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Abstract: The third generation of advanced high-strength steels (AHSS) brought attention to the
steel and automotive industries due to its good compromise between formability and production
costs. This work evaluated a third-generation AHSS (USS CR980XG3TM) through microstructural
and X-ray diffraction (XRD) analyses, uniaxial tensile and plane-strain tension testing, and numerical
simulations. The damage behavior of this steel is described with the Gurson–Tvergaard–Needleman
(GTN) model using an identification procedure based on the uniaxial tensile and initial microvoids
data. The microstructure of the CR980XG3TM steel is composed of ferrite, martensite–austenite
islands, and retained austenite with a volume fraction of 12.2%. The global formability of the
CR980XG3TM steel, namely the product of the uniaxial tensile strength and total elongation values,
is 24.3 GPa%. The Lankford coefficient shows a weak initial plastic anisotropy of the CR980XG3TM

steel with the in-plane anisotropy close to zero (−0.079) and the normal anisotropy close to unity
(0.917). The identified GTN parameters for the CR980XG3TM steel provided a good forecast for the
limit strains defined according to ISO 12004-2 standard from the uniaxial tensile and plane-strain
tension data.

Keywords: AHSS; CR980XG3TM; GTN model; formability; finite element modeling

1. Introduction

Climate changes are becoming more and more of a central topic of global discussions.
In addition to concerns about CO2 emissions, the high fossil fuel prices harm the global
economy. Thus, reducing the dependence on fossil fuels by increasing the efficiency and
sustainability of new passenger cars and light commercial vehicles became a priority [1].
The European Union agreed to set a reduction target of 37.5% CO2 for vehicles by 2030 with
the 2021 baseline [2]. In response to the European Commission proposal, the European
Automobile Manufacturers Association (ACEA) advocates a realistic target to reduce 20%
of CO2 emissions [3]. In this context, the advanced high-strength steels (AHSS) have
gained considerable importance in the automotive industry. This steel class has been
developed to satisfy the requirements of vehicle performance and weight optimization.
Several AHSS steel grades can be applied in the vehicle design, each strategically placed
in the Body-in-White (BIW) to increase the crashworthiness performance. The excellent
compromise between uniaxial tensile strength and elongation allows manufacturing of
the BIW components with reduced thickness, producing lighter vehicles resulting in fuel
economy and reducing greenhouse gas emissions.

The AHSS are commonly categorized by generation. The first generation comprises
the Dual-Phase (DP), the Transformation Induced Plasticity (TRIP), Complex-Phase (CP),
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and martensitic (MART) steels. The second generation of the AHSS includes the Twinning
Induced Plasticity (TWIP), Al-added lightweight steel with Induced Plasticity (L-IP), and
the Austenitic Stainless Steel (AUST.SS). The first generation of AHSS, which has ferrite-
based microstructures, is already well established [4]. Concerning the second generation,
the automotive sector considers these materials attractive due to their excellent formability.
However, the second generation is more expensive due to the high alloy addition required
to stabilize the austenite at room temperature, mainly the Mn contents between 20 and
30 wt.%. The third generation of AHSS refers to a recent class with mechanical properties
between the first and second generations and lower production costs than the second
generation. These characteristics are achieved through a multiphase microstructure with a
significant amount of retained austenite [5,6].

In 2003, Speer et al. [7] introduced the quenching and partitioning (Q&P) process
to exploit novel martensitic steels containing retained austenite. Afterward, other steel
compositions and processing routes have also been proposed within this new generation of
AHSS. Among them, the Medium-Mn (MMnS), TRIP-aided Bainitic Ferrite (TBF), density-
reduced (δ-TRIP), and Nanophase Refinement and Strengthening (NR&S) steels [8–10].
Wang and Speer [11] reported that, in 2009, the Baosteel group was the first company to
process the third-generation AHSS sheets industrially. The industrial implementation of the
third-generation AHSS started with the Q&P 980 1180 grades. However, there is still little
information on marketable products. In 2015, General Motors (GM) announced the third
generation of AHSS in the SIAC-GM’s Chevrolet LOVA RV, reducing the weight of selected
body components by approximately 20%. This outcome was from a joint venture between
GM Pan Asia Automotive Technical Center (PATAC), Baosteel, and the University of Tongji
to introduce the third-generation AHSS in GM vehicles [12]. The U.S. Steel developed a
third-generation AHSS with a 980 MPa minimum tensile strength, commercially referred to
as 980XG3TM steel. The 980XG3TM steel exhibits an excellent combination of strength and
ductility. According to the Japanese industrial standard (JIS), Hance and Link [13] found
an ultimate tensile strength of 1017 MPa and a total elongation of 25% using the specimen
Nº 5. Stamping tests were carried out with the 980XG3TM steel to manufacture components
with reduced thickness for the Fiat Chrysler Automobiles [14].

The introduction of AHSS steel grades has been driven by global market requirements
and increasing customer demands [15]. In principle, any steel with both ultimate tensile
strength (Su) and total elongation (et) within the window between the first and second
generations could be a potential candidate for the 3rd generation of AHSS [16]. In terms
of the Su and et values determined from standard uniaxial tensile tests, there is still no
consensus on the classification used for the 3rd generation of AHSS. Some authors establish
Su × et = 30 GPa% as minimum global formability, being desirable at least Su = 1000 MPa
and et = 30% [4,9]. The U.S. Department of Energy set two targets, namely one steel grade
with Su = 1200 MPa and et = 30% (36 GPa%) and another steel grade with Su = 1500 MPa
and et = 25% (37.5 GPa%) [8]. Other authors consider performances greater than 20 GPa%
sufficient to be classified as the third generation of AHSS [17]. Most studies in the literature
report AHSS steel sheets with global formability varying between 20 and 30 GPa%, which
are commonly referred to as the current third generation. Figure 1 shows the global
formability diagram, in which a window between the first and second generations is
highlighted as an opportunity range for the development of the third-generation AHSS.

Even though the third generation of AHSS is still in progress, some applications have
already been started in the automotive sector. Its inclusion in selected parts in the BIW is
expected to improve vehicle safety, fuel consumption, and drivability. Noder et al. [18]
conducted a comparative evaluation between the first- and third-generation AHSS for
automotive forming and crash applications. However, most of the research in the literature
relating the mechanical properties of third generation-AHSS with industrial applications
is focused on the structural embrittlement caused by martensitic transformation during
welding processes [19–23].
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Figure 1. Global formability diagram of various automotive steels: the future opportunity and 
classifications of the third generation of AHSS. Adapted from [4,8,9]. 
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experimental testing procedures and modeling of this emerging steel class are necessary 
steps to evaluate the design of the components and verify the blank material performance 
in sheet metal forming operations. According to Sun et al. [24], the constitutive model 
proposed by Gurson [25] is the most established damage theory that describes the ductile 
fracture of metallic materials caused by the growth of microvoids. Afterward, the Gurson 
model was improved by several researchers. The extension developed by Tvergaard and 
Needleman [26], commonly referred to as the GTN damage model, has achieved wide 
acceptance by the scientific community [27]. The adequate use of the GTN in the 
simulation of engineering problems depends on the calibration of the nine constitutive 
parameters associated with the material. Generally, some very complex numerical 
approaches to identify these parameters are adopted, such as response surface 
methodology or artificial neural networks [28–30]. In this context, this work aims to 
contribute to the numerical modeling of the plastic behavior of the current third 
generation of AHSS with 980 grades. A simple methodology for identifying the 
parameters of the GTN damage model is adopted based on the uniaxial tensile data and 
microvoid analysis. As an outcome, the complete set of the GTN model parameters is 
obtained, which can reasonably reproduce the observed CR980XG3TM steel sheet plastic 
behavior between uniaxial tensile and plane-strain tension deformation modes. 
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Figure 1. Global formability diagram of various automotive steels: the future opportunity and
classifications of the third generation of AHSS. Adapted from [4], data from [4,8,9].

It is crucial to understand its plastic behavior to better take advantage of the third-
generation AHSS mechanical properties for sheet metal forming applications. Thus, the
experimental testing procedures and modeling of this emerging steel class are necessary
steps to evaluate the design of the components and verify the blank material performance
in sheet metal forming operations. According to Sun et al. [24], the constitutive model
proposed by Gurson [25] is the most established damage theory that describes the ductile
fracture of metallic materials caused by the growth of microvoids. Afterward, the Gurson
model was improved by several researchers. The extension developed by Tvergaard and
Needleman [26], commonly referred to as the GTN damage model, has achieved wide
acceptance by the scientific community [27]. The adequate use of the GTN in the simulation
of engineering problems depends on the calibration of the nine constitutive parameters
associated with the material. Generally, some very complex numerical approaches to
identify these parameters are adopted, such as response surface methodology or artificial
neural networks [28–30]. In this context, this work aims to contribute to the numerical
modeling of the plastic behavior of the current third generation of AHSS with 980 grades. A
simple methodology for identifying the parameters of the GTN damage model is adopted
based on the uniaxial tensile data and microvoid analysis. As an outcome, the complete set
of the GTN model parameters is obtained, which can reasonably reproduce the observed
CR980XG3TM steel sheet plastic behavior between uniaxial tensile and plane-strain tension
deformation modes.

2. Materials and Methods

The CR980XG3TM steel investigated in this work is a commercially available product
being delivered to us as an uncoated cold-rolled sheet with a nominal thickness of 1.58 mm.
The chemical composition and processing parameters are not given hereafter to respect the
confidentiality requirements of the steel producer.

2.1. Microstructural Analysis

The microstructural characterization of the CR980XG3TM steel was performed follow-
ing standard metallographic preparation procedures. The mechanical grinding, conven-
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tional polishing, followed by electropolishing using a Struers A2 electrolyte, were used
to reveal the as-received microstructure. The sample preparation was completed by elec-
trolytic polishing and etching using Struers LectroPol-5 automatic equipment operated
at 35 V. The micrographs of the as-received CR980XG3TM steel were obtained with the
scanning electron microscope Hitachi model SU-70.

The methodology detailed in the ASTM E975-13 standard was adopted to evaluate
the volume fraction of retained austenite. The procedure is based on the analysis of X-ray
diffractograms (XRD). The method can be applied to carbon and alloy steels with a near-
random crystallographic orientation of the phases. The retained austenite volume fraction
is calculated as:

RA(%) =
Iγ/Rγ

Iα/Rα + Iγ/Rγ
(1)

where γ and α denote, respectively, the austenite (γ-iron: face-centered cubic) and ferrite
plus martensite (α-iron: body-centered cubic). In Equation (1), I is the integrated intensity
per angular diffraction peak, whereas R is a parameter that depends upon the interplanar
spacing (hkl), the Bragg angle θ, the crystal structure, and the composition of the phase
being measured. The XRD measurements were performed in the Rigaku SmartLab (Rigaku
Corporation, Tokyo, Japan) X-ray diffractometer with a Cu tube, and K-alpha radiation
operated at 40 kV and 30 mA using a scanning range from 40◦ to 110◦ with a scan speed of
2◦/min. The values of Rα and Rγ can be calculated from basic principles [31].

2.2. Mechanical Testing

The mechanical properties of the CR980XG3TM steel sheet were assessed from uniaxial
tensile tests. The digital image correlation (DIC) system manufactured by GOM coupled
with the ARAMIS-5M software (GOM GmbH, Braunshweig, Germany) measured the strain
fields. The specimens were manufactured by CNC (Computer Numerical Control) milling
machining MIKRON VCE 500 (Mikron Machining, Agno, Switzerland) from guillotined
sheet strips. The dog-bone specimen dimensions are depicted in Figure 2.
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Figure 2. Geometry, dimensions (mm) of the uniaxial tensile test specimen, and slices cut from the
gauge length region for the void formation analysis.

The gauge length of 50 mm in the central specimen region was used as the reference
image for DIC measurements. For this purpose, a high contrast stochastic (speckle) pattern
was adopted by first applying a matte white aerosol ink to prepare the specimen back-
ground surface. Then, after a drying time of about 10 min, a matte black ink was sprayed
over the white background. The uniaxial tensile tests were performed after the painting,
about 30 min of curing. To evaluate the in-plane sheet anisotropy, the uniaxial tensile tests
were performed at three angular orientations to the sheet rolling direction (RD), namely
0◦, 45◦, and 90◦. Five replicas were tested for each angular orientation. The tests were
carried out up to fracture at room temperature (20 ◦C) using the universal testing machine
Shimadzu AG-X 100 kN (Shimadzu, Kyoto, Japan), under a constant crosshead speed of
4.5 mm/min, corresponding to a nominal strain rate of 10−3 s−1. The strain measurements
were recorded with an image acquisition rate of 1 frame/s.

Double-notched specimens with a radium of 1 mm were adopted to assess the plane-
strain tension mode. Figure 3 presents the specimen geometry. The universal testing
machine Shimadzu AG-X 100 kN with a 0.1 mm/min crosshead speed was employed.
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The specimen preparation procedures for evaluating the strain field are the same as de-
scribed above for the case of uniaxial tensile test samples. Uniaxial tensile and plane-strain
specimens were used to obtain the limit strains. The limit strains were defined from the
specimens taken at the rolling and transverse sheet directions in both deformation modes.
According to the ISO 12004-2 standard [32], the principal limit strains were defined as the
average values determined from three replicated tests for each deformation mode and
specimen angular orientation to the rolling direction.
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2.3. Microvoid Analysis

Interrupted uniaxial tensile tests were used to analyze the formation of voids resulting
from the imposed straining level. Three increasing longitudinal true-strain levels were
selected: 0% (as received), 13%, and the fractured condition. The uniaxial tensile tests
were performed in specimens taken at the rolling direction using a crosshead speed of
4.5 mm/min. After the uniaxial tests, the samples were cut from the gauge length region in
slices with 5 mm length; see the red cross sections shown in Figure 2. The slices were cut
using a precision metallographic cutter by applying a low cutting feed and high cooling.
Then, the sliced pieces were mounted into epoxy resin and mechanically prepared with SiC
abrasive grinding papers 180, 240, 600, 800, 1200, and 2400-grit using a Struers TegraPol-2
machine (Struers, Tokyo, Japan). The polishing was performed in two steps by applying a
diamond paste of 6 and 3 microns, respectively.

The uniaxial tensile samples were analyzed in the scanning electron microscopy (SEM)
Hitachi TM4000Plus (Hitachi, Tokyo, Japan). Three sections were analyzed for each uniaxial
tensile straining level. Twenty images were taken for each section, resulting in 60 images for
each straining level. The ImageJ open-source software with the “Analyze Particles” function
was employed in the quantitative analysis of microvoids to determine the measures of the
void area fraction, defined as [34]:

Void Area Fraction (%) =
∑ void area
total area

× 100 (2)

Void density
(

void
µm2

)
=

number o f voids
total area

× 1000 (3)

Mean void size
(
µm2

)
=

∑ void area
number o f voids

(4)

Void aspect ratio =
mean void length
mean void width

(5)

2.4. GTN Damage Model Parameters Calibration

The GTN damage model, proposed initially by Gurson [25] and later extended by
Tvergaard and Needleman [26], is widely used to describe the micromechanical damage
effects of ductile metals. The GTN damage model is defined by following the yield function:

φ =

(
σ

σ̃

)2
+ 2q1 f ∗cosh

(
3
2

q2Σ
)
−
[
1 + q3( f ∗)2

]
= 0 (6)
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With

f ∗ =


f f < fc

fc +
fu− fc
ff− fc

( f − fc) fc < f < ff

(7)

where fc is a critical value of void volume fraction, fu = 1/q1 and ff is the void volume
fraction at fracture. In Equation (6), q1, q2, and q3 are the yield locus parameters, whereas
f ∗ is the damage parameter defined by Equation (7). The GTN model is an extension of the
von Mises isotropic yield function accounting for the effects of the hydrostatic pressure on
the plastic yielding of metals. In Equation (6), σ =

√
(3/2) S : S is the von Mises equivalent

stress measure defined from the components of the deviatoric stress tensor:

S = σ − σhδ (8)

In which σ is the Cauchy second-order stress tensor, σh = 1
3 Tr(σ) is the hydrostatic

stress component, and δ is the second-order identity tensor. In Equation (6), Σ is the stress
triaxiality factor defined by the ratio between the hydrostatic stress and the yield stress of
the fully dense matrix material, that is, Σ = σh/σ̃. In the GTN model, the damage arises
partly from the growth of existing microvoids and the nucleation of new voids by cracking
or from the interface decohesion of inclusions and precipitates at the material matrix. The
damage evolution in the GTN model is written in terms of an additive rate decomposition
considering the contributions of both void growth (VG) and nucleation (VN) as:

.
f =

.
f VG +

.
f VN = (1− f )

.
ε

p : δ + AN
.
ε

p
(9)

In which

AN =
fN

SN
√

2π
exp

[
−1

2

(
εp − εN

SN

)2
]

(10)

In Equation (9),
.
ε

p stands for the plastic strain-rate second order while
.
ε

p
is the

equivalent plastic strain rate. In Equation (10), AN is defined by a nucleation plastic strain
which follows a normal strain distribution with an average plastic strain value εN and
a corresponding standard deviation SN . The parameter fN is the void volume fraction
of nucleating particles. The damage material behavior using the GTN model is entirely
defined by three material parameters (q1, q2, q3), three void nucleation parameters (εN , SN ,
fN), two failure parameters ( fc, ff), and the initial relative density (rd0) which is obtained
from the initial porosity, rd0 = (1− f0).

The adopted procedure is firstly cast by assuming that the effective plastic behavior of
the material matrix is fully dense, namely with no initial voids. Thus, the work-hardening
equations describing the experimental plastic behavior can be corrected using the effective
stress measure concept defined from the uniaxial tension load [35]. The effective stress
concept is schematically depicted in Figure 4a by a representative volume element (RVE) in
which F is the uniaxial load, whereas AT and AV stand for the overall section and the voided
areas of the RVE, respectively. In this way, the effective stress measure is obtained as:

σ̃ =
F

AT − AV
=

σ AT
AT − AV

=
σ

1− (AV/AT)
=

σhard_eqn

1− fA
(11)

In Equation (11), fA = AV/AT is the fraction area of voids, and σ is the true stress
which can be defined from the work-hardening equations (σhard_eqn) fitted to the experi-
mental uniaxial tensile curve at the rolling direction. Moreover, fA is viewed as a scalar
variable by assuming isotropic damage conditions. The voids are supposed to be equally
distributed in the matrix and independent of the loading path.
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Secondly, from the average measured values of the voided area fraction fA as a
function of the total longitudinal true strain in uniaxial tension at the sheet rolling direction,
and neglecting the elastic strains, a linear relationship is adopted to describe the voided
area fraction fA with the true plastic strain as:

fA = Aεp + B (12)

The initial porosity parameter of the initial void volume fraction was obtained from
an RVE, which is assumed to be equivalent to the binarized image determined from SEM
analysis, as schematically depicted in Figure 4b. This RVE is composed of a small single
spherical void embedded concentrically in a large spherical metal matrix. The spherical
matrix has a diameter D, whereas the spherical single void has a diameter d, which, in turn,
is assumed to be equivalent to the actual binarized SEM areas of the material matrix and
voids, respectively. The initial void volume fraction ( f0) can thus be estimated from the
initial area of voids ( fA) represented by the intercept of Equation (12), that is:

fA =
AV
AT

=
d2

D2 (13)

f0 =
VV
V

=
d3

D3 = ( fA|εp=0)
3
2 = (B)

3
2 (14)

For steels, the typical values of the GTN yield locus parameters qi (i = 1, 2, 3) in
Equation (6) are q1 = 1.5, q2 = 1.0, and q3 = q2

1 = 2.25 [26]. The parameter q1 affects the
load-bearing capacity of the material, namely q1 > 0 provides a decrease in yield strength
leading to a material softening due to void growth to the detriment of the matrix material’s
work hardening. The second GTN yield locus parameter q2 is associated with the stress
triaxiality factor in the GTN yield function, Σ = σh/σ̃, which depends on the hydrostatic
stress and the material yield strength. This work adopted the calibration results of the
micromechanical modeling developed by Faleskog et al. [37].

The nucleation of new voids in the GTN model is controlled by the equivalent plas-
tic strain rate with a probability density function, which follows a normal distribution,
Equations (9) and (10), and depends on the calibration of three parameters (εN , SN , fN). The
parameter εN is a mean value of characteristic nucleation plastic strain and SN corresponds
to its standard deviation. The parameter fN is the volume fraction of the nucleated voids.
The following ranges of values are reported in the literature for typical metals: εN = 0.1–0.3,
SN = 0.05–0.1, and fN = 0.01–0.05 [28]. In this work, the calibration of the nucleation param-
eters of the CR980XG3TM steel was performed by finite element simulations of the uniaxial
tensile test. Here, the idea is to vary the set of parameters to obtain a predicted nominal
stress–strain curve close to the experimental uniaxial tensile test results, including post-
necking behavior. Figure 5 shows the schematic geometrical model proposed to simulate
the uniaxial tensile test. The simulation test was conducted by fixing one grip section and
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applying a prescribed constant speed at the other grip section. The quasi-static numerical
simulations were performed with the ABAQUS/explicit commercial finite element code,
wherein the GTN model is available as porous metal plasticity. In all numerical simulations,
the specimen has meshed with the C3D8R element type: 8-nodes linear brick, reduced
integration, and hourglass control [38]. The functionality Element Deletion was selected in
the finite element ABAQUS mesh module. This option removes the finite element when it
loses the strength capacity completely.
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Figure 5. Boundary conditions for the uniaxial tensile specimen with 1/4 symmetry.

Once the nucleation parameters are determined, it is possible to produce numeri-
cal predictions for the uniform domain. These numerical predictions and experimental
measurements obtained through the uniaxial tensile test were used to calibrate the failure
parameters. To determinate the critical value of the void volume fraction ( fc), an image of
the major strain field obtained from the uniaxial tension specimen immediately before the
fracture was used as a reference. A critical region in the localized necking and another area
located sufficiently far from the necking was monitored from finite element simulation and
compared with the experimental result. To identify the parameter fF, two experimental
results were considered, namely the endpoint of the elongation–force curve and the width
reduction in the specimen after the fracture.

3. Results
3.1. As-Received Microstructure

From the analysis conducted by Finfrock et al. [39] for Q&P steels and the martensitic
structure characterization performed in the work of Navarro-Lopez et al. [40], the dark
regions in Figure 6b are ferrite (F) and the fine internal laths surrounded by white blocks
are martensite–austenite islands (MA). In contrast, the elongated white regions are the
retained austenite (RA). According to Wang and Speer [11], the main alloy elements of
Q&P 980 steel are C, Mn, and Si, with nominal values ranging between 0.20–0.25, 1.50–2.40,
and 1.2–1.6%, respectively. Other elements such as Al, P, and S could also be found in
residual amounts. The microstructure of commercial Q&P steels is primarily composed of
martensite (50–80%) formed during the quenching process, ferrite (20–40%) resulting from
the austenitic phase during slow cooling, and the dispersed retained austenite (5–10%),
which, in turn, is stabilized by the carbon enrichment during the partitioning step [11].
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Figure 7. X-ray diffractogram patterns from the as-received CR980XG3TM steel. 

Table 1 presents the calculated 𝑅  and 𝑅  values for Cu radiation and the inte-
grated intensity per angular diffraction peak. Each peak was fitted with the Lorentz fit 
peak tool available in the OriginLab software. From Equation (1) and Table 1 data, the 
estimated volume fraction of the retained austenite in the present CR980XG3TM steel sheet 
is 12.2%, which was very close to the value of ~12% reported for the Q&P 980 steel [19,20]. 

Figure 6. SEM micrographs of the as-received CR980XG3TM steel sheet with (a) 1000× and
(b) 10,000× highlighting the ferrite (F), martensite–austenite (MA), and retained austenite (RA).

The X-ray diffractogram of the CR980XG3TM steel for the as-received condition is
shown in Figure 7, in which the peaks are identified as α-iron or γ-iron.
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Figure 7. X-ray diffractogram patterns from the as-received CR980XG3TM steel.

Table 1 presents the calculated Rα and Rγ values for Cu radiation and the integrated
intensity per angular diffraction peak. Each peak was fitted with the Lorentz fit peak tool
available in the OriginLab software. From Equation (1) and Table 1 data, the estimated
volume fraction of the retained austenite in the present CR980XG3TM steel sheet is 12.2%,
which was very close to the value of ~12% reported for the Q&P 980 steel [19,20].

Table 1. Theoretical Rα and Rγ using Cu radiation (data from [41]) and integrated intensity per
angular diffraction.

Phase Index hkl 2θ Rindex Iindex

α

110 44.6 233.8 6100.6
200 65.0 31.9 1615.1
211 82.2 60.9 2643.9
220 98.9 20.6 573.0

γ

111 43.6 182.8 2079.5
200 50.8 81.6 105.8
220 74.6 44.4 214.1
311 90.6 51.3 159.2
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3.2. Mechanical Properties

The average elastic properties of the CR980XG3TM steel determined in the rolling
direction are the Young modulus, E = 195 ± 5 GPa, and Poisson’s ratio ν = 0.289 ± 0.003.
The plastic behavior of the CR980XG3TM sheet was evaluated from the yield stress defined
at 0.2% of the plastic-strain offset (Sy), ultimate tensile strength (Su), uniform elongation
(eu), total elongation (et), and Lankford’s anisotropy coefficient (r-value). The r-value
was defined as the slope between the width and the thickness strains between yield
strength and the maximum uniform plastic strain values. Table 2 resumes the average
mechanical properties of the CR980XG3TM steel as a function of the angular orientation
and the corresponding standard deviation values.

Table 2. The uniaxial tensile properties of the CR980XG3TM steel.

Orientation (θ) Sy (MPa) Su (MPa) eu (%) et (%) r-Value

0◦ 604 ± 7 1040 ± 9 18.0 ± 0.5 23.4 ± 0.2 0.861 ± 0.003
45◦ 643 ± 4 1015 ± 8 17.9 ± 0.2 23.0 ± 0.6 0.957 ± 0.004
90◦ 668 ± 7 1023 ± 8 16.9 ± 0.6 21.9 ± 1.3 0.895 ± 0.005

The CR980XG3TM steel is classed as a current third-generation AHSS, as shown in
Figure 8. Its ultimate tensile strength (1040 MPa) and total elongation (23.4%) allow reaching
24.3 GPa% as performance in the global formability diagram, which is close to the Q&P
results reported in the literature [11,19,20,39]. The quenching and partitioning steels are still
under the desired performance target, namely 30 and 35 GPa% (Figure 1). However, they
significantly outperform the well-established first-generation AHSS, such as DP and TRIP.
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From Table 2, the planar and normal anisotropy coefficients are obtained, respectively,
∆r = (r0 + r90 − 2r45)/2 = −0.079 and r = (r0 + 2r45 + r90)/4 = 0.917. At first glance, the
uniaxial tensile plastic behavior of the investigated CR980XG3TM steel sheet can be regarded
as isotropic given that the values found for ∆r and r are close to zero and unity, respectively.
However, in Figure 9a, one can observe deviations in the uniaxial tensile engineering
stress–strain behavior at 0◦, 45◦, and 90◦ in-plane angular orientations. Figure 9b further
emphasizes this observed anisotropic behavior wherein the CR980XG3TM steel would
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present small amplitudes of earing formation in the cup-drawing test. The formability of
the CR980XG3TM steel is close to that of DP600, with higher strength. Figure 9c shows
the yield stress and strength values normalized by the corresponding data at the rolling
direction. The yield stress behavior presents a monotonic increase of about 11% between 0◦

and 90◦ orientations, whereas the ultimate tensile strength varies by less than 5%.
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Figure 9. Uniaxial tensile test results of the CR980XG3TM steel sheet: (a) engineering stress–strain 
curves at 0°, 45°, and 90°, and angular evolutions of the (b) Lankford r-values, (c) normalized yield 
stress and ultimate tensile strength, and (d) uniform and total elongation. 
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Conversely, the average uniform and total elongation values and corresponding
standard deviations are depicted in Figure 9d. A slight reduction between the sheet rolling
and transverse directions is observed in both uniaxial uniform and total elongation values.
Moreover, the average engineering strain amount during the post uniform uniaxial tensile
behavior shows minor variation, as indicated by the shaded area in Figure 9d.

The uniaxial tensile plastic behavior at the rolling direction of the CR980XG3TM steel
sheet was fitted according to the Hollomon, Ludwik, Swift, and Voce work-hardening
equations. Table 3 presents the average values of the fitted work-hardening parameters
along with the corresponding goodness-of-fit (R2) values. The Ludwik work-hardening
equation corresponds to the first term of the Johnson–Cook plasticity model, which is
widely adopted in finite element simulations [42]. Alternatively, the pre-strain term ε0 in
Swift’s equation can be used to describe the initial plastic yielding or a prior deformation
process as, e.g., from a cold-rolling skin pass. The best fits were obtained with the Swift
and Voce work-hardening equations with R2 equal to 0.996 and 0.999, respectively.
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Table 3. Parameters of the work-hardening equations of the CR980XG3TM steel sheet determined
from the uniaxial tensile tests performed at the rolling direction.

Work-Hardening Equation K (MPa) n σy (MPa) ε0 (%) R2

Hollomon σhard_eqn = K(εp)n 1723 ± 9 0.187 ± 0.002 - - 0.977
Ludwik σhard_eqn = σy + K(εp)n 1569 ± 11 0.386 ± 0.009 474 ± 11 - 0.993

Swift σhard_eqn = K(ε0 + εp)n 1880 ± 7 0.231 ± 0.002 - 0.69 ± 0.03 0.997
Voce σhard_eqn = σy + K

(
1− e−nεp)

643 ± 1 14.914 ± 0.065 634 ± 1 - 0.999

3.3. Limit Strains

Figure 10 shows the major and minor true total-strain fields in the gauge length of
the uniaxial and plane-strain tension specimens obtained before the fracture. The average
principal limit strain values (ε2, ε1) and corresponding standard deviations for both uniaxial
and plane-strain tension deformation modes are resumed in Table 4. The limit strains
obtained from the uniaxial tension tests are close at the rolling (θ = 0 deg) and transverse
(θ = 90 deg) directions. The corresponding in-plane strain ratio at an angular orientation
to the sheet rolling direction, θ, ρθ = (ε2/ε1), that is equal to −0.4568 and −0.4656 for
θ = 0 and 90 deg, respectively. These values are also very close to the theoretical in-plane
strain ratios that can be defined from the normal anisotropy coefficients listed in Table 4.
From the Lankford r-value definition, by assuming plastic incompressibility, it is obtained
under a proportional strain path that ρθ = (ε2/ε1) = −rθ/(1 + rθ). The latter gives the in-
plane strain ratio, respectively, equal to −0.4626 and −0.4723 for the rolling and transverse
angular orientations.
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3.4. Void Results

The polished surface of the as-received sample is shown in Figure 11a, and the corre-
sponding binarized image is depicted in Figure 11d, wherein the black regions represent the
voids. Figure 12 exhibits the void area fraction values obtained from Equation (2), ranging
from 0.1 to 0.5%. The void density, mean void size, and the void aspect ratio determined
from Equations (2)–(5) are also presented in Figure 12.
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3.5. Full Set of GTN Damage Model Parameters
3.5.1. Effective Work Hardening and Initial Porosity

Figure 13a shows the linear fitting results determined from the experimental average
void area fraction of the CR980XG3TM steel sheet. The corresponding A and B values in
Equation (12) are also indicated in Figure 13a. The predicted stress–strain curves of Swift
and Voce work-hardening equations obtained from Equation (11) are compared with the
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experimental true-stress and true plastic strain in Figure 13b. Both work-hardening equations
show good agreement with the experimental uniaxial tensile behavior observed in the uniform
plastic-strain domain. Despite presenting a better fit, Voce’s equation provides saturation of
the work hardening for larger strains. Using the GTN damage model, such plastic behavior
will rapidly lose the load-bearing capacity at the necking onset. In this way, the Swift work-
hardening equation was selected to describe the behavior of the fully dense matrix since it
provides a better fit to the experimental stress–strain data when considering the softening
effect. From the result presented in Figure 13a and Equations (12)–(14), the initial porosity was
estimated as: rd0 =

(
1− 0.002323/2

)
= 0.99988.
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3.5.2. Yield Locus Parameters (q1, q2, q3)

From micromechanical simulations considering unit cell finite element models with
a homogeneous material and a single spherical void, the former described by the GTN
model, Faleskog et al. [37] proposed a procedure for the yield locus parameters calibration,
revealing that (q1, q2) parameters exhibited a dependence on the strain-hardening exponent
(n) and the ratio between the yield strength (σy) and Young’s modulus (E). This procedure
is adopted here to define these GTN yield loci parameters avoiding extensive experimental
and or combined numerical investigations given the non-uniqueness of the GTN damage
model parameters. From the calibration results of the micromechanical modeling developed
by Faleskog et al. [37], the parameters (q1, q2) are obtained as a function of the average
strain-hardening exponent n = 0.187 and the ratio between the yield stress and the Young
modulus, σy/E ∼= 0.003. Thus, the yield locus parameters found for the CR980XG3TM steel
sheet are q1 = 1.74, q2 = 0.83, and q3 = q2

1 = 3.03.

3.5.3. Void Nucleation Parameters (εN , SN , fN)

The parameter fN produces a softening of the plastic behavior. Considering the values
of εN , SN , f0 to be fixed, increasing the fN-value produces a more significant softening
effect [38]. Table 5 presents the parameters used to simulate the elastoplastic behavior of
the fully dense material. The total reaction force was obtained by summating the fixed
region nodal reaction forces (the orange area in Figure 5) multiplied by four to account for
the two planes of symmetry. The specimen elongation was calculated from the difference
in displacements of points 1 and 2, indicated in Figure 5.
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Table 5. Elastic properties and parameters of the isotropic effective work hardening.

Elastic Properties Isotropic Effective Work Hardening (Swift)

E (MPa) ν K (MPa) ε0 n A B

192,000 0.289 1880 0.0069 0.231 0.00762 0.00232

Figure 14 compares the experimental and predicted displacement–force determined
using the parameters listed in Table 5. The current numerical results overpredict the
experimental data, mainly the post-necking elongation up to fracture. From the typical
values for metals presented in the literature, several combinations of εN , SN , fN were
tested, aiming to describe the post-necking displacement–force curve. The set of nucleation
parameters that provided the best fit is listed in Table 6. The softening resulting from the
nucleation parameters can be observed in Figure 14.
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Table 6. Initial porosity, material, and void nucleation parameters.

rd0 q1 q2 q3 εN SN fN

0.99988 1.74 0.83 3.03 0.18 0.07 0.035

3.5.4. Failure Parameters ( fC, fF)

To determinate the critical value of the void volume fraction ( fc), Figure 10a was used
as a reference. The picture shows the major strain field immediately before the fracture
in the uniaxial tension mode. According to the digital image correlation analysis, the
maximum longitudinal total strain reached before the fracture onset is ε1 = 0.54. Two
specimen regions were monitored from the finite element simulation calibrated with the
GTN nucleation parameters, see Figure 14. One region is the critical region in the localized
necking, and the other is located at a distance sufficiently far from the necking, shown
in Figure 15a. The plot in Figure 15b shows that, as expected, up to the necking onset,
all the elements of the gauge length deform uniformly. After starting the necking, the
strain far from the necking remains almost constant while the strain at the necking zone
increases rapidly. Thus, once the necking begins, only the specimen central region increases
elongation, and the failure parameters must be calibrated from this region.
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Figure 15. Major strain predictions of the uniaxial tensile test without the failure parameters:
(a) regions at the necking and far from the necking and (b) corresponding major strain history.

Figure 16 resumes the methodology for selecting the fc parameter from the major
strain value. The major strain field is observed along the specimen gauge length at the
time where the maximum value is equal to ε1 = 0.54 in the necking region, Figure 16a.
Figure 16b shows the value of the void volume fraction for the same time. The void volume
fraction (VVF), the nucleation (VVFN), and void growth (VVFG) contributions are plotted
in Figure 16c as a function of the major strain. From the major strain ε1 = 0.54, the critical
void volume fraction fc was found equal to 0.05.
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function of the major strain in the necking region.

The fF parameter denotes the void volume fraction after the complete specimen
fracture. From the critical value, fc, the void fraction increases rapidly through the void
coalescence until the fF value, and then, the corresponding finite element is deleted from
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the mesh of the uniaxial specimen model. The coalescence is governed by Equation (7) in
the GTN damage model. The fF-value must be greater than the fc parameter and is limited
to unity, that is, 100% voids.

To identify the parameter fF, two experimental results were considered. Firstly, the
endpoint of the elongation–force curve. Secondly, the width reduction in the specimen after
the fracture. Figure 17 shows a sequence of three different moments in the uniaxial tensile
test, namely (a) undeformed, (b) localized necking before the fracture, and (c) specimen after
the fracture. The width of the specimen in the fractured region measures approximately
9.80 mm, and the value of the failure parameter that best fits the experimental results for
the CR980XG3TM steel under the uniaxial tension deformation mode was fF = 0.095. Thus,
the identified parameters of the GTN damage model are presented in Table 7.
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Table 7. Full set parameters of the GTN damage model for the CR980XG3TM steel.

rd0 q1 q2 q3 εN SN fN fC fF Element Deletion

0.99988 1.74 0.83 3.03 0.18 0.07 0.035 0.050 0.095 yes

The contour plot predictions of the void volume fraction determined using the com-
plete set of the GTN model parameters are shown in Figure 18a. Figure 18a depicts one
of the experimental samples placed with the final predicted model shape. Moreover, the
load–elongation curves showed similar results, see Figure 18b. The predicted curve is
higher than the experimental data in the elongation range, close to the yielding point up to
~3 mm elongation. It may be attributed to the work-hardening description.
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Figure 18. (a) Finite element simulation of the uniaxial tensile test: experimental digital image and
predicted deformed specimen, and (b) experimental uniaxial tensile test load elongation and predicted
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3.5.5. Mesh Sensitivity

The influence of the mesh size in predicting the uniaxial tensile test was evaluated
using the GTN model parameters given in Table 7. Four different mesh sizes in the
specimen gauge length region were considered, namely 1.6, 0.8, 0.4, and 0.2 mm, as shown
in Figure 19.
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Figure 20 compares the force-elongation prediction determined with different mesh
sizes with the experimental data to the rolling direction. The four mesh sizes provided the
same behavior until the beginning of the necking. For the post-necking curve, except for the
1.6 mm mesh that exceeded the experimental curve by approximately 0.5 mm in elongation,
the other finite element mesh size showed very close values, as shown in Figure 18b, were
obtained with a mesh size of 0.4 mm. According to Slimane et al. [43], who conducted a
parametric study of the GTN model, the numerical prediction does not have a significant
mesh size dependence in the uniform plastic behavior. During the uniform elongation,
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the whole elements in the specimen gauge length have the same strain level. However,
only a few elements continue to deform in the fracture zone from the necking point. Thus,
the macroscopic behavior prediction of the uniaxial tensile test becomes dependent on the
element mesh size. A fine mesh triggers the void formation faster than a coarse mesh.
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The minimum standard error (SE) was adopted to calculate the difference between
the experimental and predicted results, Equation (15). The SE is calculated for common
values of the numerical prediction and the experimental result of load–elongation of the
uniaxial tensile specimen. As there is no dependence on the mesh size for the curve before
the necking, the SE values were very close. The mesh size of 0.4 mm shows less error
among the other mesh sizes concerning the experimental data. Moreover, it presented a
good number of elements for its CPU time. Although the 0.8 mm mesh can represent the
material’s behavior, its coarse mesh can mainly provide a poor numerical forecast in the
thickness direction. Table 8 shows the minimum standard error found for each mesh size,
as well as the CPU time and the number of elements, both normalized by the 1.6 mm case.

SE =

 1
N

N

∑
i=1

(
FNum.

i − FExp.
i

)2


1/2

(15)

Table 8. Mesh sensitivity—minimum standard error of load–elongation curve, CPU time, and the
number of elements.

Mesh Size: 1.6 mm 0.8 mm 0.4 mm 0.2 mm

Minimum standard error (SE ) 262.2 N 261.9 N 260.8 N 265.4 N
Normalized CPU time 1.0× 2.6× 9.4× 50.7×

Normalized Nº of elements 1.0× 2.5× 16.8× 126.7×

3.6. Numerical Predictions of the In-Plane Limit Strains

Using the full set parameters of the GTN damage model, finite element simulations of
the flat specimens were performed. Concerning the limit strains obtained from the uniaxial
tension mode, the evaluation was carried out in the experimental testing by applying
the ISO 12004-2 standard. As in the experiments, these strains were analyzed along the
sections in the specimen gauge length. Both experimental data obtained at 0◦ and 90◦ to
the rolling direction are compared to the numerical prediction, Figure 21a. The Lankford
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r-values are close to unity, thus justifying the isotropic assumption made in this work. The
calibrated GTN parameter for CR980XG3TM steel provided a good agreement with the
experimental strains determined at 0◦ and 90◦ angular orientations. Figure 21b shows
the limit strain predictions for uniaxial tension. The predicted major limit strain equals
0.346, while the minor limit strain is −0.164. For comparison purposes, the corresponding
average experimental limit strain values, listed in Table 4, obtained for the specimen at the
rolling direction, are 0.324 and −0.148, respectively.
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Figure 21. (a) Experimental and predicted major and minor strains at the centerline section of the 
uniaxial tensile specimen, and (b) limit strains from the uniaxial tensile test simulations using the 
GTN model. 

Figure 21. (a) Experimental and predicted major and minor strains at the centerline section of the
uniaxial tensile specimen, and (b) limit strains from the uniaxial tensile test simulations using the
GTN model.

The finite element simulation of the plane strain with a flat double-notched specimen
was also performed using a 3D mesh with C3D8R elements. The boundary conditions
were like those used in the uniaxial tension model. Figure 22a shows the mesh used in the
flat double-notched specimen, in which the zoomed region displays the refined elements
with a mesh size of 0.4 mm. The mechanical behavior response using the GTN model was
compared with the experimental results in terms of the stress–strain curve. The graph
shows the experimental values with samples manufactured at 0◦ and 90◦ of the rolling
direction and the stress–strain curve obtained through the finite element model. Although
the calibration of the GTN model parameters was made from the uniaxial tensile test, it
was observed that the selected parameters provided a mechanical behavior close to the
experimentally determined values for the plane-strain tension test. The predicted stress
behavior is about 2% higher than the experimental stress values. Regarding the true strain,
the corresponding prediction is slightly beyond the value recorded experimentally, as
shown in Figure 22b.

Regarding the limit strains for the plane strain condition, the major strain determined
from the GTN model was equal to 0.123, and the minor strain equal to 0.012. The values
obtained experimentally for the major and minor strain were 0.152 and 0.011 along the
rolling direction and 0.134 and 0.010 for the case perpendicular to the rolling direction.
Figure 23a compares experimental and predicted major and minor strain along the spec-
imen’s centerline, while Figure 23b exhibits limit strains calculated according to the
ISO 12004-2 standard for the plane strain.
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Figure 23. (a) Experimental and predicted major and minor strain in the centerline of the double-
notched plane-strain sample and (b) limit strains from the plane-strain tension test simulations using
the GTN model.

The results of limit strains presented in Figures 21 and 23 can also be expressed
according to the concept of forming limit curve (Figure 24), in which below the curve is
a safe forming condition. In this case, a safe region means the absence of necking. The
predicted limit strains for the left side of the forming limit diagram reasonably agreed
with the corresponding experimental data. In this sense, the proposed methodology can
be applied to describe the CR980XG3TM steel sheet behavior under sheet metal forming
processes conditions with ε2 ≤ 0.
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4. Discussion

In this work, the third-generation AHSS CR980XG3TM steel was evaluated using me-
chanical tests and microstructural analysis to calibrate the parameters of the GTN damage
model. The numerical predictions of limit strains showed that the selected GTN model
parameters provided a similar behavior to the experimentally observed results, represent-
ing the left side of the forming limit curve. This good agreement can be ascribed to the
low planar anisotropy behavior of the CR980XG3TM steel. In this context, the methodology
proposed in this work proved to be capable of predicting the macro-mechanical behavior of
a recent third-generation AHSS. Many researchers in the literature have already introduced
important extensions to the GTN damage model, some more widespread and adopted than
others. According to Bergo et al. [44], contributions aimed at solving the GTN model’s
limitation of correctly predicting material failure under low stress triaxiality, as well as
extensions related to incorporating different microvoid features, such as the shape, ori-
entation, and rotation, have been added to the GTN model by several authors in the last
20 years.

Conversely, most of these extensions increase the complexity of determining the
parameters of the GTN model, either by introducing new parameters or by using more
sophisticated experimental devices and calibration methods, such as tensile tests with
in-situ 3D X-ray microtomography [45–47] and parameters identification using artificial
neural networks [24,28,29,48], respectively. The model used in this work does not consider
these extensions of the GTN model. The adopted modeling also does not include the strain-
induced martensite transformation, which might occur in the investigated current third-
generation AHSS, nor the contribution of each phase for strength and formability analyses.

Regarding the microvoids analysis, some remarks regarding the proposed method-
ology should be addressed. Firstly, the void area fraction analysis requires exhaustive
laboratory work obtained from the treatment of several micrographs. In practical terms,
only three strain levels were selected: as-received material, fractured condition, and an
intermediate straining stage to assess the trendline. The straining level obtained from the
fractured state (23% engineering strain) is still considered low to determine the void area
fraction owing to the resulting narrow region of the localized necking. Using notched speci-
mens, Saeidi et al. [49] observed the more significant void area fraction at higher equivalent
straining levels in dual-phase (ferrite-martensite) steel. Secondly, the void analysis results
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were used only to define the initial void volume fraction and to forecast the plastic behavior
of the completely dense material. Moreover, it is worth observing that the necking instabil-
ity increases the stress triaxiality factor in the fracture region. The level of localized strain
in the uniaxial tensile tests was obtained employing DIC measurements, which, together
with the specimen width measurements after fracture, were used to determine the GTN
model failure parameters in Section 3.5.4. Complementary void data were also presented,
including void density, aspect ratio, and average size. The void analysis technique used in
this work has a qualitative value since a different specimen was employed for each straining
level. Therefore, it was not possible to follow the evolution of a group of microvoids. As the
void measurements were performed in the specimen’s cross-section, the growth of voids
was not observed along the specimen loading direction, which is usually viewed in the
literature as an ellipsoid shape [50]. The proposed methodology is based on a spherical void
in which volume fraction is estimated from the void area measurements of 2D micrograph
images. For this reason, these experimental results were applied only to determine the
initial void volume fraction, which corresponds to the undeformed condition.

The classical GTN damage model considers the void contributions related to the
growth of existing voids and the nucleation of new voids. The GTN void nucleation follows
a normal distribution, and its accumulated equation tends to the saturated value of fN ,
which was calibrated in Section 3.5.3 with εN and SN to describe the observed behavior
of uniaxial tensile load-elongation data. According to the GTN model, only the stress
triaxiality influences the void growth. It should be observed that the parameters of the GTN
model were calibrated from the uniaxial tensile data at the sheet rolling direction. Thus, the
corresponding limit strain predictions are close to the experimental values of the uniaxial
tension deformation mode. On the other hand, this work showed that the GTN complete
set parameters determined by the proposed methodology provide a reasonable forecast
for the plane-strain tension mode. In this context, the set of the selected GTN parameters
provides conservative predictions of the in-plane limit strains for the CR980XG3TM steel
between the uniaxial and plane-strain tension deformation modes.

5. Conclusions

This work evaluated the uncoated cold-rolled CR980XG3TM steel sheet from me-
chanical tests and finite element modeling. The material presented a global formability
Su × et = 24.3 GPa% within the region known as the current third-generation advanced
high-strength steels. This excellent formability results from its multiphase microstructure com-
posed of martensite, ferrite, and retained austenite. From the performed testing procedures and
proposed finite element modeling, the main conclusions are summarized as follows:

1. The standard mechanical testing provided the average mechanical properties, namely
the yield stress (604 MPa), ultimate tensile strength (1040 MPa), and total elongation
(23.4%). The tested material presents a weak initial plastic anisotropy, with a planar
anisotropy close to zero (−0.079) along with the normal anisotropy coefficient close to
unity (0.917).

2. In the as-received state, the XRD analysis provided a retained austenite volume
fraction of 12.2%, which, in turn, is prone to transform into martensite during the
early stages of plastic straining.

3. The CR980XG3TM steel provided an experimental Lankford r-value close to the unity,
and thus isotropic plasticity could be assumed as a first approximation in the modeling.
The identified damage parameters of the GTN model were able to reproduce the
experimental load-elongation obtained from the uniaxial tensile test. The mesh
sensitivity analysis also showed that the mesh size does not influence the finite
element predictions in the uniform elongation domain. However, as the necking
appears, the smaller the mesh size, and hence the deformation is more localized. A
mesh size of 0.4 mm in the gauge length zone was enough to fit the experimental data.

4. A simple methodology for calibrating the parameters of the GTN model was per-
formed based on the adopted mechanical testing and finite element simulations. The
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calibration method provided the complete set of the GTN damage model parame-
ters for the CR980XG3TM steel, namely rd0 = 0.99988, q1 = 1.74, q2 = 0.83, εN = 0.18,
SN = 0.07, fN = 0.035, fC = 0.05, and fF = 0.095. Moreover, the calibrated GTN param-
eters provided an excellent forecast for the experimental limit strains located on the
left-hand side of the forming limit curve.
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