Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Optical and Electrochemical Properties
2.3. DFT Calculations
3. Experimental Section
3.1. General Preparations
3.2. Synthetic Procedures
3.2.1. Synthesis of BTAG
3.2.2. Synthesis of TT-TMS
3.2.3. Synthesis of TTAG-TMS
3.2.4. Synthesis of TTAG
3.2.5. Synthesis of TTAG-Br
3.2.6. Synthesis of TTAG-TPA
3.3. Computational Details
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Slavova, K.I.; Todorov, L.T.; Belskaya, N.B.; Palafox, M.A.; Kostova, I.P. Developments in the application of 1, 2, 3-triazoles in cancer treatment. Recent Pat. Anti-Cancer Drug Discov. 2020, 15, 92–112. [Google Scholar] [CrossRef] [PubMed]
- Zhao, S.; Liu, J.; Lv, Z.; Zhang, G.; Xu, Z. Recent updates on 1,2,3-triazole-containing hybrids with in vivo therapeutic potential against cancers: A mini-review. Eur. J. Med. Chem. 2023, 251, 115254. [Google Scholar] [CrossRef] [PubMed]
- Lai, Q.; Liu, Q.; Zhao, K.; Shan, C.; Wojtas, L.; Zheng, Q.; Shi, X.; Song, Z. Rational design and synthesis of yellow-light emitting triazole fluorophores with AIE and mechanochromic properties. Chem. Commun. 2019, 55, 4603–4606. [Google Scholar] [CrossRef] [PubMed]
- Gavlik, K.D.; Sukhorukova, E.S.; Shafran, Y.M.; Slepukhin, P.A.; Benassi, E.; Belskaya, N.P. 2-Aryl-5-amino-1,2,3-triazoles: New effective blue-emitting fluorophores. Dye. Pigment. 2017, 136, 229–242. [Google Scholar] [CrossRef]
- Safronov, N.E.; Fomin, T.O.; Minin, A.S.; Todorov, L.; Kostova, I.; Benassi, E.; Belskaya, N.P. 5-Amino-2-aryl-1,2,3-triazol-4-carboxylic acids: Synthesis, photophysical properties, and application prospects. Dye. Pigment. 2020, 178, 108343. [Google Scholar] [CrossRef]
- Safronov, N.E.; Minin, A.S.; Slepukhin, P.A.; Kostova, I.P.; Benassi, E.; Belskaya, N.P. 5-Amino-2-aryl-2H-1,2,3-triazole-4-carboxamides: Unique AIEE-gens and selective Hg2+ fluorosensors. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2023, 292, 122419. [Google Scholar] [CrossRef] [PubMed]
- Bozorov, K.; Zhao, J.; Aisa, H.A. 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview. Bioorg. Med. Chem. 2019, 27, 3511–3531. [Google Scholar] [CrossRef]
- Kaur, J.; Saxena, M.; Rishi, N. An Overview of Recent Advances in Biomedical Applications of Click Chemistry. Bioconjug. Chem. 2021, 32, 1455–1471. [Google Scholar] [CrossRef] [PubMed]
- Johnson, J.A.; Finn, M.G.; Koberstein, J.T.; Turro, N.J. Construction of Linear Polymers, Dendrimers, Networks, and Other Polymeric Architectures by Copper-Catalyzed Azide-Alkyne Cycloaddition “Click” Chemistry. Macromol. Rapid Commun. 2008, 29, 1052–1072. [Google Scholar] [CrossRef]
- Wang, L.; Wang, T.; Oh, J.; Yuan, Z.; Yang, C.; Hu, Y.; Zhao, X.; Chen, Y. Halogen-free donor polymers based on dicyanobenzotriazole for additive-free organic solar cells. Chem. Eng. J. 2022, 442, 136068. [Google Scholar] [CrossRef]
- Chen, Y.; Lei, P.; Geng, Y.; Meng, T.; Li, X.; Zeng, Q.; Guo, Q.; Tang, A.; Zhong, Y.; Zhou, E. Selective fluorination on donor and acceptor for management of efficiency and energy loss in non-fullerene organic photovoltaics. Sci. China Chem. 2023, 66, 1190–1200. [Google Scholar] [CrossRef]
- Li, X.; Duan, X.; Liang, Z.; Yan, L.; Yang, Y.; Qiao, J.; Hao, X.; Zhang, C.; Zhang, J.; Li, Y.; et al. Benzo[1,2-b:4,5-b′]difuran Based Polymer Donor for High-Efficiency (>16%) and Stable Organic Solar Cells. Adv. Energy Mater. 2022, 12, 2103684. [Google Scholar] [CrossRef]
- Tang, Z.; Xu, X.; Li, R.; Yu, L.; Meng, L.; Wang, Y.; Li, Y.; Peng, Q. Asymmetric Siloxane Functional Side Chains Enable High-Performance Donor Copolymers for Photovoltaic Applications. ACS Appl. Mater. Interfaces 2020, 12, 17760–17768. [Google Scholar] [CrossRef] [PubMed]
- Cao, F.; Hsu, J.; Hung, K.; Cheng, Y. Synthesis of Naphtho[1,2-d:5,6-d’]bis([1,2,3]triazole)-based Wide-bandgap Alternating Copolymers for Polymer Solar Cells and Field-effect Transistors. Polym. J. 2023, 55, 417–426. [Google Scholar] [CrossRef]
- Torres-Moya, I.; Carrillo, J.R.; Díaz-Ortiz, A.; Prieto, P. New Organic Materials Based on Multitask 2H-benzo[d]1,2,3-triazole Moiety. Chemosensors 2021, 9, 267. [Google Scholar] [CrossRef]
- Cerda-Pedro, J.E.; Hernández-Ortiz, O.J.; Vázquez- García, R.A.; García-Báez, E.V.; Gómez-Aguilar, R.; Espinosa-Roa, A.; Farfán, N.; Padilla-Martínez, I.I. Highly Crystalline and Fluorescent BODIPY-labelled Phenyl-triazole-coumarins as N-type Semiconducting Materials for OFET Devices. Heliyon 2024, 10, e23517. [Google Scholar] [CrossRef] [PubMed]
- Stanitska, M.; Mahmoudi, M.; Pokhodylo, N.; Lytvyn, R.; Volyniuk, D.; Tomkeviciene, A.; Keruckiene, R.; Obushak, M.; Grazulevicius, J.V. Exciplex-Forming Systems of Physically Mixed and Covalently Bonded Benzoyl-1H-1,2,3-Triazole and Carbazole Moieties for Solution-Processed White OLEDs. J. Org. Chem. 2022, 87, 4040–4050. [Google Scholar] [CrossRef] [PubMed]
- Tomkute-Luksiene, D.; Keruckas, J.; Malinauskas, T.; Simokaitiene, J.; Getautis, V.; Grazulevicius, J.V.; Volyniuk, D.; Cherpak, V.; Stakhira, P.; Yashchuk, V.; et al. 2-Phenyl-1,2,3-benzotriazole Ir(III) Complexes with Additional Donor Fragment for Single-layer PhOLED Devices. Dye. Pigment. 2013, 96, 278–286. [Google Scholar] [CrossRef]
- Cao, W.; Abdurahman, A.; Zheng, P.; Zhang, M.; Li, F. High-Performance Non-Doped Blue OLEDs Based on 1,2,4-Triazole-Phenanthroimidazole Derivatives with Negligible Efficiency Roll-off. J. Mater. Chem. C 2021, 9, 6873–6879. [Google Scholar] [CrossRef]
- Sarkhel, R.; Sahu, C.; Kumar, R.; Sangwai, J.S. Impact of Acetamide, 1,2,4-Triazole, and 1-Dodecyl-2-Pyrrolidinone on Carbon Dioxide Hydrate Growth: Application in Carbon Dioxide Capture and Sequestration. J. Environ. 2023, 11, 110103. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, Y.; Chen, X.; Wang, Y.; He, M.; Shan, Y.; Li, Y.; Zhang, F.; Chen, X.; Kita, H. Preparation of Pebax 1657/MAF-7 Mixed Matrix Membranes with Enhanced CO2/N2 Separation by Active Site of Triazole Ligand. Membranes 2022, 12, 786. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Hu, Z.; Chen, D.; Luo, S.; Wang, Z.; Gao, Y.; Zhang, M.; Chen, H. Preparation and Characterization of Poly-1,2,3-triazole with Chiral 2(5H)-Furanone Moiety as Potential Optical Brightening Agents. ACS Omega 2017, 2, 5557–5564. [Google Scholar] [CrossRef] [PubMed]
- Singh, G.; George, N.; Singh, R.; Singh, G.; Sushma, K.G.; Singh, H.; Singh, J. Ion Recognition by 1,2,3-triazole Moieties Synthesized via “Click Chemistry”. Appl. Organomet. Chem. 2022, 37, e6897. [Google Scholar] [CrossRef]
- Ghosh, D.; Dhibar, S.; Dey, A.; Manna, P.; Mahata, P.; Dey, B. A Cu(II)-Inorganic Co−Crystal as a Versatile Catalyst towards ‘Click’ Chemistry for Synthesis of 1,2,3-triazoles and β-hydroxy-1,2,3-triazoles. ChemistrySelect 2020, 5, 75–82. [Google Scholar] [CrossRef]
- Sun, W.; Adachi, Y.; Ohshita, J. Synthesis of Thiazole-Condensed Germoles with Enhanced Electron-Deficient Properties. Dye. Pigment. 2022, 203, 110333. [Google Scholar] [CrossRef]
- Ohshita, J.; Sugino, M.; Ooyama, Y.; Adachi, Y. Synthesis of Pyridinothienogermoles as Unsymmetrically Condensed Germoles. Organometallics 2019, 38, 1606–1613. [Google Scholar] [CrossRef]
- Tamao, K.; Yamaguchi, S.; Shiozaki, M.; Nakagawa, Y.; Ito, Y. Thiophene-Silole Cooligomers and Copolymers. J. Am. Chem. Soc. 1992, 114, 5867–5869. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Tamao, K. Silole-Containing σ- and π-Conjugated Compounds. J. Chem. Soc. Dalton Trans. 1998, 22, 3693–3702. [Google Scholar] [CrossRef]
- Yamaguchi, S.; Tamao, K. A Key Role of Orbital Interaction in The Main Group Element-Containing π-Electron Systems. Chem. Lett. 2005, 34, 2–7. [Google Scholar] [CrossRef]
- Shimizu, M. Main Group Strategies towards Functional Hybrid Materials; Baumgartner, T., Jäkle, F., Eds.; Wiley: Hoboken, NJ, USA, 2018; Chapter 7. [Google Scholar]
- Cai, Y.; Qin, A.; Tang, B.Z. Siloles in Optoelectronic Devices. J. Mater. Chem. C 2017, 5, 7375–7389. [Google Scholar] [CrossRef]
- Lee, S.; Song, C.E.; Ryu, D.H.; Kim, J.; Kim, J.; Kang, I. Single and Double Alkoxybenzothiadiazole–Dithienosilole-Based Nonfused Ring Electron Acceptors for Organic Solar Cells. ACS Appl. Energy Mater. 2023, 6, 12503–12514. [Google Scholar] [CrossRef]
- Wang, C.; Dong, H.; Hu, W.; Liu, Y.; Zhu, D. Semiconducting π-conjugated Systems in Field-Effect Transistors: A Material Odyssey of Organic Electronics. Chem. Rev. 2012, 112, 2208–2267. [Google Scholar] [CrossRef] [PubMed]
- Ohshita, J. Group 14 Metalloles Condensed with Heteroaromatic Systems. Org. Photonics Photovolt. 2016, 4, 52–59. [Google Scholar] [CrossRef]
- Matsuda, T.; Kadowaki, S.; Goya, T.; Murakami, M. Synthesis of Silafluorenes by Iridium-Catalyzed [2 + 2 + 2] Cycloaddition of Silicon-Bridged Diynes with Alkynes. Org. Lett. 2007, 9, 133–136. [Google Scholar] [CrossRef] [PubMed]
- Shintani, R.; Misawa, N.; Takano, R.; Nozaki, K. Rhodium-Catalyzed Synthesis and Optical Properties of Silicon-Bridged Arylpyridines. Chem. Eur. J. 2017, 23, 2660–2665. [Google Scholar] [CrossRef] [PubMed]
- Wei, B.; Zhang, D.; Chen, Y.; Lei, A.; Knochei, P. Preparation of Polyfunctional Biaryl Derivatives by Cyclolanthanation of 2-Bromobiaryls and Heterocyclic Analogues Using nBu2 LaCl·4 LiCl. Angew. Chem. Int. Ed. 2019, 58, 15631–15635. [Google Scholar] [CrossRef] [PubMed]
- Mitsudo, K.; Tanaka, S.; Isobuchi, R.; Inada, T.; Mandai, H.; Korenaga, T.; Wakamiya, A.; Murata, Y.; Suga, S. Rh-Catalyzed Dehydrogenative Cyclization Leading to Benzosilolothiophene Derivatives via Si-H/C-H Bond Cleavage. Org. Lett. 2017, 19, 2564–2567. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.; Liu, Y.; Deng, X.; Li, Y.; Chen, Y. Aluminium(III) Chloride-Catalyzed Three-Component Condensation of Aromatic Aldehydes, Nitroalkanes and Sodium Azide for the Synthesis of 4-Aryl-NH-1,2,3-triazoles. Adv. Synth. Catal. 2016, 358, 1689–1693. [Google Scholar] [CrossRef]
- Denat, F.; Gaspard-Iloughmane, H.; Dubac, J. An Easy One-Pot Synthesis of Group 14 C-Metallated 2 (or 3)-Furan- and Thiophenecarbaldehydes. Synthesis 1992, 1992, 954–956. [Google Scholar] [CrossRef]
- Ohshita, J.; Nodono, M.; Kai, H.; Watanabe, T.; Kunai, A.; Komaguchi, K.; Shiotani, M.; Adachi, A.; Okita, K.; Harima, Y.; et al. Synthesis and Optical, Electrochemical, and Electron-Transporting Properties of Silicon-Bridged Bithiophenes. Organometallics 1999, 18, 1453–1459. [Google Scholar] [CrossRef]
- Yao, L.; Zhang, S.; Wang, R.; Li, W.; Shen, F.; Yang, B. Highly Efficient Near-Infrared Organic Light-Emitting Diode Based on a Butterfly-Shaped Donor-Acceptor Chromophore with Strong Solid-State Fluorescence and a Large Proportion of Radiative Excitons. Angew. Chem. Int. Ed. 2014, 53, 2119–2123. [Google Scholar] [CrossRef] [PubMed]
- Mataga, N.; Kai, Y.; Koizumi, M. Solvent Effects upon Fluorescence Spectra and the Dipolemoments of Excited Molecules. Bull. Chem. Soc. Jpn. 1956, 29, 465–470. [Google Scholar] [CrossRef]
- Vázquez, M.E.; Blanco, J.B.; Imperiali, B. Photophysics and Biological Applications of the Environment-Sensitive Fluorophore 6-N, N-Dimethylamino-2,3-naphthalimide. J. Am. Chem. Soc. 2005, 127, 1300–1306. [Google Scholar] [CrossRef] [PubMed]
- Foresman, J.B.; Frisch, A. Exploring Chemistry with Electronic Structure Methods, 3rd ed.; Gaussian, Inc.: Wallingford, CT, USA, 2015. [Google Scholar]
- Qian, G.; Dai, B.; Luo, M.; Yu, D.; Zhan, J.; Zhang, Z.; Ma, D.; Wang, Z. Band Gap Tunable Donor-Acceptor-Donor Charge-Transfer Heteroquinoid-Based Chromophores: Near Infrared Photoluminescence and Electroluminescence. Chem. Mater. 2008, 20, 6208–6216. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics, 87th ed Editor-in-Chief: David R. Lide (National Institute of Standards and Technology). J. Am. Chem. Soc. 2006, 129, 724. [Google Scholar]
- Pandey, N.; Tewari, N.; Pant, S.; Mehata, M.S. Solvatochromism and estimation of ground and excited state dipole moments of 6-aminoquinoline. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2022, 267, 120498. [Google Scholar] [CrossRef]
Compound | UV abs. λmax a/nm | PL λmax a,b/nm (Φf) | HOMO c/eV | LUMO d/eV | LUMO–HOMO/eV |
---|---|---|---|---|---|
BTAG | 281 | 319 (nd e) | −6.12 | −1.93 | 4.19 |
TTAG | 294 | 348 (nd e) | −5.80 | −1.91 | 3.86 |
TTAG-TMS | 286 | 336 (nd e) | −5.84 | −1.93 | 3.91 |
TTAG-TPA | 300, 375 | 438 (38%) | −5.23 | −2.26 | 2.97 |
TT-TMS | 285 | 327 (nd e) | −6.04 | −2.07 | 3.97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-H.; Adachi, Y.; Ohshita, J. Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles. Molecules 2024, 29, 2684. https://doi.org/10.3390/molecules29112684
Wang C-H, Adachi Y, Ohshita J. Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles. Molecules. 2024; 29(11):2684. https://doi.org/10.3390/molecules29112684
Chicago/Turabian StyleWang, Cong-Huan, Yohei Adachi, and Joji Ohshita. 2024. "Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles" Molecules 29, no. 11: 2684. https://doi.org/10.3390/molecules29112684
APA StyleWang, C. -H., Adachi, Y., & Ohshita, J. (2024). Synthesis of Unsymmetrically Condensed Benzo- and Thienotriazologermoles. Molecules, 29(11), 2684. https://doi.org/10.3390/molecules29112684