Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (136)

Search Parameters:
Keywords = thin slab

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 715 KB  
Article
Diffusion Dominated Drug Release from Cylindrical Matrices
by George Kalosakas and Eirini Gontze
Processes 2025, 13(12), 3850; https://doi.org/10.3390/pr13123850 - 28 Nov 2025
Viewed by 358
Abstract
Drug delivery from cylindrical tablets of arbitrary dimensions is discussed here, using the analytical solution of diffusion equation. Utilizing dimensionless quantities, we show that the release profiles are determined by a unique parameter, represented by the aspect ratio of the cylindrical formulation. Fractional [...] Read more.
Drug delivery from cylindrical tablets of arbitrary dimensions is discussed here, using the analytical solution of diffusion equation. Utilizing dimensionless quantities, we show that the release profiles are determined by a unique parameter, represented by the aspect ratio of the cylindrical formulation. Fractional release curves are presented for different values of the aspect ratio, covering a range of many orders of magnitude. The corresponding release profiles lie in between the two opposite limits of release from thin slabs and two-dimensional radial release, pertinent to the cases of thin and long cylinders, respectively. In a quest for a part of the delivery process closer to a zero-order release, the release rate is calculated, which is found to exhibit the typical behavior of purely diffusional release systems. Two simple fitting formulae, containing two parameters each, are considered to approximate the infinite series of the exact solution: The stretched exponential (Weibull) function and a recently suggested expression interpolating between the correct time dependencies at the initial and final stages of the process. The latter provides a better fitting in all cases. The variation of the fitting parameters with the aspect ratio of the device is presented for both fitting functions. We also calculate the characteristic release time, which is found to correspond to an amount of fractional release between 64% and around 68% depending on the cylindrical aspect ratio. We discuss how the last quantities can be used to estimate the drug diffusion coefficient from experimental release profiles and apply these ideas to published drug delivery data. Full article
Show Figures

Figure 1

11 pages, 1570 KB  
Article
A SiPM-Based RICH Detector with Timing Capabilities for Isotope Identification
by Mario Nicola Mazziotta, Liliana Congedo, Giuseppe De Robertis, Mario Giliberti, Francesco Licciulli, Antonio Liguori, Leonarda Lorusso, Nicola Nicassio, Giuliana Panzarini and Roberta Pillera
Particles 2025, 8(4), 94; https://doi.org/10.3390/particles8040094 - 28 Nov 2025
Viewed by 300
Abstract
In this work, we present a novel compact particle identification (PID) detector concept based on Silicon Photomultipliers (SiPMs) optimized to perform combined Ring-Imaging Cherenkov (RICH) and Time-of-Flight (TOF) measurements using a common photodetector layer. The system consists of a Cherenkov radiator layer separated [...] Read more.
In this work, we present a novel compact particle identification (PID) detector concept based on Silicon Photomultipliers (SiPMs) optimized to perform combined Ring-Imaging Cherenkov (RICH) and Time-of-Flight (TOF) measurements using a common photodetector layer. The system consists of a Cherenkov radiator layer separated from a photosensitive surface equipped with SiPMs by an expansion gap. A thin glass slab, acting as a second Cherenkov radiator, is coupled to the SiPMs to perform Cherenkov-based charged particle timing measurements. We assembled a small-scale prototype instrumented with various Hamamatsu SiPM array sensors with pixel pitches ranging from 2 to 3 mm and coupled with 1 mm thick fused silica window. The RICH radiator consisted of a 2 cm thick aerogel tile with a refractive index of 1.03 at 400 nm. The prototype was successfully tested in beam test campaigns at the CERN PS T10 beam line with pions and protons. We measured a single-hit angular resolution of about 4 mrad at the Cherenkov angle saturation value and a time resolution better than 50 ps RMS for charged particles with Z = 1. The present technology makes the proposed SiPM-based PID system particularly attractive for space applications due to the limited detector volumes available. In this work, we present beam test results obtained with the detector prototype and we discuss possible configurations optimized for the identification of ions in space applications. Full article
Show Figures

Figure 1

27 pages, 12458 KB  
Article
Fire Performances of SFRC-Insulated Panels and Slabs for Modular Construction: An Experimental Study
by Sannem Ahmed Salim Landry Sawadogo, Tan-Trung Bui, Abdelkrim Bennani, David Damichey and Ali Limam
Fire 2025, 8(12), 458; https://doi.org/10.3390/fire8120458 - 27 Nov 2025
Viewed by 417
Abstract
Fire safety is a crucial issue for buildings, especially with the rise of modular construction, which demands materials that combine lightness with mechanical performance and stability. This study investigates a new concept for single-story modular constructions, made up of 3D cells assembled from [...] Read more.
Fire safety is a crucial issue for buildings, especially with the rise of modular construction, which demands materials that combine lightness with mechanical performance and stability. This study investigates a new concept for single-story modular constructions, made up of 3D cells assembled from thermally and acoustically pre-insulated concrete panels. These panels comprising four walls and two slabs forming the module, are stiffened, with thicknesses of only 5 cm for the walls and 7 cm for the slabs. Their constituent material is a self-compacting, high-volume steel-fiber concrete, containing 80 kg/m3 of steel fibers and 0.3 kg/m3 of polypropylene fibers. Experimental tests on a full-scale wall and slab revealed that adding 0.3 kg/m3 of polypropylene fibers effectively prevents concrete from splintering and achieves the necessary 30 min fire resistance. Standardized full-scale fire tests on walls and slabs confirmed that these thin structures meet fire resistance, insulation, and airtightness standards. The high volume of steel fibers provides ductility, maintaining structural integrity despite concrete spalling. The maximum spalling depth observed in some areas ranged 35 to 50 mm, without compromising structural performance. Overall, the modular system satisfies the fire safety requirements for structural stability (no collapse) and performance in single-story modular construction. Full article
Show Figures

Figure 1

26 pages, 3400 KB  
Article
Analysis of Retrofit Strategies of Mid-20th-Century Modern, Concrete Buildings
by Bernadett Csaszar, Richard O’Hegarty and Oliver Kinnane
Architecture 2025, 5(4), 108; https://doi.org/10.3390/architecture5040108 - 7 Nov 2025
Viewed by 748
Abstract
Reusing existing buildings is a valid response to the architectural challenge associated with addressing climate change and can aid the regeneration of the historic built environment. This demands sensitive architectural conservation strategies that improve thermal comfort, indoor environmental quality, and energy efficiency. In [...] Read more.
Reusing existing buildings is a valid response to the architectural challenge associated with addressing climate change and can aid the regeneration of the historic built environment. This demands sensitive architectural conservation strategies that improve thermal comfort, indoor environmental quality, and energy efficiency. In addition, energy retrofit solutions that balance performance improvements with the conservation of cultural and architectural values are needed to achieve higher performance while preserving cultural heritage, architectural features, and identity. Energy retrofits of post-war, mid-20th-century buildings pose particular challenges, including low ceiling heights, full-height windows, external decorative components, and other structural aspects, as these features hinder thermal upgrades. Concrete buildings from this period are frequently demolished due to limited guidance on effective retrofit methods. This study explores the most effective energy retrofit strategies for balancing energy efficiency with conservation requirements in such buildings, and assesses the risks associated with condensation and thermal bridging arising from internal insulation strategies. This paper examines internal insulation as a retrofit solution, where external insulation is not feasible. Internal wall insulation (IWI) reduces overall heat loss but concentrates thermal transfer at uninsulated junctions, thereby increasing the risk of condensation. In the simulated case, a relatively thin, short strip of slab insulation, combined with wall insulation, significantly reduced condensation and mould risk, suggesting a potential solution for mid-century building types. The analysis shows that applying insulation asymmetrically worsens conditions on the uninsulated side. Full-height window replacement, coupled with internal slab insulation, results in the most significant improvement; however, slab insulation alone can mitigate condensation risks where window replacement is not permitted. Findings highlight that partial insulation at balconies, parapets, and roof junctions is minimally effective, reinforcing the importance of integrated internal strategies for successful retrofits. Full article
(This article belongs to the Special Issue Strategies for Architectural Conservation and Adaptive Reuse)
Show Figures

Figure 1

12 pages, 2956 KB  
Article
Fabrication Process Development for Optical Channel Waveguides in Sputtered Aluminum Nitride
by Soheila Mardani, Bjorn Jongebloed, Ward A. P. M. Hendriks, Meindert Dijkstra and Sonia M. Garcia-Blanco
Micromachines 2025, 16(11), 1259; https://doi.org/10.3390/mi16111259 - 6 Nov 2025
Viewed by 590
Abstract
Aluminum nitride (AlN) is a wide-bandgap semiconductor (6.2 eV) with a broad transparency window spanning from the ultraviolet (UV) to the mid-infrared (MIR) wavelength region, making it a promising material for integrated photonics. In this work, AlN thin films using reactive RF sputtering [...] Read more.
Aluminum nitride (AlN) is a wide-bandgap semiconductor (6.2 eV) with a broad transparency window spanning from the ultraviolet (UV) to the mid-infrared (MIR) wavelength region, making it a promising material for integrated photonics. In this work, AlN thin films using reactive RF sputtering are deposited, followed by annealing at 600 °C in a nitrogen atmosphere to reduce slab waveguide propagation losses. After annealing, the measured loss is 0.84 dB/cm at 978 nm, determined using the prism coupling method. A complete microfabrication process flow is then developed for the realization of optical channel waveguides. A key challenge in the processing of AlN is its susceptibility to oxidation when exposed to water or oxygen plasma, which significantly impacts device performance. The process is validated through the fabrication of microring resonators (MRRs), used to characterize the propagation losses of the AlN channel waveguides. The fabricated MRRs exhibit a quality factor of 12,000, corresponding to a propagation loss of 4.4 dB/cm at 1510–1515 nm. The dominant loss mechanisms are identified, and strategies for further process optimization are proposed. Full article
(This article belongs to the Special Issue Recent Advances in Micro/Nanofabrication, 2nd Edition)
Show Figures

Figure 1

21 pages, 9357 KB  
Article
Genesis of Meniscus Dynamic Distortions (MDDs) in a Medium Slab Mold Driven by Unstable Upward Flows
by Eriwiht Dominic Tello-Cabrera, Saúl García-Hernández, Enif Gutierrez, Rodolfo Morales Dávila, Jose de Jesus Barreto and Rumualdo Servín-Castañeda
Processes 2025, 13(11), 3425; https://doi.org/10.3390/pr13113425 - 25 Oct 2025
Viewed by 422
Abstract
To better understand the relationship between meniscus instabilities and the high levels of turbulence in the fluid dynamics of a continuous medium slab mold, this study investigates the magnitudes of meniscus dynamics distortions and their fluid dynamic origin using a full-scale water modeling [...] Read more.
To better understand the relationship between meniscus instabilities and the high levels of turbulence in the fluid dynamics of a continuous medium slab mold, this study investigates the magnitudes of meniscus dynamics distortions and their fluid dynamic origin using a full-scale water modeling experiment and mathematical simulations. The three-dimensional mathematical model is composed of the continuity and momentum equations, together with the standard k-ε turbulence model and the volume of fluid model, to track the dynamics of the steel interface. The results show that the medium slab mold shares flow patterns common to both conventional slab molds and funnel thin slab molds, making its fluid dynamics more complex. Despite this, the fluid dynamics within the mold do not develop a dynamic distortion phenomenon but induce upward stream flows with instability and high velocities, which generate an unstable meniscus behavior characterized by significant surface oscillations, variations in velocity, and high deformations. These latter flow characteristics are the origin of meniscus dynamic distortion (MDD), which shows a constant frequency with non-constant periodicity and different median lifecycle ranges. Full article
Show Figures

Figure 1

23 pages, 11757 KB  
Article
Geodynamic Evolution of Flat-Slab Subduction of South Tianshan Ocean: Constraints from Devonian Dioritic Porphyrites and Granitoids in the Kumishi Area
by Wenbin Kang, Kai Weng, Xue Zhang, Xiaojian Zhao, Bo Chen and Yongwei Gao
Minerals 2025, 15(10), 1019; https://doi.org/10.3390/min15101019 - 26 Sep 2025
Viewed by 501
Abstract
Subduction of the South Tianshan Ocean caused widespread Devonian magmatism, lithospheric deformation, and thinning along the south margin of the Central Tianshan Belt. However, the details of this subduction process remain elusive. This study presents comprehensive data on Devonian granitoids from the Kumishi [...] Read more.
Subduction of the South Tianshan Ocean caused widespread Devonian magmatism, lithospheric deformation, and thinning along the south margin of the Central Tianshan Belt. However, the details of this subduction process remain elusive. This study presents comprehensive data on Devonian granitoids from the Kumishi area, including whole-rock geochemical data, Sr-Nb-Pb isotopic compositions, zircon U-Pb ages, and zircon Hf isotopic data. Dioritic porphyrites, medium–fine-grained monzogranites, and coarse–medium-grained monzogranites were emplaced at 397 ± 2 Ma, 397 ± 3 Ma, and 395 ± 3 Ma, respectively. The dioritic porphyrites have relatively high Sr contents, low heavy rare earth element (HREE) and Y contents, and high Sr/Y ratios, which are characteristics of adakites. High Al and Na2O contents suggest that the rocks formed through partial melting of subducted oceanic crust. The monzogranites display I-type and subduction-related arc affinities, sourced from a mixed magma of crustal materials and mantle wedge components. The granodiorites were emplaced at 373 ± 3 Ma, and also exhibit pronounced I-type and subduction-related arc affinities. Combined with previous data, our results demonstrate that the studied area of Devonian magmatism records the entire spatiotemporal evolution of subduction of the South Tianshan Ocean slab, from initial shallowing of the subduction angle to flat-slab subduction, followed by final slab rollback. Full article
Show Figures

Figure 1

26 pages, 6893 KB  
Article
Angle-of-Attack, Induced Attitude Evolution in a Coupled Crater, and Plugging Penetration of Thin Concrete Targets
by Zheng Tao, Wenbin Li, Wei Zhu, Junjie Xu and Jihua Yan
Symmetry 2025, 17(9), 1572; https://doi.org/10.3390/sym17091572 - 19 Sep 2025
Viewed by 405
Abstract
To address the limitations of existing models that typically treat crater formation and shear plugging as independent processes and only consider angle of attack effects during the initial crater phase, this study proposes a dynamic shear _plugging model for projectile penetration into thin [...] Read more.
To address the limitations of existing models that typically treat crater formation and shear plugging as independent processes and only consider angle of attack effects during the initial crater phase, this study proposes a dynamic shear _plugging model for projectile penetration into thin concrete targets. The model is built upon the improved three-stage penetration theory and cavity expansion principles, and introduces a coupled cratering, plugging mechanism that captures the simultaneous interaction between these stages. A differential surface force approach is employed to describe the asymmetric stress distribution on the projectile nose under non-zero angle of attack conditions, while free surface effects are incorporated to refine local stress predictions. A series of validation experiments was performed with 30 mm rigid projectiles penetrating 27 MPa concrete slabs under different impact velocities and initial angles of attack. The results show that the proposed model achieves prediction errors of less than 20% for both residual velocity and exit attitude angle, significantly outperforming classical models such as those of Duan and Liu, which tend to underestimate post-impact deflection by treating cratering and plugging separately. Based on this validated framework, parametric studies were conducted to examine the effects of the initial inclination, impact velocity, and target thickness on the evolution of projectile attitude and angle of attack. The findings demonstrate that the dynamic shear plugging mechanism exerts a critical regulatory influence on projectile deflection during thin target penetration. This work, therefore, not only resolves the directional reversal issue inherent in earlier theories but also provides theoretical support for the engineering design of concrete protective structures subjected to angular impact conditions. Full article
(This article belongs to the Special Issue Symmetry, Asymmetry and Nonlinearity in Geomechanics)
Show Figures

Figure 1

16 pages, 5201 KB  
Article
Hereditary Behavior for Center Segregation and Inclusions in Q355 Steel Slabs with Ti and Nb Addition
by Keke Tong, Ya Gao, Houxin Wang, Zhong Huang, Guoxi Wan, Dajiang Zhang and Xiurong Zuo
Materials 2025, 18(17), 4157; https://doi.org/10.3390/ma18174157 - 4 Sep 2025
Viewed by 957
Abstract
This paper investigates the effects of Ti and Nb addition with varying Mn content on the solidification macrostructure and microstructure in the continuous casting slab of Q355 steel using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron probe microanalysis. The evolution [...] Read more.
This paper investigates the effects of Ti and Nb addition with varying Mn content on the solidification macrostructure and microstructure in the continuous casting slab of Q355 steel using optical microscopy, scanning electron microscopy, transmission electron microscopy, and electron probe microanalysis. The evolution of central segregation and MnS inclusions during thermal simulation compress deformation has been clearly established using Gleeble-1500 thermal simulation tester. The results indicate that by reducing the Mn content and adding a small amount of Ti and Nb, it is possible to refine the grain and mitigate the center segregation of Q355 steel. Mn steel with 1.25% Mn and without Ti and Nb addition exhibits the most severe center segregation. The TiNb steel with 0.52% Mn and a small amount of Ti and Nb addition showed a marked improvement in the center segregation of the slab. The Nb steel with 0.56% Mn and 0.009% Nb shows the presence of thin film ferrite along prior grain boundaries surrounded by Widmanstätten ferrite, and the central segregation has not shown significant improvement. The thermal simulation samples of the three steel types inherit the characteristics of their respective casting structures. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Figure 1

28 pages, 9581 KB  
Article
Numerical Study on Excitation–Contraction Waves in 3D Slab-Shaped Myocardium Sample with Heterogeneous Properties
by Fyodor A. Syomin, Alexander A. Danilov and Alexey A. Liogky
Mathematics 2025, 13(16), 2606; https://doi.org/10.3390/math13162606 - 14 Aug 2025
Viewed by 396
Abstract
In this study, we have performed 3D numerical simulations of the excitation and contraction of thin slab-like samples of myocardium tissue. The samples included a narrow region of almost non-excitable tissue simulating impaired myocardium. In the numerical experiments, we considered the heterogeneity of [...] Read more.
In this study, we have performed 3D numerical simulations of the excitation and contraction of thin slab-like samples of myocardium tissue. The samples included a narrow region of almost non-excitable tissue simulating impaired myocardium. In the numerical experiments, we considered the heterogeneity of myocardium excitation and the Ca2+ activation of its contraction, as well as the orientation of the muscle fibers. Those characteristics varied throughout the thin wall of the sample. The simulations were performed in our numerical framework for the problems of cardiac electromechanics developed recently. The framework was previously tested for the benchmark problems in which formulations took into account only myocardium electrophysiology and passive mechanics. The study could be considered as an approbation of the framework performance with the fully coupled mathematical model of myocardium electromechanics. Here we dealt with the problems requiring a multiscale approach, taking into account cell-level electrophysiology, cell-level mechano-chemical processes, macromechanics (strain and stress) of the 3D sample, and interconnections between the levels. It was shown how the tissue heterogeneity and its strain affected the propagation of excitation–contraction waves in the sample, including, in particular, the formation of spiral waves. Full article
(This article belongs to the Special Issue Multiscale Mathematical Modeling)
Show Figures

Figure 1

22 pages, 3727 KB  
Article
Johnson–Cook Constitutive Model Parameters Estimation of 22MnB5 Hot Stamping Steel for Automotive Application Produced via the TSCR Process
by Yuxin Song, Yaowen Xu and Gengwei Yang
Metals 2025, 15(7), 811; https://doi.org/10.3390/met15070811 - 20 Jul 2025
Viewed by 4432
Abstract
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The [...] Read more.
In the industrial practice of metal forming, the consistent and reasonable characterization of the material behavior under the coupling effect of strain, strain rate, and temperature on the material flow stress is very important for the design and optimization of process parameters. The purpose of this work was to establish an appropriate constitutive model to characterize the rheological behavior of a hot-formed steel plate (22MnB5 steel) produced through the TSCR (Thin Slab Casting and Rolling) process under practical deformation temperatures (150–250 °C) and strain rates (0.001–3000 s−1). Subsequently, the material flow behavior was modeled and predicted using the Johnson–Cook flow stress constitutive model. In this study, uniaxial tensile tests were conducted on 22MnB5 steel at room temperature under varying strain rates, along with elevated-temperature tensile tests at different strain rates, to obtain the engineering stress–strain curves and analyze the mechanical properties under various conditions. The results show that during room-temperature tensile testing within the strain rate range of 10−3 to 300 s−1, the 22MnB5 steel exhibited overall yield strength and tensile strength of approximately 1500 MPa, and uniform elongation and fracture elongation of about 7% and 12%, respectively. When the strain rate reached 1000–3000 s−1, the yield strength and tensile strength were approximately 2000 MPa, while the uniform elongation and fracture elongation were about 6% and 10%, respectively. Based on the experimental results, a modified Johnson–Cook constitutive model was developed and calibrated. Compared with the original model, the modified Johnson–Cook model exhibited a higher coefficient of determination (R2), indicating improved fitting accuracy. In addition, to predict the material’s damage behavior, three distinct specimen geometries were designed for quasi-static strain rate uniaxial tensile testing at ambient temperature. The Johnson–Cook failure criterion was implemented, with its constitutive parameters calibrated through integrated finite element analysis to establish the damage model. The determined damage parameters from this investigation can be effectively implemented in metal forming simulations, providing valuable predictive capabilities regarding workpiece material performance. Full article
Show Figures

Figure 1

23 pages, 20067 KB  
Article
On-Site Construction and Experimental Study of Prefabricated High-Strength Thin Concrete Segment Liners for the Reinforcement of Underground Box Culverts
by Shi-Qing Wang, Yanpo Bai, Hongwen Gu, Ning Zhao and Xu-Yang Cao
Buildings 2025, 15(14), 2509; https://doi.org/10.3390/buildings15142509 - 17 Jul 2025
Viewed by 1016
Abstract
Conventional trenchless pipeline rehabilitation technologies are primarily designed for circular pipelines, with limited applicability to box culvert structures. Even when adapted, these methods often lead to significant reductions in the effective cross-sectional area and fail to enhance the structural load-bearing capacity due to [...] Read more.
Conventional trenchless pipeline rehabilitation technologies are primarily designed for circular pipelines, with limited applicability to box culvert structures. Even when adapted, these methods often lead to significant reductions in the effective cross-sectional area and fail to enhance the structural load-bearing capacity due to geometric incompatibilities. To overcome these limitations, this study proposes a novel construction approach that employs prefabricated high-strength thin concrete segment liners for the reinforcement of underground box culverts. The feasibility of this method was validated through full-scale (1:1) experimental construction in a purpose-built test culvert, demonstrating rapid and efficient installation. A static stacking load test was subsequently conducted on the reinforced upper section of the culvert. Results indicate that the proposed reinforcement method effectively restores structural integrity and satisfies load-bearing and serviceability requirements, even after removal of the original roof slab. Additionally, a finite element analysis was performed to simulate the stacking load test conditions. The simulation revealed that variations in the mechanical properties of the grout between the existing structure and the new lining had minimal impact on the internal force distribution and deformation behavior of the prefabricated segments. The top segment consistently exhibited semi-rigid fixation behavior. This study offers a promising strategy for the rehabilitation of urban underground box culverts, achieving structural performance recovery while minimizing traffic disruption and enhancing construction efficiency. Full article
(This article belongs to the Topic Resilient Civil Infrastructure, 2nd Edition)
Show Figures

Figure 1

33 pages, 11163 KB  
Article
3D Modular Construction Made of Precast SFRC-Stiffened Panels
by Sannem Ahmed Salim Landry Sawadogo, Tan-Trung Bui, Abdelkrim Bennani, Dhafar Al Galib, Pascal Reynaud and Ali Limam
Infrastructures 2025, 10(7), 176; https://doi.org/10.3390/infrastructures10070176 - 7 Jul 2025
Cited by 2 | Viewed by 1295
Abstract
A new concept of a 3D volumetric module, made up of six plane stiffened self-compacting fiber-reinforced concrete (SFRC) panels, is here studied. Experimental campaigns are carried out on SFRC material and on the thin-slab structures used for this modular concept. The high volume [...] Read more.
A new concept of a 3D volumetric module, made up of six plane stiffened self-compacting fiber-reinforced concrete (SFRC) panels, is here studied. Experimental campaigns are carried out on SFRC material and on the thin-slab structures used for this modular concept. The high volume of steel fibers (80 kg/m3) used in the formulation of this concrete allow a positive strain hardening to be obtained in the post-cracking regime observed on the bending characterization tests. The high mechanical material characteristics, obtained both in tension and compression, allow a significant decrease in the module slabs’ thickness. The tests carried out on the 7 cm thick slab demonstrate a high load-bearing capacity and ductility under bending loading; this is also the case for shear loading configuration, although without any shear reinforcements. Numerical simulations of the material mechanical tests were conducted using Abaqus code; the results corroborate the experimental findings. Then, simulations were also conducted at the structural level, mainly to evaluate the behavior and the bearing capacity of the thin 3D module stiffened slabs. Finally, knowing that the concrete module truck transport can be a weak point, the decelerations induced during transportation were characterized and the integrity of the largest 3D module was demonstrated. Full article
(This article belongs to the Special Issue Seismic Performance Assessment of Precast Concrete)
Show Figures

Figure 1

20 pages, 1369 KB  
Article
Numerical Modeling of Electromagnetic Modes in a Planar Stratified Medium with a Graphene Interface
by Eugen Smolkin
Computation 2025, 13(7), 157; https://doi.org/10.3390/computation13070157 - 1 Jul 2025
Viewed by 511
Abstract
Graphene interfaces in layered dielectrics can support unique electromagnetic modes, but analyzing these modes requires robust computational techniques. This work presents a numerical method for computing TE-polarized eigenmodes in a planar stratified dielectric slab with an infinitesimally thin graphene sheet at its interface. [...] Read more.
Graphene interfaces in layered dielectrics can support unique electromagnetic modes, but analyzing these modes requires robust computational techniques. This work presents a numerical method for computing TE-polarized eigenmodes in a planar stratified dielectric slab with an infinitesimally thin graphene sheet at its interface. The governing boundary-value problem is reformulated as coupled initial-value problems and solved via a customized shooting method, enabling accurate calculation of complex propagation constants and field profiles despite the discontinuity at the graphene layer. We demonstrate that the graphene significantly alters the modal spectrum, introducing complex leaky and surface waves with attenuation due to graphene’s conductivity. Numerical results illustrate how the layers’ inhomogeneity and the graphene’s surface conductivity influence mode confinement and loss. These findings confirm the robustness of the proposed computational approach and provide insights relevant to the design and analysis of graphene-based waveguiding devices. Full article
(This article belongs to the Section Computational Engineering)
Show Figures

Figure 1

21 pages, 5306 KB  
Article
Experimental Study of the Axial Tensile Properties of Basalt Fiber Textile–Reinforced Fine-Aggregate Concrete Thin Slab
by Liyang Wang and Zongcai Deng
Buildings 2025, 15(9), 1540; https://doi.org/10.3390/buildings15091540 - 2 May 2025
Viewed by 921
Abstract
Traditional concrete has low tensile strength, is prone to cracking, and has poor durability, which limits its scope of application. Basalt Fiber Textile–Reinforced Concrete (BTRC), a new type of fiber-reinforced cement material, offers advantages such as light weight, increased strength, improved crack resistance, [...] Read more.
Traditional concrete has low tensile strength, is prone to cracking, and has poor durability, which limits its scope of application. Basalt Fiber Textile–Reinforced Concrete (BTRC), a new type of fiber-reinforced cement material, offers advantages such as light weight, increased strength, improved crack resistance, and high durability. It effectively addresses the limitations of traditional concrete. However, the tensile properties of BTRC have not been fully studied, especially with fine aggregate concrete as the matrix, and there are few reports on this topic. Therefore, this study conducted uniaxial tensile tests of Basalt Textile–Reinforced Fine Aggregate Concrete (BTRFAC) and systematically investigated the effects of two mesh sizes (5 mm × 5 mm and 10 mm × 10 mm) and two to four layers of fiber mesh on the tensile strength, strain hardening behavior, crack propagation, and ductile tensile mechanical properties of BTRFAC thin slabs. The tests revealed that an increase in the number of fiber mesh layers significantly reinforced the material’s tensile strength and ductility. The tensile strength of the 5 mm mesh specimen (four-layer mesh) reached 2.96 MPa, which is 193% higher than plain concrete, and the ultimate tensile strain increased by 413%. The tensile strength of the 10 mm mesh specimen (four-layer mesh) was 2.12 MPa, which is 109% higher than plain concrete, and the ultimate tensile strain increased by 298%. The strength utilization rate of the 5 mm and 10 mm mesh fibers was 41% and 54% respectively, mainly due to the weakening effect caused by interface slippage between the fiber mesh and the matrix. An excessively small mesh size may lead to premature debonding from the matrix, but its denser fiber distribution and larger bonding area exhibit better strain hardening characteristics. More than three layers of fiber mesh can significantly improve the uniformity of crack distribution and delay propagation of the main crack. A calculation formula for the tensile bearing capacity of BTRFAC thin slabs is proposed, and the error between the theoretical value and the experimental value was very small. This research provides a theoretical basis and reference data for the design and application of basalt fiber mesh–reinforced concrete thin slabs. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

Back to TopTop