Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (125)

Search Parameters:
Keywords = thiophene conjugates

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 938 KiB  
Article
Gun–Bullet Model-Based Noncovalent Interactions Boosting Visible Light Photocatalytic Hydrogen Production in Poly Thieno[3,2-b]Thiophene/Graphitic Carbon Nitride Heterojunctions
by Yong Li, Jialu Tong, Zihao Chai, Yuanyuan Wu, Dongting Wang and Hongbin Li
Polymers 2025, 17(10), 1417; https://doi.org/10.3390/polym17101417 - 21 May 2025
Viewed by 350
Abstract
Linear conjugated polymer photocatalysts are still hampered by challenges involving low charge separation efficiency and poor water dispersibility, which are crucial factors during the photocatalytic water splitting process. Herein, we synthesized Poly thieno[3,2-b]thiophene (PTT) nanoparticles with excellent visible light response characteristic. Subsequently, we [...] Read more.
Linear conjugated polymer photocatalysts are still hampered by challenges involving low charge separation efficiency and poor water dispersibility, which are crucial factors during the photocatalytic water splitting process. Herein, we synthesized Poly thieno[3,2-b]thiophene (PTT) nanoparticles with excellent visible light response characteristic. Subsequently, we constructed the gun–bullet model PTT/graphitic carbon nitride (PTT/g-C3N4) heterojunctions for photocatalytic hydrogen production, where PTT with good visible light response characteristic serves as the bullets and g-C3N4 with good water dispersibility serves as the guns. The as-prepared PTT/g-C3N4 heterojunctions show greatly accelerated charge separation and excellent photocatalytic hydrogen production performance. Specifically, 10PTT/g-C3N4 demonstrates extraordinary hydrogen production performance, reaching 6.56 mmol g−1 h−1 (2 wt% Pt loading, 0.1 M AA as sacrificial agent, λ > 420 nm), calculated to be 15.3 and 22.6 times those of PTT and g-C3N4, respectively. Mechanistic studies reveal that the significantly improved performance of PTT/g-C3N4 heterojunctions is ascribed to the accelerated charge transfer, which originates from the C…S/N…S noncovalent interactions among PTT and g-C3N4. The C…S/N…S noncovalent interactions act as an efficient interface charge transmission channel (ICTC), accelerating the steady stream of excited electron transfer from the lowest unoccupied molecular orbital (LUMO) of PTT to that of g-C3N4. The gun–bullet model heterojunctions proposed here provide a practical strategy for achieving exceptional visible light photocatalytic hydrogen production by combining charge separation with water dispersibility in polymer/polymer heterojunctions via noncovalent interactions. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

11 pages, 21344 KiB  
Article
Fully Conjugated Heteroatomic Non- and Quasi-Alternant Polyradicals
by Sergi Betkhoshvili, Jordi Poater, Ibério de P. R. Moreira and Josep Maria Bofill
Chemistry 2025, 7(2), 45; https://doi.org/10.3390/chemistry7020045 - 18 Mar 2025
Viewed by 659
Abstract
In this work, we present fully π-conjugated diradical(oid)s and tetraradical(oid)s with five-membered non-alternant cyclopentadienyl and quasi-alternant thiophene rings, the latter of which is used as a source of aromatic stabilization. By controlling the topology of the π-systems, we can restrict the [...] Read more.
In this work, we present fully π-conjugated diradical(oid)s and tetraradical(oid)s with five-membered non-alternant cyclopentadienyl and quasi-alternant thiophene rings, the latter of which is used as a source of aromatic stabilization. By controlling the topology of the π-systems, we can restrict the lower-bound number of unpaired electrons. Aromaticity and/or antiaromaticity in the different configurations of the compounds can be used to design conjugated compounds with high open-shell characters. We also designed the diradical(oid) based only on the five-membered rings, without any terminal radical groups. This work exemplifies the application of our theory of rational design of polyradicals to heteroatomic and non/quasi-alternant organic systems. The ability to create polyradicals with different classes of organic compounds establishes the possibility of creating multifunctional organic materials with tunable magnetic properties. Full article
Show Figures

Graphical abstract

16 pages, 2858 KiB  
Article
Triple Design Strategy for Quinoxaline-Based Hole Transport Materials in Flexible Perovskite Solar Cells
by Yuanqiong Lin, Zeyuan Gao, Xiaoshang Zhong, Yinghua Lu, Song Tu and Xin Li
Molecules 2025, 30(5), 1129; https://doi.org/10.3390/molecules30051129 - 28 Feb 2025
Viewed by 844
Abstract
Molecular design strategies such as noncovalent conformational locks, self-assembly, and D-A molecular skeletons have been extensively used to devise efficient and stable hole transport materials. Nevertheless, most of the existing excellent examples involve only single or dual strategies, and triple strategies remain scarcely [...] Read more.
Molecular design strategies such as noncovalent conformational locks, self-assembly, and D-A molecular skeletons have been extensively used to devise efficient and stable hole transport materials. Nevertheless, most of the existing excellent examples involve only single or dual strategies, and triple strategies remain scarcely reported. Herein, we attempt to develop two quinoxaline-based hole transport materials (DQC-T and DQ-T-QD) through a triple strategy encompassing an S···N noncovalent conformational lock, D-A molecular skeletons, and self-assembly or conjugate engineering. The S···N noncovalent conformational lock formed by thiophene sulfur atoms and quinoxaline nitrogen atoms improves molecular planarity, further inducing the formation of high-quality perovskite films and enhancing hole transport ability; the asymmetric D-A molecular backbone endows the material with a larger dipole moment (μ = 5.80 D) to promote intramolecular charge transfer; and the carboxyl group, methoxy, and sulfur atom establish strong interactions between the NiOx and perovskite layers, including self-assembly and defect passivation, which mitigates the occurrence of detrimental interfacial charge recombination and reactions. Thus, the 2-thiophenecarboxylic acid derivative DQC-T, featuring an asymmetric D-A molecular backbone, exhibits superiority in terms of good interface contact, hole extraction, and transport compared to DQ-T-QD with a D-A-π-A-D type structure. Naturally, the optimal power conversion efficiency of NiOx/DQC-T-based p-i-n flexible perovskite solar cells is 18.12%, surpassing that of NiOx/DQ-T-QD-based devices (16.67%) and NiOx-based devices with or without DQC (a benzoic acid derivative without a noncovalent conformational lock) as co-HTMs (16.75% or 15.52%). Our results reflect the structure–performance relationship well, and provide a referable triple strategy for the design of new hole transport materials. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

15 pages, 2219 KiB  
Article
Anion-Exchange Strategy for Ru/RuO2-Embedded N/S-Co-Doped Porous Carbon Composites for Electrochemical Nitrogen Fixation
by Shahzeb Ali Samad, Xuanzi Ye, Zhiya Han, Senhe Huang, Chenbao Lu, Junbo Hou, Min Yang, Zhenyu Zhang, Feng Qiu and Xiaodong Zhuang
Polymers 2025, 17(4), 543; https://doi.org/10.3390/polym17040543 - 19 Feb 2025
Viewed by 795
Abstract
Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains [...] Read more.
Ionic porous polymers have been widely utilized efficiently to anchor various metal atoms for the preparation of metal-embedded heteroatom-doped porous carbon composites as the active materials for electrocatalytic applications. However, the rational design of the heteroatom and metal elements in HPC-based composites remains a significant challenge, due to the tendency of the aggregation of metal nanoparticles during pyrolysis. In this study, a nitrogen (N)- and sulfur (S)-enriched ionic covalent organic framework (iCOF) incorporating viologen and thieno[3,4-b] thiophene (TbT) was constructed via Zincke-type polycondensation. The synthesized iCOF possesses a crystalline porous structure with a pore size of 3.05 nm, a low optical band gap of 1.88 eV, and superior ionic conductivity of 10−2.672 S cm−1 at 333 K, confirming the ionic and conjugated nature of our novel iCOF. By applying the iCOF as the precursor, a ruthenium and ruthenium(IV) oxide (Ru/RuO2) nanoparticle-embedded N/S-co-doped porous carbon composite (NSPC-Ru) was prepared by using a two-step sequence of anion-exchange and pyrolysis processes. In the electrochemical nitrogen reduction reaction (eNRR) application, the NSPC-Ru achieves an impressive NH3 yield rate of 32.0 μg h−1 mg−1 and a Faradaic efficiency of 13.2% at −0.34 V vs. RHE. Thus, this innovative approach proposes a new route for the design of iCOF-derived metal-embedded porous carbon composites for enhanced NRR performance. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

26 pages, 7079 KiB  
Article
An Appealing, Robust Access to Furo-Fused Heteropolycycles
by Alice Benzi, Lara Bianchi, Gianluca Giorgi, Giovanni Lentini, Massimo Maccagno, Guglielmo Marcantoni Taddei, Giovanni Petrillo and Cinzia Tavani
Molecules 2025, 30(4), 948; https://doi.org/10.3390/molecules30040948 - 18 Feb 2025
Cited by 1 | Viewed by 1410
Abstract
Recently, nitrostilbenes characterized by two different or differently substituted aryl moieties, obtainable from the initial ring-opening of 3-nitrobenzo[b]thiophene with amines, have proved, by means of a stepwise double coupling with phenolic-type bidentate C/O nucleophiles, to be valuable precursors of oxygen-containing heteropolycycles [...] Read more.
Recently, nitrostilbenes characterized by two different or differently substituted aryl moieties, obtainable from the initial ring-opening of 3-nitrobenzo[b]thiophene with amines, have proved, by means of a stepwise double coupling with phenolic-type bidentate C/O nucleophiles, to be valuable precursors of oxygen-containing heteropolycycles and of fully conjugated systems therefrom via an efficient 6π-electrocyclization and final aromatization. Herein, the methodology is extended, after suitable optimization, to diverse heterophenols to afford new appealing heteropolycyclic systems of potential interest as drug leads. The synthetic results are fully consistent with up-to-date quantomechanical calculations. For some of the new molecules, a significant fluorescence is reported, with a potential for future applications, e.g., in the field of optical devices. Full article
(This article belongs to the Special Issue Heterocyclic Compounds for Drug Design and Drug Discovery)
Show Figures

Graphical abstract

15 pages, 3048 KiB  
Article
Synthesis of S- and N,S-Heterocycle–Dipeptide Conjugates for Supramolecular Hydrogel Formation
by Ana-Morgana G. P. Silva, Maria F. Martins, Carlos B. P. Oliveira, José A. Martins, Paula M. T. Ferreira and Maria-João R. P. Queiroz
Molecules 2025, 30(4), 869; https://doi.org/10.3390/molecules30040869 - 14 Feb 2025
Cited by 1 | Viewed by 849
Abstract
Small peptides with aromatic nuclei at the N-terminus have been shown to form bioactive, biocompatible, and biodegradable supramolecular peptide hydrogels. Novel heterocycle–dipeptide conjugates with potential biological activity or application as drug carriers were synthesized by using S-(benzo[b]thiophene) and N [...] Read more.
Small peptides with aromatic nuclei at the N-terminus have been shown to form bioactive, biocompatible, and biodegradable supramolecular peptide hydrogels. Novel heterocycle–dipeptide conjugates with potential biological activity or application as drug carriers were synthesized by using S-(benzo[b]thiophene) and N,S-(thieno [2,3-b]pyridine and thieno[2,3-b]quinoline) heterocycles as N-protective groups for dipeptides l-Phe-l-Phe and l-Phe-l-Leu. The synthesis involved coupling heterocyclic carboxylic acids with trifluoroacetate salts of ethyl l-phenylalanyl-l-phenylalaninate and ethyl l-phenylalanyl- l-leucinate using HBTU and Et3N, producing the corresponding six N-heterocycle–dipeptide ester conjugates, which were then hydrolyzed to the carboxylic acids. These conjugates were subjected to gelation tests in water starting from 0.4 wt% concentration of the conjugates, using a pH-lowering method with GdL. Among them, only the conjugate of benzo[b]thiophene with l-Phe-l-Phe-OH formed a hydrogel, with a gelation critical concentration of 0.15 wt% (GdL 0.6%) and a final pH of 6.8, which is important for biological applications. The hydrogel was characterized by STEM, revealing nanofibers with an average thickness of 17 nm that assemble into a 3D network capable of trapping water. Further rheological analysis demonstrated its viscoelastic behavior (G′ = 3.03 × 103 Pa; G″ = 3.28 × 102 Pa), comparable to the extracellular matrix of certain human tissues, crucial for biomedical applications. Full article
Show Figures

Figure 1

14 pages, 4402 KiB  
Article
Effects of Phenoxazine Chromophore on Optical, Electrochemical and Electrochromic Behaviors of Carbazole–Thiophene Derivatives
by Bin Hu, Haizeng Song, Xinlei Zhang, Yuan He, Jingshun Ren and Jingbin Huang
Polymers 2024, 16(24), 3546; https://doi.org/10.3390/polym16243546 - 19 Dec 2024
Viewed by 856
Abstract
Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole–thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, [...] Read more.
Phenoxazine, as an organic-small-molecule chromophore, has attracted much attention for its potential electrochromic applications recently. To develop appealing materials, phenoxazine chromophores were introduced at the N-position of carbazole–thiophene pigment, yielding two novel monomers (DTCP and DDCP), whose chemical structures were characterized by NMR, HRMS and FTIR. The results of the optical property study indicate that little influence could be observed in the presence of the phenoxazine chromophore. Corresponding polymer films on the surface of an ITO/glass electrode were obtained through electropolymerization. The electrochemical features displayed were various due to the introduction of the phenoxazine group. The spectroelectrochemical results demonstrate that the color of the polymer films could be changed. Compared with the PDDC films, the PDDCP films exhibited three different colors (tangerine, green and purple colors) in different redox states, which could be attributed to the synergistic effect between the carbazole–thiophene conjugate chain and the phenoxazine group. Moreover, fast switching time could be seen due to the presence of the phenoxazine chromophore. This study could provide a reference for obtaining high-performance electrochromic materials. Full article
(This article belongs to the Special Issue Active Polymeric Materials for Electrochemical Applications)
Show Figures

Figure 1

6 pages, 1240 KiB  
Communication
Synthesis of (5Z)-3-Allyl-5-{[5-(4-methoxyphenyl)thiophen-2-yl]methylidene}-2-sulfanylidene-1,3-thiazolidin-4-one in L-Proline-Based Deep Eutectic Solvent
by Stéphanie Hesse, Isabelle Jourdain, Abderrahim Khatyr and Michael Knorr
Molbank 2024, 2024(4), M1936; https://doi.org/10.3390/M1936 - 10 Dec 2024
Cited by 1 | Viewed by 1004
Abstract
3-N-allylrhodanine was condensed with 5-(4-methoxyphenyl)-thiophene-2-carbaldehyde in an L-proline-based deep eutectic solvent (DES) to obtain the π-conjugated heterocyclic rhodanine compound (5Z)-3-allyl-5-{[5-(4-methoxyphenyl)thiophen-2-yl]methylidene}-2-sulfanylidene-1,3-thiazolidin-4-one (2). Compound 2 was characterized by NMR spectroscopy, and its UV-vis spectrum was compared with that of [...] Read more.
3-N-allylrhodanine was condensed with 5-(4-methoxyphenyl)-thiophene-2-carbaldehyde in an L-proline-based deep eutectic solvent (DES) to obtain the π-conjugated heterocyclic rhodanine compound (5Z)-3-allyl-5-{[5-(4-methoxyphenyl)thiophen-2-yl]methylidene}-2-sulfanylidene-1,3-thiazolidin-4-one (2). Compound 2 was characterized by NMR spectroscopy, and its UV-vis spectrum was compared with that of the related derivative 3-allyl-5-(4-methoxybenzylidene)-2-sulfanylidene-1,3-thiazolidin-4-one (1). Preliminary results revealed that compound 2 is emissive at room temperature in solution. Full article
(This article belongs to the Section Organic Synthesis and Biosynthesis)
Show Figures

Figure 1

15 pages, 2348 KiB  
Article
Fine Tuning the Glass Transition Temperature and Crystallinity by Varying the Thiophene-Quinoxaline Copolymer Composition
by Xun Pan and Mats R. Andersson
Materials 2024, 17(24), 6031; https://doi.org/10.3390/ma17246031 - 10 Dec 2024
Viewed by 1060
Abstract
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high [...] Read more.
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps. Therefore, an easily synthesised amorphous thiophene−quinoxaline donor polymer, TQ1, has attracted our attention. An analogue, TQ-EH that has the same polymer backbone as TQ1 but with short branched side-chains, was previously reported as a donor polymer with increased crystallinity. We have synthesised copolymers with varied ratios between octyloxy and branched (2-ethylhexyl)oxy-substituted quinoxaline units having the same polymer backbone, with the aim to control the aggregation/crystallisation behaviour of the resulting copolymers. The optical properties, glass transition temperatures and degree of crystallinity of the new copolymers were systematically examined in relation to their copolymer composition, revealing that the composition can be used to fine-tune these properties of conjugated polymers. In addition, multiple sub-Tg transitions were found from some of the polymers, which are not commonly or clearly seen in other conjugated polymers. The new copolymers were tested in photovoltaic devices with a fullerene derivative as the acceptor, achieving slightly higher performances compared to the homopolymers. This work demonstrates that side-chain modification by copolymerisation can fine-tune the properties of conjugated polymers without requiring complex organic synthesis, thereby expanding the number of easily synthesised polymers for future upscaling of OPVs. Full article
Show Figures

Figure 1

11 pages, 2792 KiB  
Article
A Soluble ProDOT-Based Polymer and Its Electrochromic Device with Yellow-to-Green Color Switching Towards Camouflage Application
by Shizhao Wang, Tao Yang, Haichang Fu, Yujie Dong, Weijun Li and Cheng Zhang
Molecules 2024, 29(23), 5585; https://doi.org/10.3390/molecules29235585 - 26 Nov 2024
Cited by 1 | Viewed by 1166
Abstract
Yellow-to-green electrochromic color switching plays a key role in the intelligent adaptive camouflage under the visible light environment in future military camouflage applications. Here, we designed and synthesized a soluble electrochromic conjugated pDPTD polymer, mainly based on perylo[1,12-bcd]thiophene and the novel ProDOT groups. [...] Read more.
Yellow-to-green electrochromic color switching plays a key role in the intelligent adaptive camouflage under the visible light environment in future military camouflage applications. Here, we designed and synthesized a soluble electrochromic conjugated pDPTD polymer, mainly based on perylo[1,12-bcd]thiophene and the novel ProDOT groups. The pDPTD polymer displayed a yellow-to-green electrochromism with large optical contrast and fast switching times. Based on the pDPTD polymer film, a yellow-to-green electrochromic device was achieved, showing an orange-yellow color at −0.4 V with L*a*b* color coordinates of 88.5, 18.5, and 34.2 and a pale green color at 0.7 V with L*a*b* color coordinates of 85.6, −4.8, and 11.5, together with a large optical contrast of 43.5% and fast switching times of 2.4/3.2 s. These results indicated that the pDPTD polymer could serve as a potential electrochromic material for yellow/green system camouflage applications. Full article
(This article belongs to the Special Issue π-Conjugated Functional Molecules & Polymers)
Show Figures

Figure 1

11 pages, 3628 KiB  
Article
Facile Preparation of High-Performance Polythiophene Derivative and Effect of Torsion Angle Between Thiophene Rings on Electrochromic Color Change
by Qingfu Guo, Chao Sun, Yiran Li, Kaoxue Li and Xishi Tai
Molecules 2024, 29(22), 5477; https://doi.org/10.3390/molecules29225477 - 20 Nov 2024
Cited by 3 | Viewed by 1007
Abstract
The electrochromic phenomenon of conducting polymer is mainly dominated by the π-π* band transition. The π conjugation is influenced by the coplanarity between polymer units, deviations from which can lead to an increased ionization potential and band gap values. In order to investigate [...] Read more.
The electrochromic phenomenon of conducting polymer is mainly dominated by the π-π* band transition. The π conjugation is influenced by the coplanarity between polymer units, deviations from which can lead to an increased ionization potential and band gap values. In order to investigate the effect of plane distortion angle on electrochromic color in the main chain structure of polymerization, high-performance poly(3,3′-dimethyl-2,2′-bithiophene) (PDMeBTh) with a large plane distortion angle is successfully synthesized in boron trifluoride diethyl etherate (BFEE) by the electrochemical anodic oxidation method. The electrochemical and thermal properties of PDMeBTh prepared from BFEE and ACN/TBATFB are compared. The electrochromic properties of PDMeBTh are systematically investigated. The PDMeBTh shows a different color change (orange-yellow in the neutral state) compared to poly (3-methylthiophene) (light-red in the neutral state) due to the large torsion angle between thiophene rings of the main polymer chain. The optical contrast, response time, and coloring efficiency (CE) of the prepared PDMeBTh are also studied, which shows good electrochromic properties. For practical applications, an electrochromic device is fabricated by the PDMeBTh and PEDOT. The color of the device can be reversibly changed between orange-yellow and dark blue. The light contrast of the device is 27% at 433 nm and 61% at 634 nm. The CE value of the device is 403 cm2 C−1 at 433 nm and 577 cm2 C−1 at 634 nm. The constructed device also has good open circuit memory and electrochromic stability, showing good potential for practical applications. Full article
(This article belongs to the Section Macromolecular Chemistry)
Show Figures

Figure 1

14 pages, 4274 KiB  
Article
3,6-Dimethoxythieno[3,2-b]thiophene-Based Bifunctional Electrodes for High-Performance Electrochromic Supercapacitors Prepared by One-Step Electrodeposition
by Zhixuan Yu, Rui Wang, Huayu Tang, Ding Zheng and Junsheng Yu
Polymers 2024, 16(16), 2313; https://doi.org/10.3390/polym16162313 - 15 Aug 2024
Cited by 3 | Viewed by 1220
Abstract
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage [...] Read more.
An integrated visual energy system consisting of conjugated polymer electrodes is promising for combining electrochromism with energy storage. In this work, we obtained copolymer bifunctional electrodes poly(3,6-dimethoxythieno[3,2-b]thiophene-co-2,3-dihydrothieno[3,4-b][1,4]dioxin-3-ylmethanol)(P(TT-OMe-co-EDTM)) by one-step electrochemical copolymerization, which exhibits favorable electrochromic and capacitive energy storage properties. Because of the synergistic effect of PTT-OMe and PEDTM, the prepared copolymers show better flexibility. Moreover, the morphology and electrochemical properties of the copolymers could be adjusted by depositing different molar ratios of 3,6-dimethoxythieno[3,2-b]thiophene (TT-OMe) and 2,3-dihydrothieno[3,4-b][1,4] dioxin-3-ylmethanol (EDTM). The P(TT-OMe-co-EDTM) electrodes realized a high specific capacitance (190 F/g at 5 mV/s) and recognizable color conversion. This work provides a novel and simple way to synergistically improve electrochromic and energy storage properties and develop thiophene-based conducting polymers for electrochromic energy storage devices. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

9 pages, 2998 KiB  
Article
Synthesis, Crystal Structure, and Electropolymerization of 1,4-Di([2,2′-bithiophen]-3-yl)buta-1,3-diyne
by Alessandro Pedrini, Chiara Massera, Enrico Dalcanale, Marco Giannetto and Roberta Pinalli
Crystals 2024, 14(7), 620; https://doi.org/10.3390/cryst14070620 - 5 Jul 2024
Viewed by 1569
Abstract
For their great structural versatility, thiophene-based π-conjugated systems have been widely exploited in the preparation of low band gap materials. Here, we report the synthesis of a highly conjugated tetrathiophene system, namely 1,4-di([2,2′-bithiophen]-3-yl)buta-1,3-diyne (1), that presents two bithiophene units connected at [...] Read more.
For their great structural versatility, thiophene-based π-conjugated systems have been widely exploited in the preparation of low band gap materials. Here, we report the synthesis of a highly conjugated tetrathiophene system, namely 1,4-di([2,2′-bithiophen]-3-yl)buta-1,3-diyne (1), that presents two bithiophene units connected at position 3 by a butadiynylene spacer. Single-crystal X-ray diffraction (SC-XRD) analysis elucidated the structure of 1, confirming the planarity of the molecule. The molecule was then electropolymerized onto the surface of a gold-coated piezoelectric quartz crystal, showing a high reactivity that is ascribable to the extended conjugation. The frontier molecular orbital energies of 1 were obtained via DFT optimization performed on the crystal structure-derived molecular geometry. Finally, DFT was also used to estimate the polymer band gap. Full article
Show Figures

Figure 1

20 pages, 7986 KiB  
Article
Triazine and Fused Thiophene-Based Donor-Acceptor Type Semiconducting Conjugated Polymer for Enhanced Visible-Light-Induced H2 Production
by Jian Liu, Shengling Zhang, Xinshu Long, Xiaomin Jin, Yangying Zhu, Shengxia Duan and Jinsheng Zhao
Molecules 2024, 29(12), 2807; https://doi.org/10.3390/molecules29122807 - 12 Jun 2024
Cited by 2 | Viewed by 1464
Abstract
Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and [...] Read more.
Conjugated polymers have attracted significant attention in the field of photocatalysis due to their exceptional properties, including versatile optimization, cost-effectiveness, and structure stability. Herein, two conjugated porous polymers, PhIN-CPP and ThIN-CPP, based on triazines, were meticulously designed and successfully synthesized using benzene and thiophene as building blocks. Based on UV diffuse reflection spectra, the photonic band gaps of PhIN-CPP and ThIN-CPP were calculated as 2.05 eV and 1.79 eV. The PhIN-CPP exhibited a high hydrogen evolution rate (HER) of 5359.92 μmol·g−1·h−1, which is 10 times higher than that of Thin-CPP (538.49 μmol·g−1·h−1). The remarkable disparity in the photocatalytic performance can be primarily ascribed to alterations in the band structure of the polymers, which includes its more stable benzene units, fluffier structure, larger specific surface area, most pronounced absorption occurring in the visible region and highly extended conjugation with a high density of electrons. The ΔEST values for PhIN-CPP and ThIN-CPP were calculated as 0.79 eV and 0.80 eV, respectively, based on DFT and TD-DFT calculations, which revealed that the incorporation of triazine units in the as-prepared CMPs could enhance the charge transfer via S1 ↔ T1 and was beneficial to the photocatalytic decomposition of H2O. This study presents a novel concept for developing a hybrid system for preparation of H2 by photocatalysis with effectiveness, sustainability, and economy. Full article
Show Figures

Graphical abstract

10 pages, 1738 KiB  
Article
Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles
by Cong-Huan Wang, Yohei Adachi and Joji Ohshita
Molecules 2024, 29(11), 2684; https://doi.org/10.3390/molecules29112684 - 5 Jun 2024
Cited by 1 | Viewed by 1190
Abstract
Germoles and siloles unsymmetrically condensed with heteroaromatic units are attracting much interest. In this study, compounds containing a triazologermole core unit condensed with a benzene or thiophene ring were prepared. Thienotriazologermole was subjected to bromination to obtain the bromide, which underwent transformation via [...] Read more.
Germoles and siloles unsymmetrically condensed with heteroaromatic units are attracting much interest. In this study, compounds containing a triazologermole core unit condensed with a benzene or thiophene ring were prepared. Thienotriazologermole was subjected to bromination to obtain the bromide, which underwent transformation via the palladium-catalyzed Stille coupling reaction to form triphenylamine-substituted thienotriazolegermole, with an effective extension of conjugation. The electronic states and properties of these triazologermole derivatives are discussed on the basis of optical and electrochemical measurements and density functional theory calculations. Triphenylamine-substituted thienotriazolegermole showed clear solvatochromic properties in photoluminescence measurements, suggesting that intramolecular charge transfer occurs at the photo-excited state. This clearly indicates that the triazologermole unit is useful as an acceptor of donor–acceptor compounds. The potential application of triphenylamine-substituted thienotriazolegermole as a sensing material was also explored. Full article
(This article belongs to the Section Organometallic Chemistry)
Show Figures

Graphical abstract

Back to TopTop