Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest
Abstract
:1. Introduction
- (a)
- What changes occurred in overstory structure and composition immediately following wildfire, and in the subsequent 10 years of recovery, and how are these changes influenced by pre-fire stand structure, composition, and burn severity?
- (b)
- What changes in fuel loading occurred over time and across different fire severities, and how do long-term fuel loading trends compare with pre-fire levels?
- (c)
- Does tree regeneration density and species composition differ significantly from pre-fire levels at different burn severities?
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Calculations
2.4. Statistical Analyses
3. Results
3.1. Overstory Structure and Composition
3.2. Fuel Loading
3.3. Understory Response
4. Discussion
4.1. Overstory Structure and Composition
4.2. Fuel Loading
4.3. Understory Response
4.4. Comparison of Findings
4.5. Management Implications
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CBI | Composite burn index |
H | High severity fire |
L-M | Low–moderate severity fire |
DBH | Diameter at breast height |
BA | Basal area per hectare |
TPH | Trees per hectare |
QMD | Quadratic mean diameter |
AIC | Akaike information criterion |
K-W test | Kruskal–Wallis test |
K-S test | Kolmogorov–Smirnov test |
WCX test | Wilcoxon signed-rank test |
TRMI | Topographic relative moisture index |
References
- Margolis, E.Q.; Balmat, J. Fire history and fire–climate relationships along a fire regime gradient in the Santa Fe Municipal Watershed, NM, USA. For. Ecol. Manag. 2009, 258, 2416–2430. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Falk, D.A.; Lynch, A.M.; Swetnam, T.W. Fire severity, size, and climate associations diverge from historical precedent along an ecological gradient in the Pinaleno Mountains, Arizona, USA. For. Ecol. Manag. 2014, 329, 264–278. [Google Scholar] [CrossRef]
- Covington, W.W.; Moore, M.M. Postsettlement Changes in Natural Fire Regimes and Forest Structure. J. Sustain. For. 1994, 2, 153–181. [Google Scholar] [CrossRef]
- Harris, L.; Taylor, A.H. Topography, Fuels, and Fire Exclusion Drive Fire Severity of the Rim Fire in an Old-Growth Mixed-Conifer Forest, Yosemite National Park, USA. Ecosystems 2015, 18, 1192–1208. [Google Scholar] [CrossRef]
- Cocke, A.E.; Fulé, P.Z.; Crouse, J.E. Forest change on a steep mountain gradient after extended fire exclusion: San Francisco Peaks, Arizona, USA. J. Appl. Ecol. 2005, 42, 814–823. [Google Scholar] [CrossRef]
- Sakulich, J.; Taylor, A.H. Fire regimes and forest structure in a sky island mixed conifer forest, Guadalupe Mountains National Park, Texas, USA. For. Ecol. Manag. 2007, 241, 62–73. [Google Scholar] [CrossRef]
- Rodman, K.C.; Sánchez Meador, A.J.; Huffman, D.W.; Waring, K.M. Reference Conditions and Historical Fine-Scale Spatial Dynamics in a Dry Mixed-Conifer Forest, Arizona, USA. For. Sci. 2016, 62, 268–280. [Google Scholar] [CrossRef]
- Balch, J.K.; Bradley, B.A.; Abatzoglou, J.T.; Nagy, R.C.; Fusco, E.J.; Mahood, A.L. Human-started wildfires expand the fire niche across the United States. Proc. Natl. Acad. Sci. USA 2017, 114, 2946–2951. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Crouse, J.E.; Cocke, A.E.; Moore, M.M.; Covington, W.W. Changes in canopy fuels and potential fire behavior 1880–2040: Grand Canyon, Arizona. Ecol. Model. 2004, 175, 231–248. [Google Scholar] [CrossRef]
- Abatzoglou, J.T.; Williams, A.P. Impact of anthropogenic climate change on wildfire across western US forests. Proc. Natl. Acad. Sci. USA 2016, 113, 11770–11775. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Kemp, K.B.; Higuera, P.E.; Harvey, B.J.; Rother, M.T.; Donato, D.C.; Morgan, P.; Veblen, T.T. Evidence for declining forest resilience to wildfires under climate change. Ecol. Lett. 2018, 21, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Coop, J.D. Postfire futures in southwestern forests: Climate and landscape influences on trajectories of recovery and conversion. Ecol. Appl. 2022, 33, e2725. [Google Scholar] [CrossRef] [PubMed]
- Mueller, S.E.; Thode, A.E.; Margolis, E.Q.; Yocom, L.L.; Young, J.D.; Iniguez, J.M. Climate relationships with increasing wildfire in the southwestern US from 1984 to 2015. For. Ecol. Manag. 2020, 460, 117861. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Nesmith, J.C.B.; Keifer, M.; Knapp, E.E.; Flint, A.; Flint, L. Climatic stress increases forest fire severity across the western United States. Ecol. Lett. 2013, 16, 1151–1156. [Google Scholar] [CrossRef]
- Furniss, T.J.; Larson, A.J.; Kane, V.R.; Lutz, J.A. Wildfire and drought moderate the spatial elements of tree mortality. Ecosphere 2020, 11, e03214. [Google Scholar] [CrossRef]
- Coop, J.D.; Parks, S.A.; Stevens-Rumann, C.S.; Crausbay, S.D.; Higuera, P.E.; Hurteau, M.D.; Tepley, A.; Whitman, E.; Assal, T.; Collins, B.M.; et al. Wildfire-Driven Forest Conversion in Western North American Landscapes. BioScience 2020, 70, 659–673. [Google Scholar] [CrossRef]
- Davis, K.T.; Dobrowski, S.Z.; Higuera, P.E.; Holden, Z.A.; Veblen, T.T.; Rother, M.T.; Parks, S.A.; Sala, A.; Maneta, M.P. Wildfires and climate change push low-elevation forests across a critical climate threshold for tree regeneration. Proc. Natl. Acad. Sci. USA 2019, 116, 6193–6198. [Google Scholar] [CrossRef]
- Shirk, A.J.; Cushman, S.A.; Waring, K.M.; Wehenkel, C.A.; Leal-Sáenz, A.; Toney, C.; Lopez-Sanchez, C.A. Southwestern white pine (Pinus strobiformis) species distribution models project a large range shift and contraction due to regional climatic changes. For. Ecol. Manag. 2018, 411, 176–186. [Google Scholar] [CrossRef]
- Savage, M.; Mast, J.N.; Feddema, J.J. Double whammy: High-severity fire and drought in ponderosa pine forests of the Southwest. Can. J. For. Res. 2013, 43, 570–583. [Google Scholar] [CrossRef]
- Rehfeldt, G.E.; Ferguson, D.E.; Crookston, N.L. Aspen, climate, and sudden decline in western USA. For. Ecol. Manag. 2009, 258, 2353–2364. [Google Scholar] [CrossRef]
- Weiskittel, A.R.; Crookston, N.L.; Rehfeldt, G.E. Projected future suitable habitat and productivity of Douglas-fir in western North America. Schweiz. Z. Fur Forstwes. 2012, 163, 70–78. [Google Scholar] [CrossRef]
- Oliver, C.D. Forest development in North America following major disturbances. For. Ecol. Manag. 1980, 3, 153–168. [Google Scholar] [CrossRef]
- Seidl, R.; Turner, M.G. Post-disturbance reorganization of forest ecosystems in a changing world. Proc. Natl. Acad. Sci. USA 2022, 119, e2202190119. [Google Scholar] [CrossRef]
- Coop, J.D.; Delory, T.J.; Downing, W.M.; Haire, S.L.; Krawchuk, M.A.; Miller, C.; Parisien, M.-A.E.; Walker, R.B. Contributions of fire refugia to resilient ponderosa pine and dry mixed-conifer forest landscapes. Ecosphere 2019, 10, e02809. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Sánchez Meador, A.J.; Iniguez, J.M. Moisture and vegetation cover limit ponderosa pine regeneration in high-severity burn patches in the southwestern US. Fire Ecol. 2021, 17, 14. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Morgan, P. Tree regeneration following wildfires in the western US: A review. Fire Ecol. 2019, 15, 15. [Google Scholar] [CrossRef]
- Holden, Z.A.; Morgan, P.; Hudak, A.T. Burn Severity of Areas Reburned by Wildfires in the Gila National Forest, New Mexico, USA. Fire Ecol. 2010, 6, 77–85. [Google Scholar] [CrossRef]
- Van Wagtendonk, J.W.; Van Wagtendonk, K.A.; Thode, A.E. Factors Associated with the Severity of Intersecting Fires in Yosemite National Park, California, USA. Fire Ecol. 2012, 8, 11–31. [Google Scholar] [CrossRef]
- Savage, M.; Mast, J.N. How resilient are southwestern ponderosa pine forests after crown fires? Can. J. For. Res. 2005, 35, 967–977. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Morgan, P. Repeated wildfires alter forest recovery of mixed-conifer ecosystems. Ecol. Appl. 2016, 26, 1842–1853. [Google Scholar] [CrossRef]
- Higgins, A.M.; Waring, K.M.; Thode, A.E. The effects of burn entry and burn severity on ponderosa pine and mixed conifer forests in Grand Canyon National Park. Int. J. Wildland Fire 2015, 24, 495. [Google Scholar] [CrossRef]
- Guiterman, C.H.; Gregg, R.M.; Marshall, L.A.E.; Beckmann, J.J.; van Mantgem, P.J.; Falk, D.A.; Keeley, J.E.; Caprio, A.C.; Coop, J.D.; Fornwalt, P.J.; et al. Vegetation type conversion in the US Southwest: Frontline observations and management responses. Fire Ecol. 2022, 18, 6. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Korb, J.E.; Wu, R. Changes in forest structure of a mixed conifer forest, southwestern Colorado, USA. For. Ecol. Manag. 2009, 258, 1200–1210. [Google Scholar] [CrossRef]
- Nemens, D.G.; Kidd, K.R.; Varner, J.M.; Wing, B. Recurring wildfires provoke type conversion in dry western forests. Ecosphere 2022, 13, e4184. [Google Scholar] [CrossRef]
- O’Connor, C.D.; Falk, D.A.; Garfin, G.M. Projected Climate-Fire Interactions Drive Forest to Shrubland Transition on an Arizona Sky Island. Front. Environ. Sci. 2020, 8, 137. [Google Scholar] [CrossRef]
- Wan, H.Y.; Cushman, S.A.; Ganey, J.L. The effect of scale in quantifying fire impacts on species habitats. Fire Ecol. 2020, 16, 9. [Google Scholar] [CrossRef]
- Keyser, A.R.; Krofcheck, D.J.; Remy, C.C.; Allen, C.D.; Hurteau, M.D. Simulated Increases in Fire Activity Reinforce Shrub Conversion in a Southwestern US Forest. Ecosystems 2020, 23, 1702–1713. [Google Scholar] [CrossRef]
- Coop, J.D.; Parks, S.A.; McClernan, S.R.; Holsinger, L.M. Influences of prior wildfires on vegetation response to subsequent fire in a reburned Southwestern landscape. Ecol. Appl. 2016, 26, 346–354. [Google Scholar] [CrossRef]
- Roccaforte, J.P. The Wallow Fire and Its Effects on Mixed Conifer Forest: A Comparison with Reference Conditions. Special Report to the Apache-Sitgreaves National Forests, USDA Forest Service, Region 3; Ecological Restoration Institute Special Report; NAU Ecological Restoration Institute: Flagstaff, AZ, USA, 2013. [Google Scholar]
- Singleton, M.P.; Thode, A.E.; Meador, A.J.S.; Iniguez, J.M. Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015. For. Ecol. Manag. 2019, 433, 709–719. [Google Scholar] [CrossRef]
- Yocom, L.L.; Jenness, J.; Fulé, P.Z.; Thode, A.E. Fire Severity in Reburns Depends on Vegetation Type in Arizona and New Mexico, USA. Forests 2022, 13, 1957. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Crouse, J.E.; Heinlein, T.A.; Moore, M.M.; Covington, W.W.; Verkamp, G. Mixed-severity fire regime in a high-elevation forest of Grand Canyon, Arizona, USA. Landsc. Ecol. 2003, 18, 465–486. [Google Scholar] [CrossRef]
- Haffey, C.; Sisk, T.D.; Allen, C.D.; Thode, A.E.; Margolis, E.Q. Limits to Ponderosa Pine Regeneration following Large High-Severity Forest Fires in the United States Southwest. Fire Ecol. 2018, 14, 143–163. [Google Scholar] [CrossRef]
- Haire, S.L.; McGarigal, K. Inhabitants of landscape scars: Succession of woody plants after large, severe forest fires in Arizona and New Mexico. Southwest. Nat. 2008, 53, 146–161. [Google Scholar] [CrossRef]
- Johnson, M.C.; Kennedy, M.C. Altered vegetation structure from mechanical thinning treatments changed wildfire behaviour in the wildland–urban interface on the 2011 Wallow Fire, Arizona, USA. Int. J. Wildland Fire 2019, 28, 216. [Google Scholar] [CrossRef]
- Roccaforte, J.P.; Meador, A.S.; Waltz, A.E.M.; Gaylord, M.L.; Stoddard, M.T.; Huffman, D.W. Delayed tree mortality, bark beetle activity, and regeneration dynamics five years following the Wallow Fire, Arizona, USA: Assessing trajectories towards resiliency. For. Ecol. Manag. 2018, 428, 20–26. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Chapman, T.B.; Rother, M.T.; Wion, A.P.; Redmond, M.D. Limitations to recovery following wildfire in dry forests of southern Colorado and northern New Mexico, USA. Ecol. Appl. 2020, 30, e02001. [Google Scholar] [CrossRef] [PubMed]
- Springer, J.D.; Huffman, D.W.; Stoddard, M.T.; Sánchez Meador, A.J.; Waltz, A.E.M. Plant community dynamics following hazardous fuel treatments and mega-wildfire in a warm-dry mixed-conifer forest of the USA. For. Ecol. Manag. 2018, 429, 278–286. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Sieg, C.H.; Hunter, M.E. Ten years after wildfires: How does varying tree mortality impact fire hazard and forest resiliency? For. Ecol. Manag. 2012, 267, 199–208. [Google Scholar] [CrossRef]
- van Mantgem, P.J.; Nesmith, J.C.B.; Keifer, M.; Brooks, M. Tree mortality patterns following prescribed fire for Pinus and Abies across the southwestern United States. For. Ecol. Manag. 2013, 289, 463–469. [Google Scholar] [CrossRef]
- Waltz, A.E.M.; Stoddard, M.T.; Kalies, E.L.; Springer, J.D.; Huffman, D.W.; Meador, A.S. Effectiveness of fuel reduction treatments: Assessing metrics of forest resiliency and wildfire severity after the Wallow Fire, AZ. For. Ecol. Manag. 2014, 334, 43–52. [Google Scholar] [CrossRef]
- Amato, V.J.W.; Lightfoot, D.; Stropki, C.; Pease, M. Relationships between tree stand density and burn severity as measured by the Composite Burn Index following a ponderosa pine forest wildfire in the American Southwest. For. Ecol. Manag. 2013, 302, 71–84. [Google Scholar] [CrossRef]
- Waring, K.M.; Wilhelmi, N. Wildfire and climate change in southwestern mixed conifer forests: Implications for P. strobiformis. Nutcracker Notes 2022, 42, 12–15. [Google Scholar]
- Reynolds, R.T.; Sanchez Meador, A.J.; Youtz, J.A.; Nicolet, T.; Matonis, M.S.; Jackson, P.L.; DeLorenzo, D.G.; Graves, A.D. Restoring Composition and Structure in Southwestern Frequent-Fire Forests: A Science-Based Framework for Improving Ecosystem Resiliency; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2013.
- Romme, W.H.; Floyd, M.L.; Hanna, D. Historical Range of Variability and Current Landscape Condition Analysis: South Central Highlands Section, Southwestern Colorado & Northwestern New Mexico; Colorado Forest Restoration Institute at Colorado State University: Fort Collins, CO, USA, 2009. [Google Scholar]
- Remke, M.J.; Chambers, M.E.; Tuten, M.C.; Pelz, K.A. Mixed Conifer Forests in the San Juan Mountain Region of Colorado, USA: The Status of Our Knowledge and Management Implications; Colorado Forest Restoration Institute at Colorado State University: Fort Collins, CO, USA, 2021. [Google Scholar] [CrossRef]
- Margolis, E.Q.; Malevich, S.B. Historical dominance of low-severity fire in dry and wet mixed-conifer forest habitats of the endangered terrestrial Jemez Mountains salamander (Plethodon neomexicanus). For. Ecol. Manag. 2016, 375, 12–26. [Google Scholar] [CrossRef]
- Looney, C.E.; Waring, K.M. Patterns of forest structure, competition and regeneration in southwestern white pine (Pinus strobiformis) forests. For. Ecol. Manag. 2012, 286, 159–170. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Covington, W.W.; Moore, M.M.; Heinlein, T.A.; Waltz, A.E.M. Natural variability in forests of the Grand Canyon, USA. J. Biogeogr. 2002, 29, 31–47. [Google Scholar] [CrossRef]
- Mast, J.N.; Fulé, P.Z.; Moore, M.M.; Covington, W.W.; Waltz, A.E.M. Restoration of Presettlement Age Structure of an Arizona Ponderosa Pine Forest. Ecol. Appl. 1999, 9, 228–239. [Google Scholar] [CrossRef]
- White, A.S. Presettlement Regeneration Patterns in a Southwestern Ponderosa Pine Stand. Ecology 1985, 66, 589–594. [Google Scholar] [CrossRef]
- Mast, J.N.; Wolf, J.J. Spatial patch patterns and altered forest structure in middle elevation versus upper ecotonal mixed-conifer forests, Grand Canyon National Park, Arizona, USA. For. Ecol. Manag. 2006, 236, 241–250. [Google Scholar] [CrossRef]
- Sheppard, P.R.; Comrie, A.C.; Packin, G.D.; Angersbach, K.; Hughes, M.K. The climate of the US Southwest. Clim. Res. 2002, 21, 219–238. [Google Scholar] [CrossRef]
- Parker, A.J. The Topographic Relative Moisture Index: An Approach to Soil-Moisture Assessment in Mountain Terrain. Phys. Geogr. 1982, 3, 160–168. [Google Scholar] [CrossRef]
- McCune, B.; Keon, D. Equations for potential annual direct incident radiation and heat load. J. Veg. Sci. 2002, 13, 603–606. [Google Scholar] [CrossRef]
- Benkman, C.W.; Balda, R.P.; Smith, C.C. Adaptations for Seed Dispersal and the Compromises Due to Seed Predation in Limber Pine. Ecology 1984, 65, 632–642. [Google Scholar] [CrossRef]
- Laacke, R.J. Abies concolor. In Silvics of North America; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1990; Volume 1, pp. 48–69. [Google Scholar]
- Brown, J.K. Handbook for Inventorying Downed Woody Material; U.S. Department of Agriculture, Forest Service, Intermountain Forest & Range Experiment Station: Ogden, UT, USA, 1974.
- Maser, C.; Anderson, K.; Cromack, K., Jr.; Williams, J.T.; Martin, R.E. Dead and down woody material. In Wildlife Habitats in Managed Forests: The Blue Mountains of Oregon and Washington; Agriculture Handbook No. 553; U.S. Department of Agriculture, Forest Service: Washington, DC, USA, 1979; pp. 78–95. [Google Scholar]
- Key, C.H.; Benson, N.C. Landscape Assessment (LA). In FIREMON: Fire Effects Monitoring and Inventory System; Lutes, D.C., Keane, R.E., Caratti, J.F., Key, C.H., Benson, N.C., Sutherland, S., Gangi, L.J., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2006. [Google Scholar]
- U.S. Department of Agriculture, Forest Service RAVG. Available online: https://burnseverity.cr.usgs.gov/ravg/ (accessed on 3 February 2024).
- R Core Team. R: A Language and Environment for Statistical Computing; R Core Team: Vienna, Austria, 2023. [Google Scholar]
- Looney, C.E. Patterns of Forest Structure, Competition, Regeneration and White Pine Blister Rust Invasion in Southwestern White Pine (Pinus strobiformis) Forests. Master’s Thesis, Northern Arizona University, Flagstaff, AZ, USA, 2012. [Google Scholar]
- Sackett, S.S. Woody Fuel Particle Size and Specific Gravity of Southwestern Tree Species; U.S. Department of Agriculture, Forest Service, Rocky Mountain Forest and Range Experiment Station: Fort Collins, CO, USA, 1980.
- Green, D.W.; Winandy, J.E.; Kretschmann, D.E. Mechanical Properties of Wood; General Technical Report FPL; USDA Forest Service, Forest Products Laboratory: Madison, WI, USA, 1999; pp. 4.1–4.45.
- Van Wagtendonk, J.W.; Benedict, J.M.; Sydoriak, W.M. Fuel bed characteristics of Sierra Nevada conifers. West. J. Appl. For. 1998, 13, 73–84. [Google Scholar] [CrossRef]
- Van Wagdendonk, J.W.; Benedict, J.M.; Sydoriak, W.M. Physical Properties of Woody Fuel Particles of Sierra Nevada Conifers. Int. J. Wildland Fire 1996, 6, 117. [Google Scholar] [CrossRef]
- Curtis, J.T.; McIntosh, R.P. An upland forest continuum in the prairie-forest border region of Wisconsin. Ecology 1951, 32, 476–496. [Google Scholar] [CrossRef]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Harrell, F.E., Jr. Hmisc: Harrell Miscellaneous; 2023. Available online: https://github.com/harrelfe/hmisc (accessed on 2 June 2025).
- Gelman, A. Data Analysis Using Regression and Multilevel/Hierarchical Models; Cambridge University Press: Cambridge, UK, 2007; ISBN 978-0-511-79094-2. [Google Scholar]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Lüdecke, D.; Ben-Shachar, M.S.; Patil, I.; Waggoner, P.; Makowski, D. performance: An R Package for Assessment, Comparison and Testing of Statistical Models. J. Open Source Softw. 2021, 6, 3139. [Google Scholar] [CrossRef]
- Hartig, F. DHARMa: Residual Diagnostics for Hierarchical (Multi-Level/Mixed) Regression Models; 2022. Available online: https://github.com/florianhartig/DHARMa (accessed on 2 June 2025).
- Kozak, A.; Kozak, R. Does cross validation provide additional information in the evaluation of regression models? Can. J. For. Res. 2003, 33, 976–987. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual Comparisons by Ranking Methods. Biom. Bull. 1945, 1, 80. [Google Scholar] [CrossRef]
- Lenth, R.V. Emmeans: Estimated Marginal Means, aka Least-Squares Means; 2023. Available online: https://github.com/rvlenth/emmeans (accessed on 2 June 2025).
- Bates, D.; Maechler, M.; Bolker, B.; Walker; Christensen, R.H.B.; Singmann, H.; Dai, B.; Scheipl, F.; Grothendieck, G.; Green, P.; et al. lme4: Linear Mixed-Effects Models Using “Eigen” and S4; 2023. Available online: https://github.com/lme4/lme4 (accessed on 2 June 2025).
- Conover, W.J. Practical Nonparametric Statistics; John Wiley & Sons: Hoboken, NJ, USA, 1999; Volume 350. [Google Scholar]
- Brooks, M.; Bolker, B.; Kristensen, K.; Maechler, M.; Magnusson, A.; Skaug, H.; Nielsen, A.; Berg, C.; van Bentham, K. glmmTMB: Generalized Linear Mixed Models Using Template Model Builder; 2023. Available online: https://github.com/glmmTMB/glmmTMB (accessed on 2 June 2025).
- Flatley, W.T.; Fulé, P.Z. Are historical fire regimes compatible with future climate? Implications for forest restoration. Ecosphere 2016, 7, e01471. [Google Scholar] [CrossRef]
- Davis, K.T.; Robles, M.D.; Kemp, K.B.; Higuera, P.E.; Chapman, T.; Metlen, K.L.; Peeler, J.L.; Rodman, K.C.; Woolley, T.; Addington, R.N.; et al. Reduced fire severity offers near-term buffer to climate-driven declines in conifer resilience across the western United States. Proc. Natl. Acad. Sci. USA 2023, 120, e2208120120. [Google Scholar] [CrossRef] [PubMed]
- Dieterich, J.H. Fire history of southwestern mixed conifer: A case study. For. Ecol. Manag. 1983, 6, 13–31. [Google Scholar] [CrossRef]
- Kobziar, L.; Moghaddas, J.; Stephens, S.L. Tree mortality patterns following prescribed fires in a mixed conifer forest. Can. J. For. Res. 2006, 36, 3222–3238. [Google Scholar] [CrossRef]
- Fairman, T.A.; Bennett, L.T.; Nitschke, C.R. Short-interval wildfires increase likelihood of resprouting failure in fire-tolerant trees. J. Environ. Manag. 2019, 231, 59–65. [Google Scholar] [CrossRef]
- Rodman, K.C.; Veblen, T.T.; Andrus, R.A.; Enright, N.J.; Fontaine, J.B.; Gonzalez, A.D.; Redmond, M.D.; Wion, A.P. A trait-based approach to assessing resistance and resilience to wildfire in two iconic North American conifers. J. Ecol. 2021, 109, 313–326. [Google Scholar] [CrossRef]
- Fulé, P.Z.; Roccaforte, J.P.; Covington, W.W. Posttreatment Tree Mortality After Forest Ecological Restoration, Arizona, United States. Environ. Manag. 2007, 40, 623–634. [Google Scholar] [CrossRef] [PubMed]
- McHugh, C.W.; Kolb, T.E. Ponderosa pine mortality following fire in northern Arizona. Int. J. Wildland Fire 2003, 12, 7–22. [Google Scholar] [CrossRef]
- Stephens, S.L.; Finney, M.A. Prescribed fire mortality of Sierra Nevada mixed conifer tree species: Effects of crown damage and forest floor combustion. For. Ecol. Manag. 2002, 162, 261–271. [Google Scholar] [CrossRef]
- Perrakis, D.D.; Agee, J.K.; Eglitis, A. Effects of prescribed burning on mortality and resin defenses in old growth ponderosa pine (Crater Lake, Oregon): Four years of post-fire monitoring. Nat. Areas J. 2011, 31, 14–25. [Google Scholar] [CrossRef]
- Cansler, C.A.; Hood, S.M.; Varner, J.M.; Van Mantgem, P.J.; Agne, M.C.; Andrus, R.A.; Ayres, M.P.; Ayres, B.D.; Bakker, J.D.; Battaglia, M.A.; et al. The Fire and Tree Mortality Database, for empirical modeling of individual tree mortality after fire. Sci. Data 2020, 7, 194. [Google Scholar] [CrossRef] [PubMed]
- Hood, S.M.; Smith, S.L.; Cluck, D.R. Predicting mortality for five California conifers following wildfire. For. Ecol. Manag. 2010, 260, 750–762. [Google Scholar] [CrossRef]
- Schoettle, A.W.; Burns, K.S.; McKinney, S.T.; Krakowski, J.; Waring, K.M.; Tomback, D.F.; Davenport, M. Integrating forest health conditions and species adaptive capacities to infer future trajectories of the high elevation five-needle white pines. For. Ecol. Manag. 2022, 521, 120389. [Google Scholar] [CrossRef]
- Ryan, K.C.; Frandsen, W.H. Basal Injury From Smoldering Fires in Mature Pinus ponderosa Laws. Int. J. Wildland Fire 1991, 1, 107–118. [Google Scholar] [CrossRef]
- Franklin, J.F.; Van Pelt, R. Spatial aspects of structural complexity in old-growth forests. J. For. 2004, 102, 22–28. [Google Scholar] [CrossRef]
- Agee, J.K.; Skinner, C.N. Basic principles of forest fuel reduction treatments. For. Ecol. Manag. 2005, 211, 83–96. [Google Scholar] [CrossRef]
- Brown, R.T.; Agee, J.K.; Franklin, J.F. Forest restoration and fire: Principles in the context of place. Conserv. Biol. 2004, 18, 903–912. [Google Scholar] [CrossRef]
- Goodrich, B.A.; Waring, K.M.; Auty, D.; Sánchez Meador, A.J. Interactions of management and white pine blister rust on Pinus strobiformis regeneration abundance in southwestern USA. For. Int. J. For. Res. 2018, 91, 492–505. [Google Scholar] [CrossRef]
- Kalies, E.L.; Chambers, C.L.; Covington, W.W. Wildlife responses to thinning and burning treatments in southwestern conifer forests: A meta-analysis. For. Ecol. Manag. 2010, 259, 333–342. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Hudak, A.T.; Morgan, P.; Arnold, A.; Strand, E.K. Fuel Dynamics Following Wildfire in US Northern Rockies Forests. Front. For. Glob. Change 2020, 3, 51. [Google Scholar] [CrossRef]
- Bellows, R.S.; Thomson, A.C.; Helmstedt, K.J.; York, R.A.; Potts, M.D. Damage and mortality patterns in young mixed conifer plantations following prescribed fires in the Sierra Nevada, California. For. Ecol. Manag. 2016, 376, 193–204. [Google Scholar] [CrossRef]
- Monsanto, P.G.; Agee, J.K. Long-term post-wildfire dynamics of coarse woody debris after salvage logging and implications for soil heating in dry forests of the eastern Cascades, Washington. For. Ecol. Manag. 2008, 255, 3952–3961. [Google Scholar] [CrossRef]
- Brown, J.K. Coarse Woody Debris: Managing Benefits and Fire Hazard in the Recovering Forest; US Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2003.
- Keane, R.E.; Ryan, K.C.; Veblen, T.T.; Allen, C.D.; Logan, J.; Hawkes, B. Cascading Effects of Fire Exclusion in Rocky Mountain Ecosystems: A Literature Review; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2002.
- Hungerford, R.D.; Harrington, M.G.; Frandsen, W.H.; Ryan, K.C.; Niehoff, G.J. Influence of fire on factors that affect site productivity. In Proceedings of the Symposium on Management and Productivity of Western-Montane Forest Soils, Boise, ID, USA, 10–12 April 1991; pp. 32–50. [Google Scholar]
- Madsen, M.D.; Petersen, S.L.; Fernelius, K.J.; Roundy, B.A.; Taylor, A.G.; Hopkins, B.G. Influence of soil water repellency on seedling emergence and plant survival in a burned semi-arid woodland. Arid Land Res. Manag. 2012, 26, 236–249. [Google Scholar] [CrossRef]
- Massman, W.J.; Frank, J.M.; Mooney, S.J. Advancing investigation and physical modeling of first-order fire effects on soils. Fire Ecol. 2010, 6, 36–54. [Google Scholar] [CrossRef]
- Stein, S.J.; Kimberling, D.N. Germination, establishment, and mortality of naturally seeded southwestern ponderosa pine. West. J. Appl. For. 2003, 18, 109–114. [Google Scholar] [CrossRef]
- Fischer, W.C.; Bradley, A.F. Fire Ecology of Western Montana Forest Habitat Types; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA, 1987.
- Farmer, R.E. Seed Ecophysiology of Temperate and Boreal Zone Forest Trees; CRC Press: Boca Raton, FL, USA, 1997. [Google Scholar]
- Korb, J.E.; Fulé, P.Z.; Stoddard, M.T. Forest restoration in a surface fire-dependent ecosystem: An example from a mixed conifer forest, southwestern Colorado, USA. For. Ecol. Manag. 2012, 269, 10–18. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Gray, A.N.; North, M.; Kern, R.A. Initial tree regeneration responses to fire and thinning treatments in a Sierra Nevada mixed-conifer forest, USA. For. Ecol. Manag. 2008, 256, 168–179. [Google Scholar] [CrossRef]
- Chambers, M.E.; Fornwalt, P.J.; Malone, S.L.; Battaglia, M.A. Patterns of conifer regeneration following high severity wildfire in ponderosa pine–dominated forests of the Colorado Front Range. For. Ecol. Manag. 2016, 378, 57–67. [Google Scholar] [CrossRef]
- Samano, S.; Tomback, D.F. Cone opening phenology, seed dispersal, and seed predation in southwestern white pine (Pinus strobiformis) in southern Colorado. Écoscience 2003, 10, 319–326. [Google Scholar] [CrossRef]
- Coop, J.D.; Schoettle, A.W. Regeneration of Rocky Mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires. For. Ecol. Manag. 2009, 257, 893–903. [Google Scholar] [CrossRef]
- Welch, K.R.; Safford, H.D.; Young, T.P. Predicting conifer establishment post wildfire in mixed conifer forests of the North American Mediterranean-climate zone. Ecosphere 2016, 7, e01609. [Google Scholar] [CrossRef]
- Korb, J.E.; Fornwalt, P.J.; Stevens-Rumann, C.S. What drives ponderosa pine regeneration following wildfire in the western United States? For. Ecol. Manag. 2019, 454, 117663. [Google Scholar] [CrossRef]
- Kemp, K.B.; Higuera, P.E.; Morgan, P.; Abatzoglou, J.T. Climate will increasingly determine post-fire tree regeneration success in low-elevation forests, Northern Rockies, USA. Ecosphere 2019, 10, e02568. [Google Scholar] [CrossRef]
- Rother, M.T.; Veblen, T.T. Limited conifer regeneration following wildfires in dry ponderosa pine forests of the Colorado Front Range. Ecosphere 2016, 7, e01594. [Google Scholar] [CrossRef]
- Abella, S.R. Gambel Oak Growth Forms: Management Opportunities for Increasing Ecosystem Diversity; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008.
- Smith, A.E.; Smith, F.W. Twenty-year change in aspen dominance in pure aspen and mixed aspen/conifer stands on the Uncompahgre Plateau, Colorado, USA. For. Ecol. Manag. 2005, 213, 338–348. [Google Scholar] [CrossRef]
- Despain, D.W. History and Results of Prescribed Burning of Pinyon-Juniper Woodland on the Hualapai Indian Reservation in Arizona. In Proceedings of the Pinyon-Juniper Conference, Reno, NV, USA, 13–16 January 1987; U.S. Department of Agriculture, Forest Service, Intermountain Research Station: Ogden, UT, USA; pp. 145–151. [Google Scholar]
- Hanks, J.P.; Dick-Peddie, W.A. Vegetation patterns of the White Mountains, New Mexico. Southwest. Nat. 1974, 18, 371–381. [Google Scholar] [CrossRef]
- Lewis, J.S.; St. Clair, S.B.; Fairweather, M.L.; Rubin, E.S. Fire severity and ungulate herbivory shape forest regeneration and recruitment after a large mixed-severity wildfire. For. Ecol. Manag. 2024, 555, 121692. [Google Scholar] [CrossRef]
- Behrens, P.N.; Keane, R.E.; Peterson, D.L.; Ho, J.J. Chapter 6: Effects of climate change on forest vegetation. In Climate Change Vulnerability and Adaptation in the Intermountain Region [Part 1]; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2018; pp. 112–164. [Google Scholar]
- Abella, S.R.; Fulé, P.Z. Fire Effects on Gambel Oak in Southwestern Ponderosa Pine-Oak Forests; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2008.
- Crouch, C.D.; Rogers, P.C.; Moore, M.M.; Waring, K.M. Building ecosystem resilience and adaptive capacity: A systematic review of aspen ecology and management in the Southwest. For. Sci. 2023, 69, 334–354. [Google Scholar] [CrossRef]
- Fairweather, M.L.; Geils, B.W.; Manthei, M. Aspen decline on the Coconino national forest. In Proceedings of the 55th Annual Western International Forest Disease Work Conference, Sedona, AZ, USA, 15–19 October 2007; Oregon Department of Forestry: Salem, OR, USA, 2008; pp. 53–62. [Google Scholar]
- Carter, V.A.; Brunelle, A.; Minckley, T.A.; Shaw, J.D.; DeRose, R.J.; Brewer, S. Climate variability and fire effects on quaking aspen in the central Rocky Mountains, USA. J. Biogeogr. 2017, 44, 1280–1293. [Google Scholar] [CrossRef]
- Crouch, C.D.; Grady, A.M.; Wilhelmi, N.P.; Hofstetter, R.W.; DePinte, D.E.; Waring, K.M. Oystershell scale: An emerging invasive threat to aspen in the southwestern US. Biol. Invasions 2021, 23, 2893–2912. [Google Scholar] [CrossRef]
- Landhäusser, S.M.; Deshaies, D.; Lieffers, V.J. Disturbance facilitates rapid range expansion of aspen into higher elevations of the Rocky Mountains under a warming climate. J. Biogeogr. 2010, 37, 68–76. [Google Scholar] [CrossRef]
- Korb, J.E.; Fulé, P.Z.; Wu, R. Variability of warm/dry mixed conifer forests in southwestern Colorado, USA: Implications for ecological restoration. For. Ecol. Manag. 2013, 304, 182–191. [Google Scholar] [CrossRef]
- Stevens-Rumann, C.S.; Prichard, S.J.; Whitman, E.; Parisien, M.-A.; Meddens, A.J. Considering regeneration failure in the context of changing climate and disturbance regimes in western North America. Can. J. For. Res. 2022, 52, 1281–1302. [Google Scholar] [CrossRef]
- Stoddard, M.T.; Huffman, D.W.; Fulé, P.Z.; Crouse, J.E.; Meador, A.J.S. Forest structure and regeneration responses 15 years after wildfire in a ponderosa pine and mixed-conifer ecotone, Arizona, USA. Fire Ecol. 2018, 14, 12. [Google Scholar] [CrossRef]
- Coppoletta, M.; Merriam, K.E.; Collins, B.M. Post-fire vegetation and fuel development influences fire severity patterns in reburns. Ecol. Appl. 2016, 26, 686–699. [Google Scholar] [CrossRef]
- Lydersen, J.M.; Collins, B.M.; Coppoletta, M.; Jaffe, M.R.; Northrop, H.; Stephens, S.L. Fuel dynamics and reburn severity following high-severity fire in a Sierra Nevada, USA, mixed-conifer forest. Fire Ecol. 2019, 15, 43. [Google Scholar] [CrossRef]
- Walker, R.B.; Coop, J.D.; Parks, S.A.; Trader, L. Fire regimes approaching historic norms reduce wildfire-facilitated conversion from forest to non-forest. Ecosphere 2018, 9, e02182. [Google Scholar] [CrossRef]
- Margolis, E.Q.; Huffman, D.W.; Iniguez, J.M. Working Paper 28: Southwestern Mixed Conifer Forests: Evaluating Reference Conditions to Guide Ecological Restoration Treatments. ERI Working Papers, October 2013. [Google Scholar]
- Donato, D.C.; Fontaine, J.B.; Campbell, I.; John, L.; Robinson, W.D.; Kauffman, J.B.; Law, B.E. Conifer regeneration in stand-replacement portions of a large mixed-severity wildfire in the Klamath–Siskiyou Mountains. Can. J. For. Res. 2009, 39, 823–838. [Google Scholar] [CrossRef]
- Kemp, K.B.; Higuera, P.E.; Morgan, P. Fire legacies impact conifer regeneration across environmental gradients in the U.S. northern Rockies. Landsc. Ecol 2016, 31, 619–636. [Google Scholar] [CrossRef]
- Bergeron, Y.; Gauthier, S.; Flannigan, M.; Kafka, V. Fire Regimes at the Transition Between Mixedwood and Coniferous Boreal Forest in Northwestern Quebec. Ecology 2004, 85, 1916–1932. [Google Scholar] [CrossRef]
- Kenefic, L.S.; Kabrick, J.M.; Knapp, B.O.; Raymond, P.; Clark, K.L.; D’Amato, A.W.; Kern, C.C.; Vickers, L.A.; Dey, D.C.; Rogers, N.S. Mixedwood silviculture in North America: The science and art of managing for complex, multi-species temperate forests. Can. J. For. Res. 2021, 51, 921–934. [Google Scholar] [CrossRef]
- Jung, S.; Lee, J.; Lee, K.; Cho, S.; Kim, B.; Shin, Y.; Lee, K.S.; Choung, Y. Twenty Years of Regeneration Process for Tree Species in Burnt Pine Forests with Different Severity and Initial Regeneration. J. Plant Biol. 2023, 66, 47–61. [Google Scholar] [CrossRef]
- Holz, A.; Wood, S.W.; Veblen, T.T.; Bowman, D.M.J.S. Effects of high-severity fire drove the population collapse of the subalpine Tasmanian endemic conifer Athrotaxis cupressoides. Glob. Change Biol. 2015, 21, 445–458. [Google Scholar] [CrossRef] [PubMed]
- Ouzts, J.; Kolb, T.; Huffman, D.; Sánchez Meador, A. Post-fire ponderosa pine regeneration with and without planting in Arizona and New Mexico. For. Ecol. Manag. 2015, 354, 281–290. [Google Scholar] [CrossRef]
- Stevens, J.T.; Haffey, C.M.; Coop, J.D.; Fornwalt, P.J.; Yocom, L.; Allen, C.D.; Bradley, A.; Burney, O.T.; Carril, D.; Chambers, M.E.; et al. Tamm Review: Postfire landscape management in frequent-fire conifer forests of the southwestern United States. For. Ecol. Manag. 2021, 502, 119678. [Google Scholar] [CrossRef]
- Bucholz, E.R.; Waring, K.M.; Kolb, T.E.; Swenson, J.K.; Whipple, A.V. Water relations and drought response of Pinus strobiformis. Can. J. For. Res. 2020, 50, 905–916. [Google Scholar] [CrossRef]
- Kolb, T.E.; Dixit, A.; Burney, O. Challenges and Opportunities for Maintaining Ponderosa Pine Forests in the Southwestern United States. Tree Plant. Notes 2019, 62, 104–112. [Google Scholar]
- Moler, E.R.V.; Kolb, T.; Brady, A.; Palmiero, B.N.; Wallace, T.R.; Waring, K.M.; Whipple, A.V. Plant developmental stage influences responses of Pinus strobiformis seedlings to experimental warming. Plant-Environ. Interact. 2021, 2, 148–164. [Google Scholar] [CrossRef]
- Erbilgin, N.; Gillette, N.E.; Owen, D.R.; Mori, S.R.; Nelson, A.S.; Uzoh, F.; Wood, D.L. Acetophenone superior to verbenone for reducing attraction of western pine beetle Dendroctonus brevicomis to its aggregation pheromone. Agric. For. Entomol. 2008, 10, 433–441. [Google Scholar] [CrossRef]
- Schoettle, A.W.; Jacobi, W.R.; Waring, K.M.; Burns, K.S. Regeneration for resilience framework to support regeneration decisions for species with populations at risk of extirpation by white pine blister rust. New For. 2019, 50, 89–114. [Google Scholar] [CrossRef]
- Kolb, T.E.; Agee, J.K.; Fulé, P.Z.; McDowell, N.G.; Pearson, K.; Sala, A.; Waring, R.H. Perpetuating old ponderosa pine. For. Ecol. Manag. 2007, 249, 141–157. [Google Scholar] [CrossRef]
- Fulé, P.Z. Does it make sense to restore wildland fire in changing climate? Restor. Ecol. 2008, 16, 526–531. [Google Scholar] [CrossRef]
- Wan, H.Y.; Cushman, S.; Ganey, J. Recent and Projected Future Wildfire Trends Across the Ranges of Three Spotted Owl Subspecies Under Climate Change. Front. Ecol. Evol. 2019, 7, 37. [Google Scholar] [CrossRef]
- Passovoy, M.D.; Fulé, P.Z. Snag and woody debris dynamics following severe wildfires in northern Arizona ponderosa pine forests. For. Ecol. Manag. 2006, 223, 237–246. [Google Scholar] [CrossRef]
- Reinhardt, E.D.; Ryan, K.C. Analyzing effects of management actions including salvage, fuel treatment, and prescribed fire on fuel dynamics and fire potential. In Tall Timbers Fire Ecology Conference Proceedings, No. 20; Tall Timbers Research Station: Tallahassee, FL, USA, 1998; pp. 206–209. [Google Scholar]
- Churchill, D.J.; Larson, A.J.; Dahlgreen, M.C.; Franklin, J.F.; Hessburg, P.F.; Lutz, J.A. Restoring forest resilience: From reference spatial patterns to silvicultural prescriptions and monitoring. For. Ecol. Manag. 2013, 291, 442–457. [Google Scholar] [CrossRef]
- Heinlein, T.A.; Moore, M.M.; Fulé, P.Z.; Covington, W.W. Fire history and stand structure of two ponderosa pine–mixed conifer sites: San Francisco Peaks, Arizona, USA. Int. J. Wildland Fire 2005, 14, 307–320. [Google Scholar] [CrossRef]
Ecotype | Asp (°) | Slp (°) | Elev (m) | TRMI (Index) | MAT (°C) | MWMT (°C) | MCMT (°C) | RH (%) | MAP (mm) | MSP (mm) | HL (Index) | PAR (Mj cm2 yr−1) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
C/W | 185.5 (20.1) | 23.8 (2.7) | 2706.4 (39.8) | 26.3 (2) | 8.4 (0.2) | 17.1 (0.2) | 0.2 (0.2) | 57 (1) | 723.2 (33.5) | 368.8 (21.9) | 0.8 (0) | 1.3 (0) |
W/D | 207.7 (37) | 32 (14) | 2705 (110.6) | 22 (4.7) | 7.1 (0.7) | 16.2 (1.2) | −1.2 (0.4) | 52 (0.7) | 668.3 (5.7) | 332.3 (49.6) | 0.7 (0.1) | 1.3 (0.1) |
All plots | 188 (18.2) | 24.7 (2.8) | 2706.2 (36.7) | 25.9 (1.8) | 8.3 (0.2) | 17 (0.2) | 0.1 (0.2) | 56.4 (0.9) | 717.1 (29.9) | 364.7 (19.9) | 0.8 (0) | 1.3 (0) |
Predictors | Odds Ratios | p-Value |
---|---|---|
(Intercept) | 33.83 | <0.001 |
Time | 0.87 | <0.001 |
CBI | 0.06 | <0.001 |
Pre-fire fire-tolerant basal area | 1.04 | 0.037 |
Southwestern white pine | 0.75 | 0.359 |
White fir | 0.53 | 0.091 |
Ponderosa pine | 1.53 | 0.301 |
Fire-intolerant species | 0.39 | 0.152 |
28 cm d-class | 2.40 | <0.006 |
38 cm d-class | 5.56 | <0.001 |
48 cm d-class | 5.91 | <0.001 |
58 cm d-class | 7.28 | 0.001 |
68+ cm d-class | 3.49 | 0.057 |
Species | Time | 10 cm Diameter Class | |||||
---|---|---|---|---|---|---|---|
18 cm | 28 cm | 38 cm | 48 cm | 58 cm | 68+ cm | ||
All species | Pre-fire | 181 (46.6) | 101 (13.8) | 56 (11.8) | 31 (4) | 23 (2.5) | 23 (6.3) |
10-yr | 33 (11.6) * | 35 (10.4) * | 35 (7.8) * | 18 (3.1) | 13 (4.1) | 6 (2.4) | |
Pct change | −82.1% | −65.4% | −37.8% | −44.0% | −44.4% | −73.3% | |
Douglas fir | Pre-fire | 102 (26.1) | 31 (3.4) | 33 (13.1) | 20 (4.1) | 13 (3.3) | 13 (3.3) |
10-yr | 10 (4.4) | 13 (3.6) | 18 (11.1) | 13 (4.8) | 13 (3.3) | 3 (2.5) | |
Pct change | −90.2% | −59.1% | −46.2% | −37.5% | 0.0% | −81.3% | |
Fire-intolerant | Pre-fire | 25 (11.9) | 17 (6.7) | 15 (5) | 10 (0) | 0 (0) | 0 (0) |
10-yr | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | 0 (0) | |
Pct change | −100% | −100% | −100% | -- | -- | -- | |
Ponderosa pine | Pre-fire | 42 (20.6) | 23 (7.5) | 15 (2.2) | 13 (2.5) | 10 (0) | 0 (0) |
10-yr | 12 (7.3) | 10 (7.1) | 12 (3.1) | 13 (2.5) | 6 (2.4) | 0 (0) | |
Pct change | −71.4% | −55.6% | −22.2% | 0.0% | −40.0% | -- | |
White fir | Pre-fire | 44 (10.3) | 27 (8.9) | 13 (3.3) | 20 (10) | 10 (0) | 0 (0) |
10-yr | 2 (1.7) | 10 (6.9) | 7 (3.3) | 3 (2.5) | 5 (5) | 0 (0) | |
Pct change | −96.2% | −63.2% | −50.0% | −87.5% | −50.0% | -- | |
Southwestern white pine | Pre-fire | 44 (6.1) | 33 (6.7) | 20 (4.6) | 17 (3.3) | 14 (2.4) | 25 (15) |
10-yr | 17 (6.4) | 10 (2.7) | 15 (4.2) | 8 (4.8) | 4 (2.4) | 7 (3.3) | |
Pct change | −61.3% | −69.2% | −25.0% | −55.0% | −71.4% | −73.3% |
Predictors | Estimate | p= |
---|---|---|
(Intercept) | 62.16 | <0.001 |
Time (y5) | 3.13 | <0.001 |
Time (y10) | 6.70 | <0.001 |
Severity (L-M) | 1.04 | 0.916 |
Pre-fire fire tolerant BA | 0.99 | 0.436 |
Fire-intolerant live BA | 1.03 | 0.240 |
Pre-fire plot QMD | 1.00 | 0.997 |
Time (5) x Severity (L-M) | 0.42 | 0.045 |
Time (10) x Severity (L-M) | 0.35 | 0.024 |
Severity | ||||
---|---|---|---|---|
Species | Low–Moderate | High | ||
1 yr | 10 yr | 1 yr | 10 yr | |
Quaking aspen | 75% | 50% | 78% | 67% |
Gambel oak | 50% | 13% | 33% | 44% |
New Mexico locust | 38% | 50% | 56% | 67% |
Southwestern white pine | 38% | 50% | 11% | 0% |
Douglas fir | 63% | 63% | 22% | 11% |
White fir | 25% | 38% | 22% | 0% |
Ponderosa pine | 25% | 50% | 11% | 22% |
Predictors | Incidence Rate Ratio | p= |
---|---|---|
Count Model | ||
(Intercept) | 29.07 | <0.001 |
Severity (L-M) | 0.14 | <0.001 |
Quaking aspen | 9.15 | <0.001 |
Gambel oak | 3.11 | 0.021 |
Time (y5) | 2.39 | 0.032 |
Time (y10) | 6.39 | <0.001 |
Slope | 1.05 | 0.018 |
Live TPH (of a species) | 1.02 | 0.025 |
Time (y5) x Quaking aspen | 0.23 | 0.005 |
Time (y5) x Gambel oak | 0.25 | 0.022 |
Time (y10) x Quaking aspen | 0.05 | <0.001 |
Time (y10) x Gambel oak | 0.07 | <0.001 |
Zero-Inflation Model | ||
(Intercept) | 0.9 | 0.729 |
Quaking aspen | 0.49 | 0.062 |
Gambel oak | 1.86 | 0.1 |
Severity (L-M) | 1.32 | 0.387 |
Predictors | Incidence Rate Ratio | p= |
---|---|---|
Count Model | ||
(Intercept) | 91.59 | <0.001 |
Severity (L-M) | 0.39 | 0.136 |
Time (y5) | 1.17 | 0.58 |
Time (y10) | 1.25 | 0.474 |
Douglas fir | 0.86 | 0.621 |
Southwestern white pine | 0.19 | <0.001 |
White fir | 1.19 | 0.659 |
TRMI | 0.91 | 0.002 |
Live TPH (of a given species) | 1.01 | 0.009 |
Zero-Inflation Model | ||
(Intercept) | 12.94 | <0.001 |
Douglas fir | 0.32 | 0.04 |
Southwestern white pine | 0.49 | 0.241 |
White fir | 1.11 | 0.847 |
Severity (L-M) | 0.07 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Baker, S.D.; Waring, K.M.; Auty, D.; Wilhelmi, N. Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest. Forests 2025, 16, 967. https://doi.org/10.3390/f16060967
Baker SD, Waring KM, Auty D, Wilhelmi N. Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest. Forests. 2025; 16(6):967. https://doi.org/10.3390/f16060967
Chicago/Turabian StyleBaker, Simon D., Kristen M. Waring, David Auty, and Nicholas Wilhelmi. 2025. "Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest" Forests 16, no. 6: 967. https://doi.org/10.3390/f16060967
APA StyleBaker, S. D., Waring, K. M., Auty, D., & Wilhelmi, N. (2025). Influence of Increasing Fires on Mixed Conifer Stand Dynamics in the U.S. Southwest. Forests, 16(6), 967. https://doi.org/10.3390/f16060967