1.3 activity. Additionally, Ta11a, an analog of Tb11a from the ant Tetramorium africanum, demonstrated similar Kv1.3 inhibitory properties. Structural analysis supports that the peptide acts on Kv1.3 channels through the functional dyad Y21-K25 and that the disulfide bridge is essential for biological activity, as reduction seems to disrupt the peptide conformation and impair the dyad. These findings highlight the importance of three-dimensional structure in channel modulation and establish Tb11a and Ta11a as promising Kv1.3 inhibitors. Future research should investigate their selectivity across additional ion channels and employ structure-function studies to further enhance their pharmacological potential. Full article
(This article belongs to the Special Issue Unlocking the Deep Secrets of Toxins)
Show Figures

Figure 1

18 pages, 3371 KiB  
Article
Insight into the Propagation of Interface Acoustic Waves in Rotated YX-LiNbO3/SU-8/Si Structures
by Cinzia Caliendo, Massimiliano Benetti, Domenico Cannatà and Farouk Laidoudi
Micromachines 2025, 16(8), 861; https://doi.org/10.3390/mi16080861 - 26 Jul 2025
Viewed by 269
Abstract
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate [...] Read more.
The propagation of interface acoustic waves (IAWs) along rotated YX-LiNbO3/SU-8/ZX-Si structures is theoretically investigated to identify the Y-rotation angles that support the efficient propagation of low-loss modes guided along the structure’s interface. A three-dimensional finite element analysis was performed to simulate IAW propagation in the layered structure and to optimize design parameters, specifically the thicknesses of the platinum (Pt) interdigital transducers (IDTs) and the SU-8 adhesive layer. The simulations revealed the existence of two types of IAWs travelling at different velocities under specific Y-rotated cuts of the LiNbO3 half-space. These IAWs are faster than the surface acoustic wave (SAW) and slower than the leaky SAW (LSAW) propagating on the surface of the bare LiNbO3 half-space. The mechanical displacement fields of both IAWs exhibit a rapid decay to zero within a few wavelengths from the LiNbO3 surface. The piezoelectric coupling coefficients of the IAWs were found to be as high as approximately 7% and 31%, depending on the Y-rotation angle. The theoretical results were experimentally validated by measuring the velocities of the SAW and LSAW on a bare 90° YX-LiNbO3 substrate, and the velocities of the IAWs in a 90° YX-LiNbO3/SU-8/Si structure featuring 330 nm thick Pt IDTs, a 200 µm wavelength, and a 15 µm thick SU-8 layer. The experimental data showed good agreement with the theoretical predictions. These combined theoretical and experimental findings establish design principles for exciting two interface waves with elliptical and quasi-shear polarization, offering enhanced flexibility for fluidic manipulation and the integration of sensing functionalities. Full article
(This article belongs to the Special Issue Novel Surface and Bulk Acoustic Wave Devices, Second Edition)
Show Figures

Figure 1

19 pages, 8002 KiB  
Article
3D Forward Simulation of Borehole-Surface Transient Electromagnetic Based on Unstructured Finite Element Method
by Jiayi Liu, Tianjun Cheng, Lei Zhou, Xinyu Wang and Xingbing Xie
Minerals 2025, 15(8), 785; https://doi.org/10.3390/min15080785 - 26 Jul 2025
Viewed by 145
Abstract
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study [...] Read more.
The time-domain electromagnetic method has been widely applied in mineral exploration, oil, and gas fields in recent years. However, its response characteristics remain unclear, and there is an urgent need to study the response characteristics of the borehole-surface transient electromagnetic(BSTEM) field. This study starts from the time-domain electric field diffusion equation and discretizes the calculation area in space using tetrahedral meshes. The Galerkin method is used to derive the finite element equation of the electric field, and the vector interpolation basis function is used to approximate the electric field in any arbitrary tetrahedral mesh in the free space, thus achieving the three-dimensional forward simulation of the BSTEM field based on the finite element method. Following validation of the numerical simulation method, we further analyze the electromagnetic field response excited by vertical line sources.. Through comparison, it is concluded that measuring the radial electric field is the most intuitive and effective layout method for BSTEM, with a focus on the propagation characteristics of the electromagnetic field in both low-resistance and high-resistance anomalies at different positions. Numerical simulations reveal that BSTEM demonstrates superior resolution capability for low-resistivity anomalies, while showing limited detectability for high-resistivity anomalies Numerical simulation results of BSTEM with realistic orebody models, the correctness of this rule is further verified. This has important implications for our understanding of the propagation laws of BSTEM as well as for subsequent data processing and interpretation. Full article
(This article belongs to the Special Issue Geoelectricity and Electrical Methods in Mineral Exploration)
Show Figures

Figure 1

37 pages, 4317 KiB  
Review
Polymeric 3D-Printed Microneedle Arrays for Non-Transdermal Drug Delivery and Diagnostics
by Mahmood Razzaghi
Polymers 2025, 17(14), 1982; https://doi.org/10.3390/polym17141982 - 18 Jul 2025
Viewed by 331
Abstract
Microneedle arrays (MNAs) are becoming increasingly popular due to their ease of use and effectiveness in drug delivery and diagnostic applications. Improvements in three-dimensional (3D) printing techniques have made it possible to fabricate MNAs with high precision, intricate designs, and customizable properties, expanding [...] Read more.
Microneedle arrays (MNAs) are becoming increasingly popular due to their ease of use and effectiveness in drug delivery and diagnostic applications. Improvements in three-dimensional (3D) printing techniques have made it possible to fabricate MNAs with high precision, intricate designs, and customizable properties, expanding their potential in medical applications. While most studies have focused on transdermal applications, non-transdermal uses remain relatively underexplored. This review summarizes recent developments in 3D-printed MNAs intended for non-transdermal drug delivery and diagnostic purposes. It includes a literature review of studies published in the past ten years, organized by the target delivery site—such as the brain and central nervous system (CNS), oral cavity, eyes, gastrointestinal (GI) tract, and cardiovascular and reproductive systems, among other emerging areas. The findings show that 3D-printed MNAs are more adaptable than skin-based delivery, opening up exciting new possibilities for use in a variety of organs and systems. To guarantee the effective incorporation of polymeric non-transdermal MNAs into clinical practice, additional research is necessary to address current issues with materials, manufacturing processes, and regulatory approval. Full article
Show Figures

Figure 1

16 pages, 2224 KiB  
Article
Electromagnetic Noise and Vibration Analyses in PMSMs: Considering Stator Tooth Modulation and Magnetic Force
by Yeon-Su Kim, Hoon-Ki Lee, Jun-Won Yang, Woo-Sung Jung, Yeon-Tae Choi, Jun-Ho Jang, Yong-Joo Kim, Kyung-Hun Shin and Jang-Young Choi
Electronics 2025, 14(14), 2882; https://doi.org/10.3390/electronics14142882 - 18 Jul 2025
Viewed by 283
Abstract
This study presents an analysis of the electromagnetic noise and vibration in a surface-mounted permanent magnet synchronous machine (SPMSM), focusing on their excitation sources. To investigate this, the excitation sources were identified through an analytical approach, and their effects on electromagnetic noise and [...] Read more.
This study presents an analysis of the electromagnetic noise and vibration in a surface-mounted permanent magnet synchronous machine (SPMSM), focusing on their excitation sources. To investigate this, the excitation sources were identified through an analytical approach, and their effects on electromagnetic noise and vibration were evaluated using a finite element method (FEM)-based analysis approach. Additionally, an equivalent curved-beam model based on three-dimensional shell theory was applied to determine the deflection forces on the stator yoke, accounting for the tooth-modulation effect. The stator’s natural frequencies were derived through the characteristic equation in free vibration analysis. Modal analysis was performed to validate the analytically derived natural frequencies and to investigate stator deformation under the tooth-modulation effect across various vibration modes. Furthermore, noise, vibration, and harshness (NVH) analysis via FEM reveals that major harmonic components align closely with the natural frequencies, identifying them as primary sources of elevated vibrations. A comparative study between 8-pole–9-slot and 8-pole–12-slot SPMSMs highlights the impact of force variations on the stator teeth in relation to vibration and noise characteristics, with FEM verification. The proposed method provides a valuable tool for early-stage motor design, enabling the rapid identification of resonance operating points that may induce severe vibrations. This facilitates proactive mitigation strategies to enhance motor performance and reliability. Full article
Show Figures

Figure 1

15 pages, 2159 KiB  
Article
Evaluating 3D Hand Scanning Accuracy Across Trained and Untrained Students
by Ciprian Glazer, Mihaela Oravitan, Corina Pantea, Bogdan Almajan-Guta, Nicolae-Adrian Jurjiu, Mihai Petru Marghitas, Claudiu Avram and Alexandra Mihaela Stanila
Bioengineering 2025, 12(7), 777; https://doi.org/10.3390/bioengineering12070777 - 18 Jul 2025
Viewed by 325
Abstract
Background and Objectives: Three-dimensional (3D) scanning is increasingly utilized in medical practice, from orthotics to surgical planning. However, traditional hand measurement techniques remain inconsistent and prone to human error and are often time-consuming. This research evaluates the practicality of a commercial 3D scanning [...] Read more.
Background and Objectives: Three-dimensional (3D) scanning is increasingly utilized in medical practice, from orthotics to surgical planning. However, traditional hand measurement techniques remain inconsistent and prone to human error and are often time-consuming. This research evaluates the practicality of a commercial 3D scanning method by comparing the accuracy of scans conducted by two user groups. Materials and Methods: This study evaluated the following two groups: an experimental group (n = 45) and a control group (n = 42). A total of 261 hand scans were captured using the Structure Sensor Pro 3D scanner for iPad (Structure, Boulder, CO, USA). The scans were then evaluated using Meshmixer software (version 3.5.474), analyzing key parameters, such as surface area, volume, number of vertices, and triangles, etc. Furthermore, a digital literacy test and a user experience survey were conducted to support a more comprehensive evaluation of participant performance within the study. Results: The experimental group outperformed the control group on all measured parameters, including surface area, volume, vertices, triangle, and gap count, with large effect sizes observed. User experience data revealed that participants in the experimental group rated the 3D scanner significantly higher across all dimensions, particularly in ease of use, excitement, supportiveness, and practicality. Conclusions: A short 15 min training session can promote scan reliability, demonstrating that even minimal instruction improves users’ proficiency in 3D scanning, fundamental for supporting clinical accuracy in diagnosis, surgical planning, and personalized device manufacturing Full article
Show Figures

Figure 1

18 pages, 4389 KiB  
Article
Acoustic Wave Propagation Characteristics of Maize Seed and Surrounding Region with the Double Media of Seed–Soil
by Yadong Li, Caiyun Lu, Hongwen Li, Jin He, Zhinan Wang and Chengkun Zhai
Agriculture 2025, 15(14), 1540; https://doi.org/10.3390/agriculture15141540 - 17 Jul 2025
Viewed by 329
Abstract
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations [...] Read more.
When monitoring seed positions in soil using ultrasonic waves, the main challenge is obtaining acoustic wave characteristics at the seed locations. This study developed a three-dimensional ultrasonic model with the double media of seed–soil using the discrete element method to visualize signal variations and analyze propagation characteristics. The effects of the compression ratio (0/6/12%), excitation frequency (20/40/60 kHz), and amplitude (5/10/15 μm) on signal variation and attenuation were analyzed. The results show consistent trends: time/frequency domain signal intensity increased with a higher compression ratio and amplitude but decreased with frequency. Comparing ultrasonic signals at soil particles before and after the seed along the propagation path shows that the seed significantly absorbs and attenuates ultrasonic waves. Time domain intensity drops 93.99%, and first and residual wave frequency peaks decrease by 88.06% and 96.39%, respectively. Additionally, comparing ultrasonic propagation velocities in the double media of seed–soil and the single soil medium reveals that the velocity in the seed is significantly higher than that in the soil. At compression ratios of 0%, 6%, and 12%, the sound velocity in the seed is 990.47%, 562.72%, and 431.34% of that in the soil, respectively. These findings help distinguish seed presence and provide a basis for ultrasonic seed position monitoring after sowing. Full article
(This article belongs to the Topic Digital Agriculture, Smart Farming and Crop Monitoring)
Show Figures

Figure 1

32 pages, 7296 KiB  
Article
Analytic Solutions for the Stationary Seismic Response of Three-Dimensional Structures with a Tuned Mass-Inerter Damper and Bracket
by Lin Deng, Cong Yao and Xinguang Ge
Buildings 2025, 15(14), 2483; https://doi.org/10.3390/buildings15142483 - 15 Jul 2025
Viewed by 254
Abstract
The ultimate goal of research on seismic mitigation technologies is engineering application. However, current studies primarily focus on the application of dampers in planar structures, while actual engineering structures are three-dimensional (3D) in nature. A type of damper, making up tuned mass dampers [...] Read more.
The ultimate goal of research on seismic mitigation technologies is engineering application. However, current studies primarily focus on the application of dampers in planar structures, while actual engineering structures are three-dimensional (3D) in nature. A type of damper, making up tuned mass dampers (TMDs) and inerters, has excellent vibration mitigation performance and needs brackets to connect to structures. In this work, a coupled dynamic model of an energy dissipation system (EDS) comprising a TMD, an inerter, a bracket, and a 3D building structure is presented, along with analytical solutions for stochastic seismic responses. The main work is as follows. Firstly, based on D’Alembert’s dynamics principle, the seismic dynamic equations of an EDS considering a realistic damper and a 3D structure are formulated. The general dynamic equations governing the bidirectional horizontal motion of the EDS are further derived using the dynamic finite element technique. Secondly, analytical expressions for spectral moments and variances of seismic responses are obtained. Finally, four numerical examples are presented to investigate the following: (1) verification of the proposed response solutions, showing that the calculation time of the proposed method is approximately 1/500 of that of the traditional method; (2) examination of spatial effects in 3D structures under unidirectional excitation, revealing that structural seismic responses in the direction along the earthquake ground motion is approximately 104 times that in the direction perpendicular to the ground motion; (3) investigation of the spatial dynamic characteristics of a 3D structure subjected to unidirectional seismic excitation, showing that the bracket parameters significantly affect the damping effects on an EDS; and (4) application of the optimization method for the damper’s parameters that considers system dynamic reliability and different weights of the damper’s parameters as constraints, indicating that the most economical damping parameters can achieve a reduction in displacement spectral moments by 30–50%. The proposed response solutions and parameter optimization technique provide an effective approach for evaluating stochastic seismic responses and optimizing damper parameters in large-scale and complex structures. Full article
(This article belongs to the Special Issue Advances in Building Structure Analysis and Health Monitoring)
Show Figures

Figure 1

17 pages, 2381 KiB  
Review
From Na2Cl to CaCl: Progress in the 2D Crystals of Unconventional Stoichiometries in Ambient Conditions
by Mengjiao Wu, Xiaoling Lei and Haiping Fang
Solids 2025, 6(3), 38; https://doi.org/10.3390/solids6030038 - 15 Jul 2025
Viewed by 271
Abstract
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those [...] Read more.
Two-dimensional (2D) crystals which present unconventional stoichiometries on graphene surfaces in ambient conditions, such as Na2Cl, Na3Cl, and CaCl, have attracted significant attention in recent years due to their electronic structures and abnormal cation–anion ratios, which differ from those of conventional three-dimensional crystals. This unconventional crystallization is attributed to the cation–π interaction between ions and the π-conjugated system of the graphene surface. Consequently, their physical and chemical properties—including their electrical, optical, magnetic, and mechanical characteristics—often differ markedly from those of conventional crystals. This review summarizes the recent progress made in the fabrication and analysis of the structures, distinctive features, and applications of these 2D unconventional stoichiometry crystals on graphene surfaces in ambient conditions. Their special properties, including their piezoelectricity, metallicity, heterojunction, and room-temperature ferromagnetism, are given particularly close attention. Finally, some significant prospects and further developments in this exciting interdisciplinary field are proposed. Full article
Show Figures

Figure 1

20 pages, 1935 KiB  
Article
Residual Attention Network with Atrous Spatial Pyramid Pooling for Soil Element Estimation in LUCAS Hyperspectral Data
by Yun Deng, Yuchen Cao, Shouxue Chen and Xiaohui Cheng
Appl. Sci. 2025, 15(13), 7457; https://doi.org/10.3390/app15137457 - 3 Jul 2025
Viewed by 292
Abstract
Visible and near-infrared (Vis–NIR) spectroscopy enables the rapid prediction of soil properties but faces three limitations with conventional machine learning: information loss and overfitting from high-dimensional spectral features; inadequate modeling of nonlinear soil–spectra relationships; and failure to integrate multi-scale spatial features. To address [...] Read more.
Visible and near-infrared (Vis–NIR) spectroscopy enables the rapid prediction of soil properties but faces three limitations with conventional machine learning: information loss and overfitting from high-dimensional spectral features; inadequate modeling of nonlinear soil–spectra relationships; and failure to integrate multi-scale spatial features. To address these challenges, we propose ReSE-AP Net, a multi-scale attention residual network with spatial pyramid pooling. Built on convolutional residual blocks, the model incorporates a squeeze-and-excitation channel attention mechanism to recalibrate feature weights and an atrous spatial pyramid pooling (ASPP) module to extract multi-resolution spectral features. This architecture synergistically represents weak absorption peaks (400–1000 nm) and broad spectral bands (1000–2500 nm), overcoming single-scale modeling limitations. Validation on the LUCAS2009 dataset demonstrated that ReSE-AP Net outperformed conventional machine learning by improving the R2 by 2.8–36.5% and reducing the RMSE by 14.2–69.2%. Compared with existing deep learning methods, it increased the R2 by 0.4–25.5% for clay, silt, sand, organic carbon, calcium carbonate, and phosphorus predictions, and decreased the RMSE by 0.7–39.0%. Our contributions include statistical analysis of LUCAS2009 spectra, identification of conventional method limitations, development of the ReSE-AP Net model, ablation studies, and comprehensive comparisons with alternative approaches. Full article
Show Figures

Figure 1

17 pages, 4438 KiB  
Article
Y5F3[AsO3]4 and Y5Cl3[AsO3]4: Two Non-Isostructural Yttrium Halide Oxoarsenates(III) and Their Potential as Hosts for Luminescent Eu3+- and Tb3+-Doping
by Ralf J. C. Locke, Martina Mikuta, Florian Ledderboge, Frank C. Zimmer, Henning A. Höppe and Thomas Schleid
Crystals 2025, 15(7), 611; https://doi.org/10.3390/cryst15070611 - 30 Jun 2025
Viewed by 264
Abstract
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure [...] Read more.
Y5F3[AsO3]4 crystallizes needle-shaped in the tetragonal space group P4/ncc with the lattice parameters a = 1143.80(8) pm, c = 1078.41(7) pm and c/a = 0.9428 for Z = 4. The yttrium-fluoride substructure linked via secondary contacts forms a three-dimensional network 3{[Y5F3]12+} and the remaining part consists of ψ1-tetrahedral [AsO3]3− units, which leave lone-pair channels along [001]. In contrast, platelet-shaped Y5Cl3[AsO3]4 crystals adopt the monoclinic space group C2/c with the lattice parameters a = 1860.56(9) pm, b = 536.27(3) pm, c = 1639.04(8) pm and β = 105.739(3)° for Z = 4. Condensation of [(Y1,2)O8]13− polyhedra via four common edges each leads to fluorite-like 2 {[(Y1,2)O e8/2 ]5−} layers spreading out parallel to the (100) plane. Their three-dimensional linkage occurs via the (Y3)3+ cations with their Cl ligands on the one hand and the As3+ cations with their lone-pairs of electrons on the other, which also form within [AsO3]3− anions lone-pair channels along [010]. Both colorless compounds can be obtained by solid-state reactions from corresponding mixtures of the binaries (Y2O3, As2O3 and YX3 with X = F and Cl) at elevated temperatures of 825 °C, most advantageously under halide-flux assistance (CsBr for Y5F3[AsO3]4 and ZnCl2 for Y5Cl3[AsO3]4). By replacing a few percent of YX3 with EuX3 or TbX3, Eu3+- or Tb3+-doped samples are accessible, which show red or green luminescence upon excitation with ultraviolet radiation. Full article
(This article belongs to the Special Issue Synthesis and Crystal Structure of Rare-Earth Metal Compounds)
Show Figures

Figure 1

23 pages, 888 KiB  
Article
Active Feedback-Driven Defect-Band Steering in Phononic Crystals with Piezoelectric Defects: A Mathematical Approach
by Soo-Ho Jo
Mathematics 2025, 13(13), 2126; https://doi.org/10.3390/math13132126 - 29 Jun 2025
Viewed by 328
Abstract
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies [...] Read more.
Defective phononic crystals (PnCs) have garnered significant attention for their ability to localize and amplify elastic wave energy within defect sites or to perform narrowband filtering at defect-band frequencies. The necessity for continuously tunable defect characteristics is driven by the variable excitation frequencies encountered in rotating machinery. Conventional tuning methodologies, including synthetic negative capacitors or inductors integrated with piezoelectric defects, are constrained to fixed, offline, and incremental adjustments. To address these limitations, the present study proposes an active feedback approach that facilitates online, wide-range steering of defect bands in a one-dimensional PnC. Each defect is equipped with a pair of piezoelectric sensors and actuators, governed by three independently tunable feedback gains: displacement, velocity, and acceleration. Real-time sensor signals are transmitted to a multivariable proportional controller, which dynamically modulates local electroelastic stiffness via the actuators. This results in continuous defect-band frequency shifts across the entire band gap, along with on-demand sensitivity modulation. The analytical model that incorporates these feedback gains has been demonstrated to achieve a level of agreement with COMSOL benchmarks that exceeds 99%, while concurrently reducing computation time from hours to seconds. Displacement- and acceleration-controlled gains yield predictable, monotonic up- or down-shifts in defect-band frequency, whereas the velocity-controlled gain permits sensitivity adjustment without frequency drifts. Furthermore, the combined-gain operation enables the concurrent tuning of both the center frequency and the filtering sensitivity, thereby facilitating an instantaneous remote reconfiguration of bandpass filters. This framework establishes a new class of agile, adaptive ultrasonic devices with applications in ultrasonic imaging, structural health monitoring, and prognostics and health management. Full article
(This article belongs to the Section E2: Control Theory and Mechanics)
Show Figures

Figure 1

11 pages, 2262 KiB  
Article
Sensitive and Stable NCF/GO/Au@Ag SERS Substrate for Trace Detection of Polycyclic Aromatic Hydrocarbons
by Lili Kong, Xinna Yu, Qifang Sun, Meizhen Huang, Tianyuan Liu and Jie Chen
Polymers 2025, 17(12), 1716; https://doi.org/10.3390/polym17121716 - 19 Jun 2025
Viewed by 360
Abstract
Polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention due to their severe threats to both ecological systems and human health. In this paper, a high-performance surface-enhanced Raman spectroscopy (SERS) substrate based on NCF/GO/Au@Ag nanocomposites was developed, which enabled sensitive and stable detection of [...] Read more.
Polycyclic aromatic hydrocarbons (PAHs) have attracted significant attention due to their severe threats to both ecological systems and human health. In this paper, a high-performance surface-enhanced Raman spectroscopy (SERS) substrate based on NCF/GO/Au@Ag nanocomposites was developed, which enabled sensitive and stable detection of PAHs. The NCF/GO/Au@Ag substrate synergistic utilizes the localized surface plasmon resonance (LSPR) effect of Au@Ag core–shell nanorods and the additional interfacial charge transfer provided by graphene oxide (GO) to exhibit extremely high sensitivity. And the three-dimensional fibrous network of nanocellulose (NCF) improved nanoparticle dispersion uniformity. Combined finite element simulations and experimental studies verified that the dual plasmonic resonances (512 nm and 772 nm) of Au@Ag nanorods optimally match 785 nm excitation, yielding an enhancement factor of 5.21 × 105. GO integration enhanced Raman signals by 1.68-fold through interfacial charge transfer, while the introduction of NCF reduced the signal relative standard deviation (RSD) from 36.88% to 4.29%. The NCF/GO/Au@Ag substrate achieved a detection limit of 10 μg/L for PAHs, demonstrating exceptional sensitivity and reproducibility. Full article
(This article belongs to the Section Polymer Analysis and Characterization)
Show Figures

Figure 1

25 pages, 5401 KiB  
Article
Coupled Electro-Thermal FEM with Geometric Symmetry Constraints for Modular Battery Pack Design
by Yingshuai Liu, Chenxing Liu, Jianwei Tan and Guangdong Tian
Symmetry 2025, 17(6), 865; https://doi.org/10.3390/sym17060865 - 3 Jun 2025
Cited by 1 | Viewed by 442
Abstract
This study investigates the structural integrity and dynamic behavior of symmetry-optimized battery pack systems for new energy vehicles through advanced finite element analysis. It examines symmetry-optimized battery pack systems with mechanically stable and thermally adaptive potentials. Leveraging geometric symmetry principles, a high-fidelity three-dimensional [...] Read more.
This study investigates the structural integrity and dynamic behavior of symmetry-optimized battery pack systems for new energy vehicles through advanced finite element analysis. It examines symmetry-optimized battery pack systems with mechanically stable and thermally adaptive potentials. Leveraging geometric symmetry principles, a high-fidelity three-dimensional (3D) model was constructed in SolidWorks 2023 and subjected to symmetry-constrained static analysis on ANSYS Workbench 2021 R1 platform. The structural performance was systematically evaluated under three critical asymmetric loading scenarios: emergency left/right turns and braking conditions, with particular attention to symmetric stress distribution patterns. The numerical results confirmed the initial design’s compliance with mechanical requirements while revealing symmetric deformation characteristics in dominant mode shapes. Building upon symmetry-enhanced topology configuration, a novel lightweight strategy was implemented by substituting Q235 steel with ZL104 aluminum alloy. While mechanical symmetry has been widely studied, thermal gradients in battery packs can induce asymmetric expansions. For example, uneven cooling may cause localized warping in aluminum alloy shells. This multiphysics effect must be integrated into symmetry constraints to ensure true stability. Symmetric material distribution optimization reduced the mass by 19% while maintaining structural stability, as validated through comparative static and modal analyses. Notably, the symmetric eigenfrequency arrangement in optimized modules effectively avoids common vehicle excitation bands (8–12 Hz/25–35 Hz), demonstrating significant resonance risk reduction through frequency redistribution. This research establishes a symmetry-driven design paradigm that systematically coordinates structural efficiency with dynamic reliability, providing critical insights for developing next-generation battery systems with balanced performance characteristics. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop