Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (346)

Search Parameters:
Keywords = threatened tree species

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 1363 KiB  
Article
Non-Structural Carbohydrate Concentration Increases and Relative Growth Decreases with Tree Size in the Long-Lived Agathis australis (D.Don) Lindl.
by Julia Kaplick, Benjamin M. Cranston and Cate Macinnis-Ng
Forests 2025, 16(8), 1270; https://doi.org/10.3390/f16081270 - 3 Aug 2025
Viewed by 191
Abstract
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its [...] Read more.
The southern conifer Agathis australis (D.Don) Lindl. is a large and long-lived species endemic to Aotearoa New Zealand. It is threatened due to past logging activities, pathogen attack and potentially climate change, with increasing severity and frequency of drought and heatwaves across its distribution. Like many large tree species, little is known about the carbon dynamics of this ecologically and culturally significant species. We explored seasonal variations in non-structural carbohydrates (NSCs) and growth in trees ranging from 20 to 175 cm diameter at breast height (DBH). NSCs were seasonally stable with no measurable pattern across seasons. However, we found growth rates standardised to basal area and sapwood area (growth efficiency) declined with tree age and stem NSC concentrations (including total NSCs, sugars and starch) all increased as trees aged. Total NSC concentrations were 0.3%–0.6% dry mass for small trees and 0.8%–1.8% dry mass for larger trees, with strong relationships between DBH and total NSC, sugar and starch in stems but not roots. Cumulative growth efficiency across the two-year study period declined as tree size increased. Furthermore, there was an inverse relationship between growth efficiency across the two-year study period and NSC concentrations of stems. This relationship was driven by differences in carbon dynamics in trees of different sizes, with trees progressing to a more conservative carbon strategy as they aged. Simultaneously declining growth efficiency and increasing NSC concentrations as trees age could be evidence for active NSC accumulation to buffer against carbon starvation in larger trees. Our study provides new insights into changing carbon dynamics as trees age and may be evidence for active carbon accumulation in older trees. This may provide the key for understanding the role of carbon processes in tree longevity. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

14 pages, 1494 KiB  
Article
The Thermal Niche of the Koala (Phascolarctos cinereus): Spatial Dynamics of Home Range and Microclimate
by Dalene Adam, Carla L. Archibald, Benjamin J. Barth, Sean I. FitzGibbon, Alistair Melzer, Amber K. Gillett, Stephen D. Johnston, Lyn Beard and William A. Ellis
Animals 2025, 15(15), 2198; https://doi.org/10.3390/ani15152198 - 25 Jul 2025
Viewed by 232
Abstract
The koala (Phascolarctos cinereus) is recognised as threatened across two thirds of its distribution and identified as particularly susceptible to climate change. The aim of this study was to assess the spatio-temporal variation in microclimate across koala home ranges and determine [...] Read more.
The koala (Phascolarctos cinereus) is recognised as threatened across two thirds of its distribution and identified as particularly susceptible to climate change. The aim of this study was to assess the spatio-temporal variation in microclimate across koala home ranges and determine any tendency for koalas to exploit this variability. Temperature data loggers were set out in a grid pattern across the study site on St Bees Island, Queensland. Resident koalas were collared with GPS units recording location at night or during the day. Our results revealed that temperature variation across the landscape was greatest on the hottest days (~10 °C). During the day, koalas were found in areas of the landscape that recorded lower daytime temperatures, and during the night, they were found in areas that recorded the highest daytime temperatures. We postulate that koalas avoided the hottest areas of their range during summer days and were more likely to use cooler non-fodder trees but utilised them at night because these areas corresponded with the location of fodder trees. From our results, we suggest that the microclimate of non-fodder trees both (a) explains their selection by koalas during the day and (b) highlights their importance to koala persistence, in addition to the known fodder species. Full article
(This article belongs to the Special Issue Koalas Management: Ecology and Conservation)
Show Figures

Figure 1

28 pages, 2549 KiB  
Article
A 25K Wheat SNP Array Revealed the Genetic Diversity and Population Structure of Durum Wheat (Triticum turgidum subsp. durum) Landraces and Cultivars
by Lalise Ararsa, Behailu Mulugeta, Endashaw Bekele, Negash Geleta, Kibrom B. Abreha and Mulatu Geleta
Int. J. Mol. Sci. 2025, 26(15), 7220; https://doi.org/10.3390/ijms26157220 - 25 Jul 2025
Viewed by 1191
Abstract
Durum wheat, the world’s second most cultivated wheat species, is a staple crop, critical for global food security, including in Ethiopia where it serves as a center of diversity. However, climate change and genetic erosion threaten its genetic resources, necessitating genomic studies to [...] Read more.
Durum wheat, the world’s second most cultivated wheat species, is a staple crop, critical for global food security, including in Ethiopia where it serves as a center of diversity. However, climate change and genetic erosion threaten its genetic resources, necessitating genomic studies to support conservation and breeding efforts. This study characterized genome-wide diversity, population structure (STRUCTURE, principal coordinate analysis (PCoA), neighbor-joining trees, analysis of molecular variance (AMOVA)), and selection signatures (FST, Hardy–Weinberg deviations) in Ethiopian durum wheat by analyzing 376 genotypes (148 accessions) using an Illumina Infinium 25K single nucleotide polymorphism (SNP) array. A set of 7842 high-quality SNPs enabled the assessments, comparing landraces with cultivars and breeding populations. Results revealed moderate genetic diversity (mean polymorphism information content (PIC) = 0.17; gene diversity = 0.20) and identified 26 loci under selection, associated with key traits like grain yield, stress tolerance, and disease resistance. AMOVA revealed 80.1% variation among accessions, with no significant differentiation by altitude, region, or spike density. Landraces formed distinct clusters, harboring unique alleles, while admixture suggested gene flow via informal seed exchange. The findings highlight Ethiopia’s rich durum wheat diversity, emphasizing landraces as reservoirs of adaptive alleles for breeding. This study provides genomic insights to guide conservation and the development of climate-resilient cultivars, supporting sustainable wheat production globally. Full article
(This article belongs to the Special Issue Latest Research on Plant Genomics and Genome Editing, 2nd Edition)
Show Figures

Figure 1

20 pages, 8029 KiB  
Article
Fire-Induced Floristic and Structural Degradation Across a Vegetation Gradient in the Southern Amazon
by Loriene Gomes da Rocha, Ben Hur Marimon Junior, Amauri de Castro Barradas, Marco Antônio Camillo de Carvalho, Célia Regina Araújo Soares, Beatriz Schwantes Marimon, Gabriel H. P. de Mello Ribeiro, Edmar A. de Oliveira, Fernando Elias, Carmino Emidio Júnior, Dennis Rodrigues da Silva, Marcos Leandro Garcia, Jesulino Alves da Rocha Filho, Marcelo Zortea, Edmar Santos Moreira, Samiele Camargo de Oliveira Domingues, Eraldo A. T. Matricardi, David Galbraith, Ted R. Feldpausch, Imma Oliveras and Oliver L. Phillipsadd Show full author list remove Hide full author list
Forests 2025, 16(8), 1218; https://doi.org/10.3390/f16081218 - 24 Jul 2025
Viewed by 362
Abstract
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 [...] Read more.
Climate change and landscape fragmentation have made fires the primary drivers of forest degradation in Southern Amazonia. Understanding their impacts is crucial for informing public conservation policies. In this study, we assessed the effects of repeated fires on trees with a diameter ≥10 cm across three distinct vegetation types in this threatened region: Amazonian successional forest (SF), transitional forest (TF), and ombrophilous forest (OF). Two anthropogenic fires affected all three vegetation types in consecutive years. We hypothesized that SF would be the least impacted due to its more open structure and the presence of fire-adapted savanna (Cerrado) species. As expected, SF experienced the lowest tree mortality rate (9.1%). However, both TF and OF were heavily affected, with mortality rates of 28.0% and 29.7%, respectively. Despite SF’s apparent fire resilience, all vegetation types experienced a significant net loss of species and individuals. These results indicate a fire-induced degradation stage in both TF and OF, characterized by reduced species diversity and structural integrity. Our findings suggest that recurrent fires may trigger irreversible vegetation shifts and broader ecosystem tipping points across the Amazonian frontier. Full article
Show Figures

Figure 1

13 pages, 3118 KiB  
Article
Landscape Composition and Forest Structure Shape Phyllostomid Bat Assemblages in the Atlantic Forest Remnants
by Ricardo Bovendorp, Eduardo Mariano-Neto, Albérico Queiroz and Deborah Faria
Animals 2025, 15(14), 2082; https://doi.org/10.3390/ani15142082 - 15 Jul 2025
Viewed by 1030
Abstract
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness [...] Read more.
Habitat loss and land-use intensification are major threats to biodiversity in the Brazilian Atlantic Forest, particularly for bat assemblages that provide key ecosystem services. In this study, we examined how landscape composition (forest and pasture cover) and local forest structure influence the richness and abundance of phyllostomid bats across 20 forest fragments in southern Bahia. Bat sampling was conducted using mist nets, and forest structure was quantified using tree measurements and vertical foliage stratification. We applied structural equation modeling to test the direct and indirect effects of landscape and local variables. Our results show that forest cover has both direct and indirect positive effects on bat diversity, mediated by improved forest structure. In contrast, increased pasture cover negatively affected forest structure and was weakly associated with bat diversity. The most abundant species were generalist frugivores, such as Carollia perspicillata and Rhinophylla pumilio. These findings highlight the importance of maintaining forest cover and structural complexity to support bat diversity in agroforestry-dominated landscapes. Conservation strategies that integrate habitat protection with sustainable land-use practices are crucial to maintaining biodiversity and the ecological functions provided by bats in this globally threatened biome. Full article
(This article belongs to the Special Issue Conservation, Ecology and Health Issues of Forest Bats)
Show Figures

Figure 1

13 pages, 5309 KiB  
Article
Fungi Associated with Dying Buckthorn in North America
by Ryan D. M. Franke, Nickolas N. Rajtar and Robert A. Blanchette
Forests 2025, 16(7), 1148; https://doi.org/10.3390/f16071148 - 11 Jul 2025
Viewed by 434
Abstract
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. [...] Read more.
Common buckthorn (Rhamnus cathartica L.) is a small tree that forms dense stands, displacing native plant species and threatening natural forest habitats in its introduced range in North America. Removal via cutting is labor intensive and often ineffective due to vigorous resprouting. Although chemical control methods are effective, they can negatively affect sensitive ecosystems. A mycoherbicide that selectively kills buckthorn would provide an additional method for control. In the present study, fungi were collected from dying buckthorn species (Frangula alnus Mill., Rhamnus cathartica, Ventia alnifolia L’Hér) located at 19 sites across Minnesota and Wisconsin for their potential use as mycoherbicides for common buckthorn. A total of 412 fungi were isolated from samples of diseased tissue and identified via DNA extraction and sequencing. These fungi were identified as 120 unique taxa belonging to 81 genera. Of these fungi, 46 species belonging to 26 genera were considered to be canker or root-rot pathogens of woody plants, including species in Cytospora, Diaporthe, Diplodia, Dothiorella, Eutypella, Fusarium, Hymenochaete, Irpex, Phaeoacemonium, and others. A future study testing the pathogenicity of these putative pathogens of buckthorn is now needed to assess their utility as potential mycoherbicide agents for control of common buckthorn. Full article
(This article belongs to the Special Issue Pathogenic Fungi in Forest)
Show Figures

Figure 1

15 pages, 8861 KiB  
Article
The Complete Chloroplast Genome of Purdom’s Rhododendron (Rhododendron purdomii Rehder & E. H. Wilson): Genome Structure and Phylogenetic Analysis
by Lu Yuan, Ningning Zhang, Shixin Zhu and Yang Lu
Forests 2025, 16(7), 1120; https://doi.org/10.3390/f16071120 - 7 Jul 2025
Viewed by 323
Abstract
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, [...] Read more.
Rhododendron purdomii Rehder & E. H. Wilson (Ericaceae) is a threatened ornamental and medicinal shrub or small tree species primarily distributed in the Qinling-Daba Mountains of Central China. To facilitate its conservation and utilization, the complete chloroplast genome of Rh. purdomii was sequenced, assembled, and characterized. The cp genome exhibited a typical quadripartite structure with a total length of 208,062 bp, comprising a large single copy (LSC) region of 110,618 bp, a small single copy (SSC) region of 2606 bp, and two inverted repeat (IR) regions of 47,419 bp each. The overall GC content was 35.81%. The genome contained 146 genes, including 96 protein-coding genes, 42 transfer RNA genes, and 8 ribosomal RNA genes. Structure analysis identified 67,354 codons, 96 long repetitive sequences, and 171 simple sequence repeats. Comparative genomic analysis across Rhododendron species revealed hypervariable coding regions (accD, rps9) and non-coding regions (trnK-UUU-ycf3, trnI-CAU-rpoB, trnT-GGU-accD, rpoA-psbL, rpl20-trnC-GCA, trnI-CAU-rrn16, and trnI-CAU-rps16), which may serve as potential molecular markers for genetic identification. Phylogenetic reconstruction confirmed the monophyly of Rhododendron species and highlighted a close relationship between Rh. purdomii and Rh. henanense subsp. lingbaoense. These results provide essential genomic resources for advancing taxonomic, evolutionary, conservation, and breeding studies of Rh. purdomii and other species within the genus Rhododendron. Full article
(This article belongs to the Section Genetics and Molecular Biology)
Show Figures

Figure 1

27 pages, 6077 KiB  
Article
Identification of Restoration Pathways for the Climate Adaptation of Wych Elm (Ulmus glabra Huds.) in Türkiye
by Derya Gülçin, Javier Velázquez, Víctor Rincón, Jorge Mongil-Manso, Ebru Ersoy Tonyaloğlu, Ali Uğur Özcan, Buse Ar and Kerim Çiçek
Land 2025, 14(7), 1391; https://doi.org/10.3390/land14071391 - 2 Jul 2025
Viewed by 458
Abstract
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the [...] Read more.
Ulmus glabra Huds. is a mesophilic, montane broadleaf tree with high ecological value, commonly found in temperate riparian and floodplain forests across Türkiye. Its populations in Türkiye have declined due to anthropogenic disturbances and climatic pressures that cause habitat fragmentation and threaten the species’ long-term survival. In this research, we used Maximum Entropy (MaxEnt) to build species distribution models (SDMs) and applied the Restoration Planner (RP) tool to identify and prioritize critical restoration sites under both current and projected climate scenarios (SSP245, SSP370, SSP585). The SDMs highlighted areas of high suitability, primarily along the Black Sea coast. Future projections show that habitat fragmentation and shifts in suitable areas are expected to worsen. To systematically compare restoration options across different future scenarios, we derived and applied four spatial network status indicators using the RP tool. Specifically, we calculated Restoration Pixels (REST_PIX), Average Distance of Restoration Pixels from the Network (AVDIST_RP), Change in Equivalent Connected Area (ΔECA), and Restoration Efficiency (EFFIC) using the RP tool. For the 1 <-> 2 restoration pathways, the highest efficiency (EFFIC = 38.17) was recorded under present climate conditions. However, the largest improvement in connectivity (ΔECA = 60,775.62) was found in the 4 <-> 5 pathway under the SSP585 scenario, though this required substantial restoration effort (REST_PIX = 385). Temporal analysis noted that the restoration action will have most effectiveness between 2040 and 2080, while between 2081 and 2100, increased habitat fragmentation can severely undermine ecological connectivity. The result indicates that incorporation of habitat suitability modeling into restoration planning can help to design cost-effective restoration actions for degraded land. Moreover, the approach used herein provides a reproducible framework for the enhancement of species sustainability and habitat connectivity under varying climate conditions. Full article
Show Figures

Figure 1

22 pages, 2625 KiB  
Article
Leaf Litter Mixtures in Guam: Decomposition Synergism and Antagonism of Two Endangered Tree Species
by Thomas E. Marler
Ecologies 2025, 6(3), 47; https://doi.org/10.3390/ecologies6030047 - 1 Jul 2025
Viewed by 574
Abstract
Leaf litter traits among tree species exert a direct influence on spatiotemporal nutrient turnover and an indirect influence by shifting the decomposition dynamics of leaf litter mixtures including other sympatric species. Cycas micronesica and Serianthes nelsonii are two Mariana Island tree species that [...] Read more.
Leaf litter traits among tree species exert a direct influence on spatiotemporal nutrient turnover and an indirect influence by shifting the decomposition dynamics of leaf litter mixtures including other sympatric species. Cycas micronesica and Serianthes nelsonii are two Mariana Island tree species that are endangered, and developing a greater understanding of the influence of these trees on biogeochemistry may improve information-based conservation decisions. The objectives of this study were to quantify the influence of mixing the leaf litter of these species with 12 sympatric forest plants to determine the additive and nonadditive influences on decomposition. The C. micronesica litter was collectively antagonistic when litter mixtures were incubated in a mesocosm study and a field litterbag study, and the response was similar among the included species. The S. nelsonii litter was collectively synergistic among the same mixed species, and the response was dissimilar among the included species. The contributions of these two threatened tree species to spatiotemporal diversity in biogeochemistry are dissimilar and considerable. These findings indicate that species recovery efforts for these two species are of paramount importance for maintaining Mariana Island ecological integrity and native biodiversity by sustaining their contributions to ecosystem services. Full article
Show Figures

Figure 1

25 pages, 10286 KiB  
Article
Plant Community Restoration Efforts in Degraded Blufftop Parkland in Southeastern Minnesota, USA
by Neal D. Mundahl, Austin M. Yantes and John Howard
Land 2025, 14(7), 1326; https://doi.org/10.3390/land14071326 - 22 Jun 2025
Viewed by 556
Abstract
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn [...] Read more.
Garvin Heights Park in southeastern Minnesota, USA, is a 12 ha mosaic of bluff prairie, oak savanna, and oak–hickory woodland co-owned by the City of Winona and Winona State University, with a 40+ year history of encroachment by non-native woody invasives, especially buckthorn (Rhamnus cathartica) and honeysuckles (Lonicera spp.). Habitat restoration was initiated in the early 1990s, but management gaps and a seedbank of invasives compromised initial efforts. More consistent and sustainable restoration activities since 2016 have included cutting and chemical treatment of invasives, managed goat browsing, targeted reseeding and plug planting with native species, and more regular prescribed fires. Throughout the restoration process, we assessed changes in buckthorn densities in response to various management practices, assessed the restored savanna tree community, and documented the presence of blooming plants across all park habitats. Manual clearing of woody invasives and repeated goat browsing significantly reduced buckthorn and honeysuckle abundance in prairies and savannas. Park plant communities responded to the combination of management strategies with reduced densities of woody invasives and expanding diversity (currently >220 species present) of forbs and grasses, including a large and growing population of state-threatened Great Indian Plantain (Arnoglossum reniforme). Prescribed fires have benefitted prairies but have done little to improve savanna plant communities, due largely to excessive tree canopy coverage causing a lack of burnable fuels (i.e., dry forbs and grasses). Improved partnerships between landowners and dedicated volunteers are working to expand restoration efforts to include other portions of the park and adjacent woodlands. Full article
Show Figures

Figure 1

16 pages, 5265 KiB  
Article
Global Warming Impacts Suitable Habitats of the Subtropical Endemic Tree Acer pubinerve Rehder, Newly Recorded in Jiangsu Province, China
by Jie Miao, Xinyu Zhang, Zhi Yang, Chao Tan and Yong Yang
Plants 2025, 14(13), 1895; https://doi.org/10.3390/plants14131895 - 20 Jun 2025
Viewed by 403
Abstract
Global warming has caused the change of the geographical distribution of many species and threatened the living of species on earth. It is important to describe and predict the response of these species to current and future climate changes to conserve and utilize [...] Read more.
Global warming has caused the change of the geographical distribution of many species and threatened the living of species on earth. It is important to describe and predict the response of these species to current and future climate changes to conserve and utilize the endemic forest species. Acer pubinerve of the Sapindaceae is an important forest tree species endemic to China, our recent fieldwork recorded A. pubinerve in the Jiangsu province for the first time, representing the northernmost known occurrence of the species. In this study, we compiled an occurrence dataset of A. pubinerve based on field investigation, herbarium specimen data and literature, and mapped the resource distribution of this endemic forest species in China. Then, we used the optimized MaxEnt model to predict the potential suitable areas of the species under current climate conditions and future climate change scenarios and studied the impacts of environmental variables on the suitable areas of the species. The MaxEnt model, optimized with a regularization multiplier of 0.5 and a feature combination of linear and quadratic terms, exhibited the best predictive performance. The prediction accuracy of the model was extremely high and the AUC values of training and test data were 0.995 and 0.998, respectively. We found that the leading environmental variables affecting the potential distribution of A. pubinerve include the mean temperature of warmest quarter, the mean temperature of driest quarter, and the annual precipitation. Under the current climatic condition, the suitable distribution area of A. pubinerve is 165.68 × 104 km2, mainly located in the provinces of Zhejiang, Fujian, Jiangxi, Hunan, Guangdong, and Guangxi. Compared with the suitable area under the current climate, the total suitable areas of A. pubinerve is projected to expand toward the north under the future climate change scenarios SSP126, SSP370, and SSP585, while its center shows a general trend of westward migration. Our study lays the foundation for conservation and resource utilization of this endemic tree species in China. Full article
Show Figures

Figure 1

33 pages, 42480 KiB  
Article
Wood Anatomy Properties and Global Climate Change Constraints of Forest Species from the Natural Forest of Mozambique
by Eugénia Joaquim-Meque, José Louzada, Francisco Tarcísio Moraes Mady, Valquíria Clara Freire de Souza, Margarida L. R. Liberato and Teresa Fidalgo Fonseca
Forests 2025, 16(6), 1018; https://doi.org/10.3390/f16061018 - 17 Jun 2025
Viewed by 453
Abstract
Mozambique’s natural forests are increasingly affected by climate change, deforestation, and unsustainable exploitation, threatening both biodiversity and rural livelihoods. This study examines the wood anatomical characteristics of five commercially important tree species—Spirostachys africana Sond., Afzelia quanzensis Welw., Millettia stuhlmannii Taub., Pterocarpus angolensis [...] Read more.
Mozambique’s natural forests are increasingly affected by climate change, deforestation, and unsustainable exploitation, threatening both biodiversity and rural livelihoods. This study examines the wood anatomical characteristics of five commercially important tree species—Spirostachys africana Sond., Afzelia quanzensis Welw., Millettia stuhlmannii Taub., Pterocarpus angolensis DC., and Colophospermum mopane (J. Kirk ex Benth.) J. Léonard—to assess their vulnerability to drought, cyclones, and floods. The aim is to enhance current knowledge regarding their wood anatomy and to clarify how these anatomical traits could help to identify species most vulnerable to climate extremes. Wood samples were collected from native forests and analyzed in laboratories in Brazil and Portugal using standardized anatomical methods according to IAWA guidelines. The results show that Afzelia quanzensis, Millettia stuhlmannii, Pterocarpus angolensis, and Colophospermum mopane have solitary vessels with vestured pits and thick-walled fibers, which improve hydraulic conductivity and drought resistance. Colophospermum mopane shows the greatest anatomical adaptation to climatic stressors. By contrast, Spirostachys africana has narrow, grouped vessels and thin walls, indicating higher susceptibility to embolism and limited resilience. Cyclone resistance is associated with higher wood density and parenchyma abundance, which enhance mechanical stability and recovery. Flood resilience, however, appears to depend more on leaf and root adaptations than on wood anatomy alone. These findings highlight the role of wood structure in climate adaptability and underline the urgency of integrating anatomical data into forest management strategies to support the conservation and sustainable use of Mozambique’s forest resources. Full article
(This article belongs to the Special Issue Responses and Adaptation of Trees to Environmental Stress)
Show Figures

Figure 1

21 pages, 4751 KiB  
Article
Vulnerability and Adaptation of Coastal Forests to Climate Change: Insights from the Igneada Longos Forests of Türkiye
by Halil Barış Özel, Tuğrul Varol, İrşad Bayırhan, Ayhan Ateşoğlu, Fidan Şevval Bulut, Gürcan Büyüksalih and Cem Gazioğlu
Forests 2025, 16(6), 976; https://doi.org/10.3390/f16060976 - 10 Jun 2025
Viewed by 556
Abstract
As one of Europe’s rare floodplain forest ecosystems, the İğneada Longos Forests face increasing ecological pressures; this study examines land use and land cover (LULC) changes in the İğneada Longos Forests, a protected national park in Turkey, between 1984 and 2014, while also [...] Read more.
As one of Europe’s rare floodplain forest ecosystems, the İğneada Longos Forests face increasing ecological pressures; this study examines land use and land cover (LULC) changes in the İğneada Longos Forests, a protected national park in Turkey, between 1984 and 2014, while also assessing future climate change impacts under different shared socioeconomic pathways (SSPs). In this context, the MaxEnt model, which exhibits a very high sensitivity, was used to determine the land use/land change and the change in natural distribution habitats of the forest tree species in the İğneada Longos Forests, which constitute the research area, due to the effects of climate change. The analysis of forest management plans revealed significant LULC shifts, including wetland loss, cropland expansion, and declines in pioneer tree species, such as the lowland maple and the European ash, due to anthropogenic pressures and increasing droughts. Climate modeling using the Emberger and De Martonne indices projected severe aridity by 2100, with Mediterranean climate dominance expanding (up to 89.25% under SSP3–7.0) and humid zones disappearing. These changes threaten biodiversity, carbon sequestration capacity, and ecosystem stability, particularly in floodplain forests, which are critical for carbon storage. The findings underscore the urgent need for adaptive conservation strategies, stakeholder collaboration, and climate-resilient forest management to mitigate ecological degradation and sustain ecosystem services under escalating climate stress. Full article
Show Figures

Figure 1

28 pages, 2448 KiB  
Article
Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest
by Simon D. Baker, Kristen M. Waring, David Auty and Nicholas Wilhelmi
Forests 2025, 16(6), 967; https://doi.org/10.3390/f16060967 - 7 Jun 2025
Viewed by 614
Abstract
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) [...] Read more.
(1) Stand-replacing fires may threaten the continued stability of mixed conifer forests in the U.S. Southwest. Increasing fire frequency and severity have made post-fire forest recovery trajectories uncertain for many coniferous species, potentially leading to long-term shifts in forest structure and composition. (2) The purpose of this study was to examine post-fire stand dynamics over a 10-year period, using a network of permanent plots established prior to wildfire events across Arizona and New Mexico. We assessed changes in overstory composition, regeneration, and fuel loading across different fire severities. (3) High severity fire caused near-total overstory mortality, with little to no conifer regeneration and abundant sprouting hardwood regeneration. Lower severity fire was more favorable to fire-tolerant conifer species; however, mortality among mature trees was high, and fire-intolerant conifers were either diminished or extirpated completely. (4) In high severity fires, changes in overstory and understory structure and composition may be long-lasting. Additionally, increased fuel loads following high severity fire suggests a heightened risk of reburns, potentially perpetuating ecotype conversion. Our findings highlight the need for active management strategies, including reforestation and fuel reduction treatments, to support forest resilience for mixed conifer ecosystems in the US Southwest and similar forest types in other regions in the face of ongoing climate and fire regime changes. Full article
Show Figures

Figure 1

10 pages, 1638 KiB  
Article
Overexpression of PagLAR3 in Populus alba × P. glandulosa Promotes Resistance to Hyphantria cunea
by Zhibin Fan, Luxuan Hou, Zheshu Wang and Lijuan Wang
Agronomy 2025, 15(6), 1347; https://doi.org/10.3390/agronomy15061347 - 30 May 2025
Viewed by 549
Abstract
Poplar is a vital ecological and economic tree species. In recent years, poplar plantations in China have been increasingly threatened by the fall webworm (Hyphantria cunea). Developing resistant varieties through genetic engineering is an environmentally friendly and cost-effective approach to controlling [...] Read more.
Poplar is a vital ecological and economic tree species. In recent years, poplar plantations in China have been increasingly threatened by the fall webworm (Hyphantria cunea). Developing resistant varieties through genetic engineering is an environmentally friendly and cost-effective approach to controlling this pest. Although some exogenous toxic genes have been used in insect-resistant poplar breeding, endogenous defense genes remain scarce. This study focused on tannins, key defensive metabolites in poplar, and explored the role of PagLAR3, a gene encoding a crucial enzyme in condensed tannin biosynthesis, in poplar’s defense against the fall webworm. The findings revealed that overexpression of PagLAR3 significantly increased levels of catechin, gallocatechin, procyanidin B3, and procyanidin C2 in poplar leaves. Feeding assays with fall webworm larvae demonstrated that, compared with an 84 K (P. alba × P. glandulosa) control, transgenic lines overexpressing PagLAR3 significantly reduced larval and pupal weight, prolonged larval duration, and caused a decrease in adult emergence. Development retardation caused by overexpression of PagLAR3 in fall webworm is expected to effectively control the pest population, thereby mitigating damage to poplar trees. PagLAR3 represents a potential target for enhancing poplar resistance to the fall webworm. Full article
Show Figures

Figure 1

Back to TopTop