Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (17)

Search Parameters:
Keywords = third-generation advanced high-strength steel (AHSS)

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3854 KiB  
Article
Effect of Aluminum Content on Solidification Process and Microsegregation of δ-TRIP Steel
by Rudong Wang, Yanhui Sun and Heng Cui
Metals 2025, 15(6), 587; https://doi.org/10.3390/met15060587 - 25 May 2025
Viewed by 444
Abstract
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the [...] Read more.
As a third-generation advanced high-strength steel (AHSS), δ-TRIP steel exhibits the characteristics of high strength, high plasticity, and low density. However, the addition of Al to steel will affect solidification and segregation, which may impact the final microstructure and mechanical properties of the product. In this study, thermodynamic calculations and microsegregation model analysis were employed to investigate the effects of Al addition on the solidification path, peritectic reaction range, equilibrium partition coefficients, and microsegregation behavior of δ-TRIP steel. The results show that with an increase in the Al content, the carbon content range in which δ ferrite is retained without complete transformation during the solid-state phase transition becomes broader. Simultaneously, the carbon concentration range of the peritectic zone expands. The segregation of the C, Si, Mn, P, and S elements increases with increasing Al content, whereas the segregation of Al decreases as the Al content increases. Under non-equilibrium solidification conditions, unlike equilibrium solidification, the temperature difference between the solid and liquid phases initially increases, then decreases, and subsequently levels off with further Al addition. This study provides information for the composition design and production process optimization of δ-TRIP steel, and the research results can provide a reference for similar high-aluminum, low-density steels. Full article
(This article belongs to the Special Issue Advanced High-Performance Steels: From Fundamental to Applications)
Show Figures

Figure 1

15 pages, 10459 KiB  
Article
Identification of Structural Constituents in Advanced Multiphase High-Strength Steels Using Electron Back-Scattered Diffraction
by Aleksandra Kozłowska, Krzysztof Radwański and Adam Grajcar
Symmetry 2024, 16(12), 1630; https://doi.org/10.3390/sym16121630 - 9 Dec 2024
Viewed by 1063
Abstract
This study addresses the characterization of the particular microstructural constituents of multiphase transformation-induced plasticity (TRIP)-aided steels belonging to the first and third generations of Advanced High Strength Steels (AHSS) to explore the possibilities of the EBSD method. Complex microstructures composed of ferrite, bainite, [...] Read more.
This study addresses the characterization of the particular microstructural constituents of multiphase transformation-induced plasticity (TRIP)-aided steels belonging to the first and third generations of Advanced High Strength Steels (AHSS) to explore the possibilities of the EBSD method. Complex microstructures composed of ferrite, bainite, retained austenite and martensite were qualitatively and quantitatively assessed. Microstructural constituents with the same crystal structure were distinguished using characteristic EBSD parameters like confidence index (CI), image quality (IQ), kernel average misorientation (KAM) and specific crystallographic orientation relationships. A detailed linear analysis of the IQ parameter and misorientation angles was also performed. These tools are very helpful in linking different symmetric or asymmetric features of metallic alloys with a type of their structure and morphology details. Two types of samples were investigated: thermomechanically processed and subjected to 10% tensile strain to study the microstructural changes caused by plastic deformation. Full article
(This article belongs to the Special Issue Feature Papers in Section "Engineering and Materials" 2024)
Show Figures

Figure 1

16 pages, 27615 KiB  
Article
Crystal Plasticity Finite Element Modeling of the Influences of Ultrafine-Grained Austenite on the Mechanical Response of a Medium-Mn Steel
by Pengfei Shen, Yang Liu and Xiang Zhang
Crystals 2024, 14(5), 405; https://doi.org/10.3390/cryst14050405 - 26 Apr 2024
Cited by 2 | Viewed by 2045
Abstract
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase [...] Read more.
Medium manganese (medium-Mn) steel, one of the third-generation advanced high-strength steels (AHSS), delivers impressive mechanical properties such as high yield strength, ultimate tensile strength, and uniform elongation. One notable feature of medium-Mn steels is the presence of ultrafine-grained (UFG) austenite, achieved through phase transformation from the parent martensite phase during intercritical annealing. While, in general, UFG is considered a strengthening mechanism, the impact of UFG austenites in medium-Mn steel has not been fully studied. In this manuscript, we advance our previous work on crystal plasticity simulation based on the Taylor model to consider fully resolved high-fidelity microstructures and systematically study the influence of the UFG austenites. The original microstructure with UFG is reconstructed from a set of serial electron backscatter diffraction (EBSD) scans, where the exact grain morphology, orientation, and phase composition are preserved. This microstructure was further analyzed to identify the UFG austenites and recover them to their parent martensite before the intercritical annealing. These two high-fidelity microstructures are used for a comparative study using dislocation density-based crystal plasticity finite modeling to understand the impact of UFG austenites on both the local and overall mechanical responses. Full article
Show Figures

Figure 1

19 pages, 6837 KiB  
Article
Prediction of Mechanical Properties in the Sub-Critical Heat Affected Zone of AHSS Spot Welds Using Gleeble Thermal Simulator and Hollomon-Jaffe Model
by Abdelbaset R. H. Midawi, Oleksii Sherepenko, Dileep Chandran Ramachandran, Shima Akbarian, Mohammad Shojaee, Tingting Zhang, Hassan Ghassemi-Armaki, Michael Worswick and Elliot Biro
Metals 2023, 13(11), 1822; https://doi.org/10.3390/met13111822 - 29 Oct 2023
Cited by 7 | Viewed by 2536
Abstract
Measuring the mechanical properties of weld Heat Affected Zone (HAZ) remains one of the main challenges in the failure analysis of spot-welded components. Due to the small size of the HAZ and variation in the temperature history, different peak temperatures and cooling rates [...] Read more.
Measuring the mechanical properties of weld Heat Affected Zone (HAZ) remains one of the main challenges in the failure analysis of spot-welded components. Due to the small size of the HAZ and variation in the temperature history, different peak temperatures and cooling rates impose a range of phase transformations across the resistance spot weld. Among the HAZ sub-regions, the sub-critical HAZ (SCHAZ), which experiences temperatures below AC1 (350–650 °C), usually shows a reduction in the hardness in most of the modern AHSS grades due to the martensite tempering phenomenon. SCHAZ softening may lead to strain localization during loading. Therefore, it is important to characterize the local properties of the SCHAZ region to accurately predict RSW failure. However, it is not feasible to extract standard mechanical test specimens out of the SCHAZ of the spot-welded structure due to its small size. In this work, the SCHAZ of the spot weld for two AHSS, 3G-980 and PHS-1500, was simulated using a Gleeble® (Dynamic Systems Inc., 323 NY-355, Poestenkill, NY 12140, USA) 3500 thermo-mechanical simulator. An in-situ high-speed IR thermal camera was used to measure the entire temperature field during the Gleeble heat-treatment process, which allowed for the visualization of the temperature distribution in the gauge area. The temperature and hardness data were fit to a Hollomon-Jaffe (HJ) model, which enables hardness prediction in the SCHAZ at any given temperature and time. Using the HJ model, a heat treatment schedule for each material was chosen to produce samples with hardness and microstructure matching the SCHAZ within actual spot weld coupons. Tensile specimens were machined from the coupons heat treated using simulated heat treatment schedules, and mechanical testing was performed. The results showed that the 3G-980 SCHAZ has a slight increase in yield strength and tensile strength, compared to the base metal, due to the formation of fine carbides within the microstructure. In contrast, the SCHAZ of PHS-1500 showed a significant reduction in the yield and tensile strength with yield point elongation behavior due to the reduction of the martensite phase and an increase in carbide formation due to the tempering process. Full article
Show Figures

Figure 1

18 pages, 7176 KiB  
Article
Q&P Response of a Medium Carbon Low Alloy Steel
by Roman Mishnev, Yuliya Borisova, Sergey Gaidar, Tatiana Kniaziuk, Olga Vagina and Rustam Kaibyshev
Metals 2023, 13(4), 689; https://doi.org/10.3390/met13040689 - 31 Mar 2023
Cited by 15 | Viewed by 2399
Abstract
An Fe-0.44%C-1.8%Si-1.3%Mn-0.82%Cr-0.28%Mo steel was subjected to quenching followed by low-temperature tempering (Q&T) and quenching and partitioning (Q&P) processing after full austenitization. The Q&P treatment led to an increase in the volume fraction of retained austenite (RA) by factors ranging from 30 to 40 [...] Read more.
An Fe-0.44%C-1.8%Si-1.3%Mn-0.82%Cr-0.28%Mo steel was subjected to quenching followed by low-temperature tempering (Q&T) and quenching and partitioning (Q&P) processing after full austenitization. The Q&P treatment led to an increase in the volume fraction of retained austenite (RA) by factors ranging from 30 to 40 depending on the quenching temperature, Tq, and an additional precipitation of transition η-carbides in the martensitic matrix. The Q&P processing provided a decrease in the yield stress (YS) from 1730 to 1350 MPa and an increase in the ductility by a factor of 3; the product of strength and elongation (PSE) increased from 13.7 to 32 GPa·%. The novelty of the work lies in establishing the origin of the good ductility and high YS of Q&P steel. Blocky-type RA plays a vital role in the effect of Q&P processing on mechanical properties. The main feature of RA is a very high dislocation density proving the strength of ~1000 MPa of this structural component. The strength of RA controls the YS of the steel if its volume fraction is ≥25%. Ductility is provided by the almost full transformation of RA into strain-induced martensite under tension. The localization of plastic deformation in the form of deformation bands is associated with the γ→α′ transformation. Medium carbon Q&P steel with a high volume fraction of RA meets the requirements for advanced high-strength steel (AHSS) belonging to the third generation of AHSS due to the combination of the YS > 1050 MPa with the PSE > 30 GPa·%. Full article
Show Figures

Figure 1

17 pages, 8963 KiB  
Article
Effect of Liquid Metal Embrittlement Indent Cracks on Zinc Coated 3rd Generation AHSS Mechanical Performance
by Abdelbaset R. H. Midawi, Meet Patel, Mohammad Shojaee, Kate Pearson, Oleksii Sherepenko, Hassan Ghassemi-Armaki and Elliot Biro
Metals 2023, 13(3), 491; https://doi.org/10.3390/met13030491 - 27 Feb 2023
Cited by 8 | Viewed by 2496
Abstract
Third-generation advanced high-strength steels (3G-AHSS) are typically galvanized to prevent corrosion of the outer body structure. However, the zinc coating on the surface, combined with the locally elevated temperatures generated during the resistance spot welding (RSW) process, can provide the prerequisites for liquid [...] Read more.
Third-generation advanced high-strength steels (3G-AHSS) are typically galvanized to prevent corrosion of the outer body structure. However, the zinc coating on the surface, combined with the locally elevated temperatures generated during the resistance spot welding (RSW) process, can provide the prerequisites for liquid metal embrittlement (LME). This work uses two strategies to control LME crack formation: current pulsation and varying the electrode geometry. These two methods were compared to a baseline welding schedule for a 3G-980-GI coated AHSS. The effectiveness of each method was discussed in terms of the overall weld cracking index and local cracking index. The results showed that increasing the current pulses results in a slower energy input into the weld, which can help to reduce LME crack formation. Introducing more pulses (five to seven pulses) reduced LME crack formation while maintaining the same welding time. Regarding the electrode geometry, the results showed an increase in LME cracking index for currents below the expulsion level Imax-10% when the electrode face diameter increased, whereas at the current level Imax-200A, the electrode radius was the most important factor to control LME crack index. For the current level above the expulsion, Imax+10%, a drastic decrease in the LME cracking index was observed when a large electrode surface diameter was used. The electrode radius was not a significant factor in controlling LME. The mechanical properties of selected conditions were examined using the lap shear test and the results showed no significant effect of LME cracks on the shear tensile strength. The location of the failure indicated that most of the cracks are located in the indented area (type A), which does not influence the lap shear strength. Full article
(This article belongs to the Special Issue Advanced Welding Technology in Metals II)
Show Figures

Figure 1

24 pages, 7930 KiB  
Review
Effects of Partial Replacement of Si by Al on Cold Formability in Two Groups of Low-Carbon Third-Generation Advanced High-Strength Steel Sheet: A Review
by Koh-ichi Sugimoto
Metals 2022, 12(12), 2069; https://doi.org/10.3390/met12122069 - 1 Dec 2022
Cited by 4 | Viewed by 2396
Abstract
Partial replacement of Si by Al improves the coatability (or galvanizing property) of Si-Mn advanced high-strength steel (AHSS) sheets. In this paper, the effects of the partial replacement on the microstructure, tensile property, and cold formability are reported for the low-carbon third-generation AHSS [...] Read more.
Partial replacement of Si by Al improves the coatability (or galvanizing property) of Si-Mn advanced high-strength steel (AHSS) sheets. In this paper, the effects of the partial replacement on the microstructure, tensile property, and cold formability are reported for the low-carbon third-generation AHSS sheets, which are classified into two groups, “Group I” and “Group II”. The partial replacement by 1.2 mass% Al increases the carbon concentration or mechanical stability of retained austenite and decreases its volume fraction in the AHSSs, compared to Al-free AHSSs. The partial replacement deteriorates the tensile ductility and stretch formability in the AHSSs with a tensile strength above 1.2 GPa. On the other hand, it achieves the same excellent stretch-flangeability as Al-free AHSSs. A complex addition of Al and Nb/Mo further enhances the stretch-flangeability. The cold formabilities are related to the heat treatment condition and microstructural and tensile properties, and the stress state. Full article
(This article belongs to the Special Issue Heat Treatment Process and Application of High-Strength Steel)
Show Figures

Figure 1

22 pages, 6601 KiB  
Article
Development of Low-Alloyed Low-Carbon Multiphase Steels under Conditions Similar to Those Used in Continuous Annealing and Galvanizing Lines
by Emmanuel Gutiérrez-Castañeda, Carlos Galicia-Ruiz, Lorena Hernández-Hernández, Alberto Torres-Castillo, Dirk Frederik De Lange, Armando Salinas-Rodríguez, Rogelio Deaquino-Lara, Rocío Saldaña-Garcés, Arnoldo Bedolla-Jacuinde, Iván Reyes-Domínguez and Javier Aguilar-Carrillo
Metals 2022, 12(11), 1818; https://doi.org/10.3390/met12111818 - 26 Oct 2022
Cited by 6 | Viewed by 2874
Abstract
In the present work, a Cr+Mo+Si low-alloyed low-carbon steel was fabricated at laboratory scale and processed to produce multiphase advanced high-strength steels (AHSS), under thermal cycles similar to those used in a continuous annealing and galvanizing process. Cold-rolled steel samples with a microstructure [...] Read more.
In the present work, a Cr+Mo+Si low-alloyed low-carbon steel was fabricated at laboratory scale and processed to produce multiphase advanced high-strength steels (AHSS), under thermal cycles similar to those used in a continuous annealing and galvanizing process. Cold-rolled steel samples with a microstructure constituted of pearlite, bainite, and martensite in a matrix ferrite, were subjected to an intercritical annealing (817.5 °C, 15 s) and further isothermal bainitic treatment (IBT) to investigate the effects of time (30 s, 60 s, and 120 s) and temperature (425 °C, 450 °C, and 475 °C) on the resulting microstructure and mechanical properties. Results of an in situ phase transformation analysis show that annealing in the two-phase region leads to a microstructure of ferrite + austenite; the latter transforms, on cooling to IBT, to pro-eutectoid ferrite and bainite, and the austenite-to-bainite transformation advanced during IBT holding. On final cooling to room temperature, austenite transforms to martensite, but a small amount is also retained in the microstructure. Samples with the lowest temperature and largest IBT time resulted in the highest ultimate tensile strength/ductility ratio (1230.6 MPa-16.0%), which allows to classify the steel within the third generation of AHSS. The results were related to the presence of retained austenite with appropriate stability against mechanically induced martensitic transformation. Full article
(This article belongs to the Special Issue Heat Treatment and Mechanical Properties of Metals and Alloys II)
Show Figures

Figure 1

26 pages, 8306 KiB  
Article
Damage Analysis of Third-Generation Advanced High-Strength Steel Based on the Gurson–Tvergaard–Needleman (GTN) Model
by Rafael O. Santos, Luciano P. Moreira, Marilena C. Butuc, Gabriela Vincze and António B. Pereira
Metals 2022, 12(2), 214; https://doi.org/10.3390/met12020214 - 24 Jan 2022
Cited by 20 | Viewed by 4945
Abstract
The third generation of advanced high-strength steels (AHSS) brought attention to the steel and automotive industries due to its good compromise between formability and production costs. This work evaluated a third-generation AHSS (USS CR980XG3TM) through microstructural and X-ray diffraction (XRD) analyses, [...] Read more.
The third generation of advanced high-strength steels (AHSS) brought attention to the steel and automotive industries due to its good compromise between formability and production costs. This work evaluated a third-generation AHSS (USS CR980XG3TM) through microstructural and X-ray diffraction (XRD) analyses, uniaxial tensile and plane-strain tension testing, and numerical simulations. The damage behavior of this steel is described with the Gurson–Tvergaard–Needleman (GTN) model using an identification procedure based on the uniaxial tensile and initial microvoids data. The microstructure of the CR980XG3TM steel is composed of ferrite, martensite–austenite islands, and retained austenite with a volume fraction of 12.2%. The global formability of the CR980XG3TM steel, namely the product of the uniaxial tensile strength and total elongation values, is 24.3 GPa%. The Lankford coefficient shows a weak initial plastic anisotropy of the CR980XG3TM steel with the in-plane anisotropy close to zero (−0.079) and the normal anisotropy close to unity (0.917). The identified GTN parameters for the CR980XG3TM steel provided a good forecast for the limit strains defined according to ISO 12004-2 standard from the uniaxial tensile and plane-strain tension data. Full article
Show Figures

Figure 1

20 pages, 40214 KiB  
Article
Using Intercritical CCT Diagrams and Multiple Linear Regression for the Development of Low-Alloyed Advanced High-Strength Steels
by Bryan Y. Navarrete Pino, Antonio A. Torres Castillo, Emmanuel J. Gutiérrez Castañeda, Luis A. Espinosa Zúñiga, Lorena Hernández Hernández, Armando Salinas Rodríguez, Rogelio Deaquino Lara, Rocío Saldaña Garcés, Iván A. Reyes Domínguez, Javier Aguilar Carrillo, Arnoldo Bedolla Jacuinde, Carlos G. Garay Reyes and Roberto Martínez Sánchez
Metals 2021, 11(11), 1768; https://doi.org/10.3390/met11111768 - 3 Nov 2021
Cited by 4 | Viewed by 3320
Abstract
The present work presents a theoretical and experimental study regarding the microstructure, phase transformations and mechanical properties of advanced high-strength steels (AHSS) of third generation produced by thermal cycles similar than those used in a continuous annealing and galvanizing (CAG) process. The evolution [...] Read more.
The present work presents a theoretical and experimental study regarding the microstructure, phase transformations and mechanical properties of advanced high-strength steels (AHSS) of third generation produced by thermal cycles similar than those used in a continuous annealing and galvanizing (CAG) process. The evolution of microstructure and phase transformations were discussed from the behavior of intercritical continuous cooling transformation diagrams calculated with the software JMatPro, and further characterization of the steel by scanning electron microscopy, optical microscopy and dilatometry. Mechanical properties were estimated with a mathematical model obtained as a function of the alloying elements concentrations by multiple linear regression, and then compared to the experimental mechanical properties determined by uniaxial tensile tests. It was found that AHSS of third generation can be obtained by thermal cycles simulating CAG lines through modifications in chemistry of a commercial AISI-1015 steel, having an ultimate tensile strength of UTS = 1020–1080 MPa and an elongation to fracture of Ef = 21.5–25.3%, and microstructures consisting of a mixture of ferrite phase, bainite microconstituent and retained austenite/martensite islands. The determination coefficient obtained by multiple linear regression for UTS and Ef was R2 = 0.94 and R2 = 0.84, respectively. In addition, the percentage error for UTS and Ef was 2.45–7.87% and 1.18–16.27%, respectively. Therefore, the proposed model can be used with a good approximation for the prediction of mechanical properties of low-alloyed AHSS. Full article
Show Figures

Graphical abstract

37 pages, 16182 KiB  
Article
A Comparative Evaluation of Third-Generation Advanced High-Strength Steels for Automotive Forming and Crash Applications
by Jacqueline Noder, Jon Edward Gutierrez, Amir Zhumagulov, James Dykeman, Hesham Ezzat and Clifford Butcher
Materials 2021, 14(17), 4970; https://doi.org/10.3390/ma14174970 - 31 Aug 2021
Cited by 18 | Viewed by 4265
Abstract
While the third generation of advanced high-strength steels (3rd Gen AHSS) have increasingly gained attention for automotive lightweighting, it remains unclear to what extent the developed methodologies for the conventional dual-phase (DP) steels are applicable to this new class of steels. The present [...] Read more.
While the third generation of advanced high-strength steels (3rd Gen AHSS) have increasingly gained attention for automotive lightweighting, it remains unclear to what extent the developed methodologies for the conventional dual-phase (DP) steels are applicable to this new class of steels. The present paper provides a comprehensive study on the constitutive, formability, tribology, and fracture behavior of three commercial 3rd Gen AHSS with an ultimate strength level ranging from 980 to 1180 MPa which are contrasted with two DP steels of the same strength levels and the 590R AHSS. The hardening response to large strain levels was determined experimentally using tensile and shear tests and then evaluated in 3D simulations of tensile tests. In general, the strain rate sensitivity of the two 3rd Gen 1180 AHSS was significantly different as one grade exhibited larger transformation-induced behavior. The in-plane formability of the three 1180 MPa steels was similar but with a stark contrast in the local formability whereas the opposite trend was observed for the 3rd Gen 980 and the DP980 steel. The forming limit curves could be accurately predicted using the experimentally measured hardening behavior and the deterministic modified Bressan–Williams through-thickness shear model or the linearized Modified Maximum Force Criterion. The resistance to sliding of the three 3rd Gen AHSS in the Twist Compression Test revealed a comparable coefficient of friction to the 590R except for the electro-galvanized 3rd Gen 1180 V1. An efficient experimental approach to fracture characterization for AHSS was developed that exploits tool contact and bending to obtain fracture strains on the surface of the specimen by suppressing necking. Miniature conical hole expansion, biaxial punch tests, and the VDA 238-100 bend test were performed to construct stress-state dependent fracture loci for use in forming and crash simulations. It is demonstrated that, the 3rd Gen 1180 V2 can potentially replace the DP980 steel in terms of both the global and local formability. Full article
(This article belongs to the Special Issue Modelling of Damage and Fracture in Materials and Structures)
Show Figures

Figure 1

13 pages, 10630 KiB  
Article
Microstructure and Local Mechanical Properties of the Heat-Affected Zone of a Resistance Spot Welded Medium-Mn Steel
by Manfred Stadler, Ronald Schnitzer, Martin Gruber, Katharina Steineder and Christina Hofer
Materials 2021, 14(12), 3362; https://doi.org/10.3390/ma14123362 - 17 Jun 2021
Cited by 10 | Viewed by 3058
Abstract
The properties of the heat-affected zone (HAZ) are reported to have a great influence on the mechanical performance of resistance spot welded advanced high strength steels. Therefore, in the present work, the HAZ of a medium-Mn steel is characterized regarding its microstructure and [...] Read more.
The properties of the heat-affected zone (HAZ) are reported to have a great influence on the mechanical performance of resistance spot welded advanced high strength steels. Therefore, in the present work, the HAZ of a medium-Mn steel is characterized regarding its microstructure and its mechanical properties depending on the distance to the fusion zone (FZ). In order to obtain the local mechanical properties of the HAZ, samples were heat-treated in a joule-heating thermal simulator using different peak temperatures to physically simulate the microstructure of the HAZ. By comparing the microstructure and the hardness of these heat-treated samples and the HAZ, the local peak temperatures within the HAZ could be determined. Subsequently, tensile tests were conducted, and the austenite phase fraction was measured magnetically on the physically simulated HAZ samples in order to determine the local mechanical properties of the HAZ. As verified by energy-dispersive X-ray spectroscopy, peak temperatures above 1200 °C led to a uniform distribution of manganese, resulting in a predominantly martensitic microstructure with high strength and low total elongation after quenching. Below 1100 °C, the diffusion of manganese is restricted, and considerable fractions of austenite remain stable. The austenite fraction increases almost linearly with decreasing peak temperature, which leads to an increase of the total elongation and to a slight decrease in the strength, depending on the distance to the FZ. Temperatures below 700 °C exhibit hardly any effect on the initial microstructure and mechanical properties. Full article
(This article belongs to the Collection Welding and Joining Processes of Materials)
Show Figures

Figure 1

16 pages, 5458 KiB  
Article
Adjustment of Mechanical Properties of Medium Manganese Steel Produced by Laser Powder Bed Fusion with a Subsequent Heat Treatment
by Lena Heemann, Farhad Mostaghimi, Bernd Schob, Frank Schubert, Lothar Kroll, Volker Uhlenwinkel, Matthias Steinbacher, Anastasiya Toenjes and Axel von Hehl
Materials 2021, 14(11), 3081; https://doi.org/10.3390/ma14113081 - 4 Jun 2021
Cited by 10 | Viewed by 3764
Abstract
Medium manganese steels can exhibit both high strength and ductility due to transformation-induced plasticity (TRIP), caused by metastable retained austenite, which in turn can be adjusted by intercritical annealing. This study addresses the laser additive processability and mechanical properties of the third-generation advanced [...] Read more.
Medium manganese steels can exhibit both high strength and ductility due to transformation-induced plasticity (TRIP), caused by metastable retained austenite, which in turn can be adjusted by intercritical annealing. This study addresses the laser additive processability and mechanical properties of the third-generation advanced high strength steels (AHSS) on the basis of medium manganese steel using Laser Powder Bed Fusion (LPBF). For the investigations, an alloy with a manganese concentration of 5 wt.% was gas atomized and processed by LPBF. Intercritical annealing was subsequently performed at different temperatures (630 and 770 °C) and three annealing times (3, 10 and 60 min) to adjust the stability of the retained austenite. Higher annealing temperatures lead to lower yield strength but an increase in tensile strength due to a stronger work-hardening. The maximum elongation at fracture was approximately in the middle of the examined temperature field. The microstructure and properties of the alloy were further investigated by scanning electron microscopy (SEM), hardness measurements, X-ray diffraction (XRD), electron backscatter diffraction (EBSD) and element mapping. Full article
(This article belongs to the Special Issue Research and Development of Additive Manufacturing Technology)
Show Figures

Figure 1

17 pages, 3795 KiB  
Article
Temperature Effects on Tensile Deformation Behavior of a Medium Manganese TRIP Steel and a Quenched and Partitioned Steel
by Whitney A. Poling, Emmanuel De Moor, John G. Speer and Kip O. Findley
Metals 2021, 11(2), 375; https://doi.org/10.3390/met11020375 - 23 Feb 2021
Cited by 23 | Viewed by 3832
Abstract
Third-generation advanced high-strength steels (AHSS) containing metastable retained austenite are being developed for the structural components of vehicles to reduce vehicle weight and improve crash performance. The goal of this work was to compare the effect of temperature on austenite stability and tensile [...] Read more.
Third-generation advanced high-strength steels (AHSS) containing metastable retained austenite are being developed for the structural components of vehicles to reduce vehicle weight and improve crash performance. The goal of this work was to compare the effect of temperature on austenite stability and tensile mechanical properties of two steels, a quenched and partitioned (Q&P) steel with a martensite and retained austenite microstructure, and a medium manganese transformation-induced plasticity (TRIP) steel with a ferrite and retained austenite microstructure. Quasi-static tensile tests were performed at temperatures between −10 and 85 °C for the Q&P steel (0.28C-2.56Mn-1.56Si in wt.%), and between −10 and 115 °C for the medium manganese TRIP steel (0.14C-7.14Mn-0.23Si in wt.%). X-ray diffraction measurements as a function of strain were performed from interrupted tensile tests at all test temperatures. For the medium manganese TRIP steel, austenite stability increased significantly, serrated flow behavior changed, and tensile strength and elongation changed significantly with increasing temperature. For the Q&P steel, flow stress was mostly insensitive to temperature, uniform elongation decreased with increasing temperature, and austenite stability increased with increasing temperature. The Olson–Cohen model for the austenite-to-martensite transformation as a function of strain showed good agreement for the medium manganese TRIP steel data and fit most of the Q&P steel data above 1% strain. Full article
(This article belongs to the Special Issue Recent Developments in Medium and High Manganese Steels)
Show Figures

Graphical abstract

34 pages, 7229 KiB  
Article
Experimental Characterization and Deterministic Prediction of In-Plane Formability of 3rd Generation Advanced High Strength Steels
by Jon Edward Gutierrez, Jacqueline Noder and Clifford Butcher
Metals 2020, 10(7), 902; https://doi.org/10.3390/met10070902 - 6 Jul 2020
Cited by 13 | Viewed by 4469
Abstract
The objective of the current study is to develop a practical, deterministic approach to the prediction of the in-plane formability of two third generation advanced high-strength steels (AHSS) of 980 and 1180 MPa ultimate tensile strength using only quasi-static mechanical property data. The [...] Read more.
The objective of the current study is to develop a practical, deterministic approach to the prediction of the in-plane formability of two third generation advanced high-strength steels (AHSS) of 980 and 1180 MPa ultimate tensile strength using only quasi-static mechanical property data. The hardening response to large strains was experimentally measured with the use of simple shear and tensile tests and validated in tensile simulations. The process-corrected limit strains in the Nakazima and Marciniak tests were compared to various analytical Forming Limit Curve (FLC) models for in-plane stretching. It was observed that the widely-used Marciniak–Kuczynski model can adequately predict the experimental FLC in biaxial stretching but significantly underestimated the limit strains in uniaxial stretching for both third generation AHSS. The observed through-thickness shear fracture mode in biaxial stretching was reasonably well-captured by the Bressan–Williams (BW) instability model for the 1180 MPa steel. A proposed extension of the BW model to uniaxial tension by adoption of the maximum in-plane shear stress criterion (BWx model) provided superior experimental correlation relative to the zero-extension model of Hill that was too conservative. Finally, a linearized version of the modified maximum force criterion (MMFC) was proposed that markedly improved the correlation with the process-corrected FLC for in-plane stretching of AHSS. The developed framework for FLC prediction was then applied to a DP980 AHSS and an AA5182 aluminum alloy from the literature. The DP980 corroborated the observed trend for the two third generation AHSS whereas the MK and the BWx models performed best for the AA5182 with its saturation-type hardening behavior and non-quadratic yield surface. Full article
(This article belongs to the Special Issue 10th Anniversary of Metals: Metallurgy and Metal Technology)
Show Figures

Figure 1

Back to TopTop