Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (15)

Search Parameters:
Keywords = thin-film lithium niobate on insulator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
10 pages, 7014 KiB  
Communication
Impact of Non-Vertical Sidewalls on Bandgap Properties of Lithium Niobate Photonic Crystals
by Peyman Bagheri, Xiaoyan Zhou and Lin Zhang
Photonics 2025, 12(5), 410; https://doi.org/10.3390/photonics12050410 - 24 Apr 2025
Viewed by 411
Abstract
We investigate the influence of non-vertical sidewall angles on the band structure characteristics of thin-film lithium niobate (LN) photonic crystals (PhCs), considering both suspended LN membranes and LN on insulator (LNOI) configurations. Utilizing the gap-to-midgap ratio as a figure-of-merit, we observe a 34% [...] Read more.
We investigate the influence of non-vertical sidewall angles on the band structure characteristics of thin-film lithium niobate (LN) photonic crystals (PhCs), considering both suspended LN membranes and LN on insulator (LNOI) configurations. Utilizing the gap-to-midgap ratio as a figure-of-merit, we observe a 34% reduction for a suspended LN PhC with 60° sidewall angles compared to the one with vertical sidewalls and a more substantial 73% reduction for LNOI PhCs with 70° sidewall angles. We address this challenge through the optimization of geometrical parameters of PhC unit cells with non-vertical sidewalls, taking fabrication feasibility into account. Our work provides a design guideline for the development of realistic LN PhC devices for future large-scale LN photonic circuits. Full article
(This article belongs to the Special Issue Recent Progress in Integrated Photonics)
Show Figures

Graphical abstract

12 pages, 2636 KiB  
Article
MoTe2 Photodetector for Integrated Lithium Niobate Photonics
by Qiaonan Dong, Xinxing Sun, Lang Gao, Yong Zheng, Rongbo Wu and Ya Cheng
Nanomaterials 2025, 15(1), 72; https://doi.org/10.3390/nano15010072 - 5 Jan 2025
Cited by 1 | Viewed by 1400
Abstract
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe [...] Read more.
The integration of a photodetector that converts optical signals into electrical signals is essential for scalable integrated lithium niobate photonics. Two-dimensional materials provide a potential high-efficiency on-chip detection capability. Here, we demonstrate an efficient on-chip photodetector based on a few layers of MoTe2 on a thin film lithium niobate waveguide and integrate it with a microresonator operating in an optical telecommunication band. The lithium-niobate-on-insulator waveguides and micro-ring resonator are fabricated using the femtosecond laser photolithography-assisted chemical–mechanical etching method. The lithium niobate waveguide-integrated MoTe2 presents an absorption coefficient of 72% and a transmission loss of 0.27 dB µm−1 at 1550 nm. The on-chip photodetector exhibits a responsivity of 1 mA W−1 at a bias voltage of 20 V, a low dark current of 1.6 nA, and a photo–dark current ratio of 108 W−1. Due to effective waveguide coupling and interaction with MoTe2, the generated photocurrent is approximately 160 times higher than that of free-space light irradiation. Furthermore, we demonstrate a wavelength-selective photonic device by integrating the photodetector and micro-ring resonator with a quality factor of 104 on the same chip, suggesting potential applications in the field of on-chip spectrometers and biosensors. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Figure 1

12 pages, 1216 KiB  
Article
Wafer-Scale Periodic Poling of Thin-Film Lithium Niobate
by Mengwen Chen, Chenyu Wang, Xiao-Hui Tian, Jie Tang, Xiaowen Gu, Guang Qian, Kunpeng Jia, Hua-Ying Liu, Zhong Yan, Zhilin Ye, Zhijun Yin, Shi-Ning Zhu and Zhenda Xie
Materials 2024, 17(8), 1720; https://doi.org/10.3390/ma17081720 - 9 Apr 2024
Cited by 4 | Viewed by 3398
Abstract
Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film [...] Read more.
Periodically poled lithium niobate on insulator (PPLNOI) offers an admirably promising platform for the advancement of nonlinear photonic integrated circuits (PICs). In this context, domain inversion engineering emerges as a key process to achieve efficient nonlinear conversion. However, periodic poling processing of thin-film lithium niobate has only been realized on the chip level, which significantly limits its applications in large-scale nonlinear photonic systems that necessitate the integration of multiple nonlinear components on a single chip with uniform performances. Here, we demonstrate a wafer-scale periodic poling technique on a 4-inch LNOI wafer with high fidelity. The reversal lengths span from 0.5 to 10.17 mm, encompassing an area of ~1 cm2 with periods ranging from 4.38 to 5.51 μm. Efficient poling was achieved with a single manipulation, benefiting from the targeted grouped electrode pads and adaptable comb line widths in our experiment. As a result, domain inversion is ultimately implemented across the entire wafer with a 100% success rate and 98% high-quality rate on average, showcasing high throughput and stability, which is fundamentally scalable and highly cost-effective in contrast to traditional size-restricted chiplet-level poling. Our study holds significant promise to dramatically promote ultra-high performance to a broad spectrum of applications, including optical communications, photonic neural networks, and quantum photonics. Full article
Show Figures

Figure 1

15 pages, 19700 KiB  
Article
Towards a Lithium Niobate Photonic Integrated Circuit for Quantum Sensing Applications
by Jessica César-Cuello, Isabel Carnoto, Luis E. García-Muñoz and Guillermo Carpintero
Photonics 2024, 11(3), 239; https://doi.org/10.3390/photonics11030239 - 6 Mar 2024
Cited by 3 | Viewed by 3227
Abstract
Quantum transducers are key components for hybrid quantum networks, enabling the transfer of quantum states between microwave and optical photons. In the quantum community, many efforts have focused on creating and verifying the entanglement between microwave and optical fields in systems that typically [...] Read more.
Quantum transducers are key components for hybrid quantum networks, enabling the transfer of quantum states between microwave and optical photons. In the quantum community, many efforts have focused on creating and verifying the entanglement between microwave and optical fields in systems that typically operate at temperatures in the millikelvin range. Our goal is to develop an integrated microwave optical entanglement device based on a lithium niobate whispering gallery mode resonator (WGMR). To investigate the feasibility of developing such an integrated device, first, a passive photonic integrated circuit (PIC) was designed, fabricated, and characterized. The PIC was developed on a thin-film lithium niobate (TFLN) on an insulator platform, and it includes eight ring resonators and four asymmetric Mach–Zehnder interferometers. This paper presents the design and operational principles of the integrated device for microwave–optical entanglement, as well as the results of the characterization of the passive PIC. Full article
(This article belongs to the Special Issue Emerging Topics in Integrated Microwave Photonics)
Show Figures

Figure 1

12 pages, 6314 KiB  
Article
Polarization-Splitting Grating Coupler on Lithium Niobate Thin Film
by Zhihua Chen, Longxi Chen, Xiangjia Meng, Yufu Ning and Yang Xun
Crystals 2024, 14(3), 226; https://doi.org/10.3390/cryst14030226 - 27 Feb 2024
Cited by 2 | Viewed by 2445
Abstract
In this study, one-dimensional grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) that also served as a polarization splitter was designed. The coupler could separate both orthogonal polarization states into two opposite directions while coupled light from a [...] Read more.
In this study, one-dimensional grating coupler on single-crystal lithium niobate thin film (lithium niobate on insulator, LNOI) that also served as a polarization splitter was designed. The coupler could separate both orthogonal polarization states into two opposite directions while coupled light from a standard single-mode fiber to a waveguide on LNOI at the same time. Using segmented and apodized designing, the peak coupling efficiencies (CEs) around telecommunication wavelength 1550 nm for fundamental TE and TM modes of −2.82 dB and −2.83 dB, respectively, were achieved. The CEs could be optimized to −1.97 dB and −1.8 dB when a metal layer was added below the silicon dioxide layer. Full article
(This article belongs to the Section Liquid Crystals)
Show Figures

Figure 1

16 pages, 7224 KiB  
Article
Machine-Learning-Assisted Instantaneous Frequency Measurement Method Based on Thin-Film Lithium Niobate on an Insulator Phase Modulator for Radar Detection
by Qianqian Jia, Zichuan Xiang, Dechen Li, Jianguo Liu and Jinye Li
Sensors 2024, 24(5), 1489; https://doi.org/10.3390/s24051489 - 25 Feb 2024
Cited by 2 | Viewed by 1948
Abstract
A simple microwave photonic, reconfigurable, instantaneous frequency measurement system based on low-voltage thin-film lithium niobate on an insulator phase modulator is put forward and experimentally demonstrated. Changing the wavelength of the optical carrier can realize the flexibility of the frequency measurement range and [...] Read more.
A simple microwave photonic, reconfigurable, instantaneous frequency measurement system based on low-voltage thin-film lithium niobate on an insulator phase modulator is put forward and experimentally demonstrated. Changing the wavelength of the optical carrier can realize the flexibility of the frequency measurement range and accuracy, showing that during the ranges of 0–10 GHz, 3–15 GHz, and 12–18 GHz, the average measurement errors are 26.9 MHz, 44.57 MHz, and 13.6 MHz, respectively, thanks to the stacked integrated learning models. Moreover, this system is still able to respond to microwave signals of as low as −30 dBm with the frequency measurement error of 62.06 MHz, as that low half-wave voltage for the phase modulator effectively improves the sensitivity of the system. The general-purpose, miniaturized, reconfigurable, instantaneous frequency measurement modules have unlimited potential in areas such as radar detection and early warning reception. Full article
(This article belongs to the Special Issue Recent Advances of Optoelectronic Devices and Semiconductor Sensors)
Show Figures

Figure 1

13 pages, 5812 KiB  
Article
Applicability of the Effective Index Method for the Simulation of X-Cut LiNbO3 Waveguides
by Dmitrii Moskalev, Andrei Kozlov, Uliana Salgaeva, Victor Krishtop and Anatolii Volyntsev
Appl. Sci. 2023, 13(11), 6374; https://doi.org/10.3390/app13116374 - 23 May 2023
Cited by 6 | Viewed by 3912
Abstract
Photonic integrated circuits (PIC) find applications in the fields of microwaves, telecoms and sensing. Generally, PICs are fabricated on a base of isotropic materials such as SOI, Si3N4, etc. However, for some applications, anisotropic substrates such as LiNbO3 [...] Read more.
Photonic integrated circuits (PIC) find applications in the fields of microwaves, telecoms and sensing. Generally, PICs are fabricated on a base of isotropic materials such as SOI, Si3N4, etc. However, for some applications, anisotropic substrates such as LiNbO3 are used. A thin film of LiNbO3 on an insulator (LNOI) is a promising material platform for complex high-speed PICs. The design and simulation of PICs on anisotropic materials should be performed using rigorous numerical methods based on Maxwell’s equations. These methods are characterized by long calculation times for one simulation iteration. Since a large number of simulation iterations are performed during the PIC design, simulation methods based on approximations should be used. The effective index method (EIM) is an approximation-based method and is widely applied for simulations of isotropic waveguides. In this study, the applicability of EIM for simulations of anisotropic waveguides is analyzed. The results obtained by EIM are compared with the calculation results of a rigorous finite-difference frequency-domain (FDFD) method for evaluation of the EIM’s applicability limits. In addition, radiation losses in waveguides with rough sidewalls are estimated using the Payne–Lacey model and EIM. The results demonstrate the applicability of EIM for the simulation of anisotropic LNOI-based waveguides with cross-section parameters specified in this paper. Full article
(This article belongs to the Special Issue Advances and Application of Lithium Niobate)
Show Figures

Figure 1

14 pages, 3550 KiB  
Article
Mid-Infrared Highly Efficient, Broadband, and Flattened Dispersive Wave Generation via Dual-Coupled Thin-Film Lithium-Niobate-on-Insulator Waveguide
by Jing Jia, Zhe Kang, Qiangsheng Huang and Sailing He
Appl. Sci. 2022, 12(18), 9130; https://doi.org/10.3390/app12189130 - 11 Sep 2022
Cited by 4 | Viewed by 2932
Abstract
We designed a structure of dual-coupled ridge waveguide in thin-film lithium-niobate-on-insulator (LNOI) and numerically studied the highly efficient, broadband, and flattened dispersive wave-enhanced supercontinuum generation in the mid-infrared region. By leveraging the mode coupling of the proposed dual-coupled waveguide structure, one of the [...] Read more.
We designed a structure of dual-coupled ridge waveguide in thin-film lithium-niobate-on-insulator (LNOI) and numerically studied the highly efficient, broadband, and flattened dispersive wave-enhanced supercontinuum generation in the mid-infrared region. By leveraging the mode coupling of the proposed dual-coupled waveguide structure, one of the supermodes, namely the anti-symmetric mode, can produce additional zero-dispersion wavelengths in the mid-infrared region, and consequently multiple normal dispersion regions for dispersive wave emission. Given the rich geometrical degrees of freedom powered by this dual-coupled LNOI waveguide structure, we can tailor the dispersion profile so that a well-established mode-locked fiber laser in the telecommunication band can serve as the pump. Thus, the whole system can potentially be fiber-to-chip integrated and packaged, enabling a compact, cost-effective, and low system-complexity platform. We numerically show that the broadband dispersive wave covering the wavelength range of 1.92~3.55 μm (−20 dB level, near octave-spanning) with spectral flatness of 6.31 dB can be achieved using a 1550 nm, 190 pJ femtosecond pump seed. When the dual hump-shaped spectrum is obtained, the conversion efficiency of the mid-infrared dispersive wave can be up to 19.31%. The influence of the pumping conditions on the performance of mid-infrared dispersive wave generation was also studied. This work provides a competitive candidate for efficient, broadband, and flattened mid-infrared spectrum generation, which can find important applications in spectroscopy, metrology, and communication. Full article
(This article belongs to the Special Issue Advances and Application of Lithium Niobate)
Show Figures

Figure 1

9 pages, 3644 KiB  
Article
Thermal Spike Responses and Structure Evolutions in Lithium Niobate on Insulator (LNOI) under Swift Ion Irradiation
by Xinqing Han, Cong Liu, Meng Zhang, Qing Huang, Xuelin Wang and Peng Liu
Crystals 2022, 12(7), 943; https://doi.org/10.3390/cryst12070943 - 5 Jul 2022
Cited by 4 | Viewed by 2196
Abstract
Irradiating solid materials with energetic ions are extensively used to explore the evolution of structural damage and specific properties in structural and functional materials under natural and artificial radiation environments. Lithium niobate on insulator (LNOI) technology is revolutionizing the lithium niobate industry and [...] Read more.
Irradiating solid materials with energetic ions are extensively used to explore the evolution of structural damage and specific properties in structural and functional materials under natural and artificial radiation environments. Lithium niobate on insulator (LNOI) technology is revolutionizing the lithium niobate industry and has been widely applied in various fields of photonics, electronics, optoelectronics, etc. Based on 30 MeV 35Cl and 40Ar ion irradiation, thermal spike responses and microstructure evolution of LNOI under the action of extreme electronic energy loss are discussed in detail. Combining experimental transmission electron microscopy characterizations with numerical calculations of the inelastic thermal spike model, discontinuous and continuous tracks with a lattice disorder structure in the crystalline LiNbO3 layer and recrystallization in the amorphous SiO2 layer are confirmed, and the ionization process via energetic ion irradiation is demonstrated to inherently connect energy exchange and temperature evolution processes in the electron and lattice subsystems of LNOI. According to Rutherford backscattering/channeling spectrometry and the direct impact model, the calculated track damage cross–section is further verified, coinciding with the experimental observations, and the LiNbO3 layer with a thickness of several hundred nanometers presents track damage behavior similar to that of bulk LiNbO3. Systematic research into the damage responses of LNOI is conducive to better understanding and predicting radiation effects in multilayer thin film materials under extreme radiation environments, as well as to designing novel multifunctional devices. Full article
Show Figures

Figure 1

9 pages, 3968 KiB  
Article
Characterizations of Single-Crystal Lithium Niobate Thin Films
by Qingyun Li, Honghu Zhang, Houbin Zhu and Hui Hu
Crystals 2022, 12(5), 667; https://doi.org/10.3390/cryst12050667 - 6 May 2022
Cited by 10 | Viewed by 4904 | Correction
Abstract
Single-crystal lithium niobate thin films (lithium niobate on insulator, LNOI) are becoming a new material platform for integrating photonics. Investigation into the physical properties of LNOI is important for the design and fabrication of photonic devices. Herein, LNOIs were prepared by two methods: [...] Read more.
Single-crystal lithium niobate thin films (lithium niobate on insulator, LNOI) are becoming a new material platform for integrating photonics. Investigation into the physical properties of LNOI is important for the design and fabrication of photonic devices. Herein, LNOIs were prepared by two methods: ion implantation and wafer bonding; and wafer bonding and grinding. High-resolution X-ray diffraction (HRXRD) and confocal Raman spectroscopy were used to study the LNOI lattice properties. The full-width at half-maximum (FWHM) of HRXRD and Raman spectra showed a regular crystal lattice arrangement of the LNOIs. The domain inversion voltage and electro-optical coefficient of the LNOIs were close to those of LN bulk material. This study provides useful information for LNOI fabrication and for photonic devices in LNOI. Full article
(This article belongs to the Topic Optoelectronic Materials)
Show Figures

Figure 1

10 pages, 4641 KiB  
Article
Evolution of Nanodomains and Formation of Self-Organized Structures during Local Switching in X-Cut LNOI
by Boris Slautin, Anton Turygin, Elena Pashnina, Alla Slautina, Dmitry Chezganov and Vladimir Shur
Crystals 2022, 12(5), 659; https://doi.org/10.3390/cryst12050659 - 5 May 2022
Cited by 4 | Viewed by 2159
Abstract
The features of nanodomain growth during local switching in X-cut lithium niobate on insulator (LNOI) were comprehensively studied using the biased tip of a scanning probe microscope. The obtained results were discussed in terms of the kinetic approach. The revealed differences in domain [...] Read more.
The features of nanodomain growth during local switching in X-cut lithium niobate on insulator (LNOI) were comprehensively studied using the biased tip of a scanning probe microscope. The obtained results were discussed in terms of the kinetic approach. The revealed differences in domain growth in bulk LN and LNOI were attributed to the higher bulk conductivity of LNOI. The obtained influence of humidity on the shape and growth of isolated domains was attributed to the water meniscus. Analysis of the transition between the “forward growth” and “sideways growth” stages was performed by switching to the stripe electrode. A sand-glass-shaped domain was formed due to growth in the opposite direction after the domain touched the electrode. Stable periodical domain structures down to 300 nm were created and characterized in LNOI. Highly ordered comb-like domains of various alternating lengths, including four- and eight-fold increase periods, were produced by performing biased tip scanning along the Y axis. The obtained knowledge is important for the future development of nanodomain engineering methods in monocrystalline ferroelectric thin films on insulators. Full article
(This article belongs to the Topic Optoelectronic Materials)
Show Figures

Figure 1

11 pages, 2846 KiB  
Article
Tunable Non-Volatile Memory by Conductive Ferroelectric Domain Walls in Lithium Niobate Thin Films
by Thomas Kämpfe, Bo Wang, Alexander Haußmann, Long-Qing Chen and Lukas M. Eng
Crystals 2020, 10(9), 804; https://doi.org/10.3390/cryst10090804 - 11 Sep 2020
Cited by 29 | Viewed by 4366
Abstract
Ferroelectric domain wall conductance is a rapidly growing field. Thin-film lithium niobate, as in lithium niobate on insulators (LNOI), appears to be an ideal template, which is tuned by the inclination of the domain wall. Thus, the precise tuning of domain wall inclination [...] Read more.
Ferroelectric domain wall conductance is a rapidly growing field. Thin-film lithium niobate, as in lithium niobate on insulators (LNOI), appears to be an ideal template, which is tuned by the inclination of the domain wall. Thus, the precise tuning of domain wall inclination with the applied voltage can be used in non-volatile memories, which store more than binary information. In this study, we present the realization of this concept for non-volatile memories. We obtain remarkably stable set voltages by the ferroelectric nature of the device as well as a very large increase in the conduction, by at least five orders of magnitude at room temperature. Furthermore, the device conductance can be reproducibly tuned over at least two orders of magnitude. The observed domain wall (DW) conductance tunability by the applied voltage can be correlated with phase-field simulated DW inclination evolution upon poling. Furthermore, evidence for polaron-based conduction is given. Full article
(This article belongs to the Special Issue Recent Progress in Lithium Niobate)
Show Figures

Graphical abstract

8 pages, 853 KiB  
Article
Nano-Domains Produced through a Two-Step Poling Technique in Lithium Niobate on Insulators
by Yuejian Jiao, Zhen Shao, Sanbing Li, Xiaojie Wang, Fang Bo, Jingjun Xu and Guoquan Zhang
Materials 2020, 13(16), 3617; https://doi.org/10.3390/ma13163617 - 16 Aug 2020
Cited by 6 | Viewed by 2646
Abstract
We proposed a two-step poling technique to fabricate nanoscale domains based on the anti-parallel polarization reversal effect in lithium niobate on insulator (LNOI). The anti-parallel polarization reversal is observed when lithium niobate thin film in LNOI is poled by applying a high voltage [...] Read more.
We proposed a two-step poling technique to fabricate nanoscale domains based on the anti-parallel polarization reversal effect in lithium niobate on insulator (LNOI). The anti-parallel polarization reversal is observed when lithium niobate thin film in LNOI is poled by applying a high voltage pulse through the conductive probe tip of atomic force microscope, which generates a donut-shaped domain structure with its domain polarization at the center being anti-parallel to the poling field. The donut-shaped domain is unstable and decays with a time scale of hours. With the two-step poling technique, the polarization of the donut-shaped domain can be reversed entirely, producing a stable dot domain with a size of tens of nanometers. Dot domains with diameter of the order of ∼30 nm were fabricated through the two-step poling technique. The results may be beneficial to domain-based applications such as ferroelectric domain memory. Full article
(This article belongs to the Special Issue Frontiers in Ferroelectrics and Their Electronic Device Applications)
Show Figures

Figure 1

8 pages, 2947 KiB  
Article
Residual Stress in Lithium Niobate Film Layer of LNOI/Si Hybrid Wafer Fabricated Using Low-Temperature Bonding Method
by Ryo Takigawa, Toru Tomimatsu, Eiji Higurashi and Tanemasa Asano
Micromachines 2019, 10(2), 136; https://doi.org/10.3390/mi10020136 - 18 Feb 2019
Cited by 19 | Viewed by 7261
Abstract
This paper focuses on the residual stress in a lithium niobate (LN) film layer of a LN-on-insulator (LNOI)/Si hybrid wafer. This stress originates from a large mismatch between the thermal expansion coefficients of the layers. A modified surface-activated bonding method achieved fabrication of [...] Read more.
This paper focuses on the residual stress in a lithium niobate (LN) film layer of a LN-on-insulator (LNOI)/Si hybrid wafer. This stress originates from a large mismatch between the thermal expansion coefficients of the layers. A modified surface-activated bonding method achieved fabrication of a thin-film LNOI/Si hybrid wafer. This low-temperature bonding method at 100 °C showed a strong bond between the LN and SiO2 layers, which is sufficient to withstand the wafer thinning to a LN thickness of approximately 5 μm using conventional mechanical polishing. Using micro-Raman spectroscopy, the residual stress in the bonded LN film in this trilayered (LN/SiO2/Si) structure was investigated. The measured residual tensile stress in the LN film layer was approximately 155 MPa, which was similar to the value calculated by stress analysis. This study will be useful for the development of various hetero-integrated LN micro-devices, including silicon-based, LNOI-integrated photonic devices. Full article
(This article belongs to the Special Issue Heterogeneous Integration for Optical Micro and Nanosystems)
Show Figures

Figure 1

8 pages, 1930 KiB  
Article
Long Low-Loss-Litium Niobate on Insulator Waveguides with Sub-Nanometer Surface Roughness
by Rongbo Wu, Min Wang, Jian Xu, Jia Qi, Wei Chu, Zhiwei Fang, Jianhao Zhang, Junxia Zhou, Lingling Qiao, Zhifang Chai, Jintian Lin and Ya Cheng
Nanomaterials 2018, 8(11), 910; https://doi.org/10.3390/nano8110910 - 6 Nov 2018
Cited by 182 | Viewed by 12002
Abstract
In this paper, we develop a technique for realizing multi-centimeter-long lithium niobate on insulator (LNOI) waveguides with a propagation loss as low as 0.027 dB/cm. Our technique relies on patterning a chromium thin film coated on the top surface of LNOI into a [...] Read more.
In this paper, we develop a technique for realizing multi-centimeter-long lithium niobate on insulator (LNOI) waveguides with a propagation loss as low as 0.027 dB/cm. Our technique relies on patterning a chromium thin film coated on the top surface of LNOI into a hard mask with a femtosecond laser followed by chemo-mechanical polishing for structuring the LNOI into the waveguides. The surface roughness on the waveguides was determined with an atomic force microscope to be 0.452 nm. The approach is compatible with other surface patterning technologies, such as optical and electron beam lithographies or laser direct writing, enabling high-throughput manufacturing of large-scale LNOI-based photonic integrated circuits. Full article
(This article belongs to the Special Issue Synthesis and Modification of Nanostructured Thin Films)
Show Figures

Figure 1

Back to TopTop