Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (256)

Search Parameters:
Keywords = thick coal seam

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 8845 KiB  
Article
Occurrence State and Genesis of Large Particle Marcasite in a Thick Coal Seam of the Zhundong Coalfield in Xinjiang
by Xue Wu, Ning Lü, Shuo Feng, Wenfeng Wang, Jijun Tian, Xin Li and Hayerhan Xadethan
Minerals 2025, 15(8), 816; https://doi.org/10.3390/min15080816 - 31 Jul 2025
Viewed by 176
Abstract
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with [...] Read more.
The Junggar Basin contains a large amount of coal resources and is an important coal production base in China. The coal seam in Zhundong coalfield has a large single-layer thickness and high content of inertinite, but large particle Fe-sulphide minerals are associated with coal seams in some mining areas. A series of economic and environmental problems caused by the combustion of large-grained Fe-sulphide minerals in coal have seriously affected the economic, clean and efficient utilization of coal. In this paper, the ultra-thick coal seam of the Xishanyao formation in the Yihua open-pit mine of the Zhundong coalfield is taken as the research object. Through the analysis of coal quality, X-ray fluorescence spectrometer test of major elements in coal, inductively coupled plasma mass spectrometry test of trace elements, SEM-Raman identification of Fe-sulphide minerals in coal and LA-MC-ICP-MS test of sulfur isotope of marcasite, the coal quality characteristics, main and trace element characteristics, macro and micro occurrence characteristics of Fe-sulphide minerals and sulfur isotope characteristics of marcasite in the ultra-thick coal seam of the Xishanyao formation are tested. On this basis, the occurrence state and genesis of large particle Fe-sulphide minerals in the ultra-thick coal seam of the Xishanyao formation are clarified. The main results and understandings are as follows: (1) the occurrence state of Fe-sulphide minerals in extremely thick coal seams is clarified. The Fe-sulphide minerals in the extremely thick coal seam are mainly marcasite, and concentrated in the YH-2, YH-3, YH-8, YH-9, YH-14, YH-15 and YH-16 horizons. Macroscopically, Fe-sulphide minerals mainly occur in three forms: thin film Fe-sulphide minerals, nodular Fe-sulphide minerals, and disseminated Fe-sulphide minerals. Microscopically, they mainly occur in four forms: flake, block, spearhead, and crack filling. (2) The difference in sulfur isotope of marcasite was discussed, and the formation period of marcasite was preliminarily divided. The overall variation range of the δ34S value of marcasite is wide, and the extreme values are quite different. The polyflake marcasite was formed in the early stage of diagenesis and the δ34S value was negative, while the fissure filling marcasite was formed in the late stage of diagenesis and the δ34S value was positive. (3) The coal quality characteristics of the thick coal seam were analyzed. The organic components in the thick coal seam are mainly inertinite, and the inorganic components are mainly clay minerals and marcasite. (4) The difference between the element content in the thick coal seam of the Zhundong coalfield and the average element content of Chinese coal was compared. The major element oxides in the thick coal seam are mainly CaO and MgO, followed by SiO2, Al2O3, Fe2O3 and Na2O. Li, Ga, Ba, U and Th are enriched in trace elements. (5) The coal-accumulating environment characteristics of the extremely thick coal seam are revealed. The whole thick coal seam is formed in an acidic oxidation environment, and the horizon with Fe-sulphide minerals is in an acidic reduction environment. The acidic reduction environment is conducive to the formation of marcasite and is not conducive to the formation of pyrite. (6) There are many matrix vitrinite, inertinite content, clay content, and terrigenous debris in the extremely thick coal seam. The good supply of peat swamp, suitable reduction environment and pH value, as well as groundwater leaching and infiltration, together cause the occurrence of large-grained Fe-sulphide minerals in the extremely thick coal seam of the Xishanyao formation in the Zhundong coalfield. Full article
Show Figures

Figure 1

21 pages, 6310 KiB  
Article
Geological Evaluation of In-Situ Pyrolysis Development of Oil-Rich Coal in Tiaohu Mining Area, Santanghu Basin, Xinjiang, China
by Guangxiu Jing, Xiangquan Gao, Shuo Feng, Xin Li, Wenfeng Wang, Tianyin Zhang and Chenchen Li
Energies 2025, 18(15), 4034; https://doi.org/10.3390/en18154034 - 29 Jul 2025
Viewed by 188
Abstract
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index [...] Read more.
The applicability of the in-situ pyrolysis of oil-rich coal is highly dependent on regional geological conditions. In this study, six major geological factors and 19 key parameters influencing the in-situ pyrolysis of oil-rich coal were systematically identified. An analytic hierarchy process incorporating index classification and quantification was employed in combination with the geological features of the Tiaohu mining area to establish a feasibility evaluation index system suitable for in-situ development in the study region. Among these factors, coal quality parameters (e.g., coal type, moisture content, volatile matter, ash yield), coal seam occurrence characteristics (e.g., seam thickness, burial depth, interburden frequency), and hydrogeological conditions (e.g., relative water inflow) primarily govern pyrolysis process stability. Surrounding rock properties (e.g., roof/floor lithology) and structural features (e.g., fault proximity) directly impact pyrolysis furnace sealing integrity, while environmental geological factors (e.g., hazardous element content in coal) determine environmental risk control effectiveness. Based on actual geological data from the Tiaohu mining area, the comprehensive weight of each index was determined. After calculation, the southwestern, central, and southeastern subregions of the mining area were identified as favorable zones for pyrolysis development. A constraint condition analysis was then conducted, accompanied by a one-vote veto index system, in which the thresholds were defined for coal seam thickness (≥1.5 m), burial depth (≥500 m), thickness variation coefficient (≤15%), fault proximity (≥200 m), tar yield (≥7%), high-pressure permeability (≥10 mD), and high-pressure porosity (≥15%). Following the exclusion of unqualified boreholes, three target zones for pyrolysis furnace deployment were ultimately selected. Full article
Show Figures

Figure 1

15 pages, 3041 KiB  
Article
A Study on Dangerous Areas for Coal Spontaneous Combustion in Composite Goafs in Goaf-Side Entry Retaining in the Lower Layer of an Extra-Thick Coal Seam
by Ningfang Yue, Lei Wang, Jun Guo, Yin Liu, Changming Chen and Bo Gao
Fire 2025, 8(8), 298; https://doi.org/10.3390/fire8080298 - 28 Jul 2025
Viewed by 353
Abstract
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a [...] Read more.
Taking a composite goaf in goaf-side entry retaining as our research focus, a kilogram-level spontaneous combustion experiment was carried out, and limit parameters for coal spontaneous combustion characteristics were assessed. Combined with the key parameters of the site, a numerical model of a multi-area composite goaf was constructed, and the distribution features of the dangerous area for coal spontaneous combustion in the lower layer of in goaf-side entry retaining were determined by means of the upper and lower layer composite superposition division method. The results show that at a floating coal thickness in the goaf of 1.9 m, the lower limit of oxygen concentration Cmin, upper limit of air leakage intensity, and corresponding seepage velocity are 6%, 0.282 cm−3·s−1·cm−2, and 11.28 × 10−3 m/s respectively. The dangerous area regarding residual coal on the intake side is 23~38 m away from the working face, while that on the return air side is concentrated amid the goaf at 23~75 m, and that on the flexible formwork wall is concentrated at 0~121 m. The research results are of crucial practical importance for the prevention and control of coal spontaneous combustion within a composite goaf. Full article
(This article belongs to the Special Issue Simulation, Experiment and Modeling of Coal Fires (2nd Edition))
Show Figures

Figure 1

14 pages, 2183 KiB  
Article
A Research Paper on the Influence of Blast Weakening on the Vibrations of Ground Buildings in a Shallow-Buried Extra-Thick Coal Seam
by Gang Liu, Zijian Liu, Yingcheng Luan, Guohao Nie and Wangping Qian
Appl. Sci. 2025, 15(15), 8364; https://doi.org/10.3390/app15158364 - 28 Jul 2025
Viewed by 208
Abstract
To learn more about the problem of blast weakening in shallow-buried and extra-thick coal seams, Panjin coal mine was used to provide the engineering background for this study. The influence of blast weakening technology on the vibration of ground buildings was investigated. Based [...] Read more.
To learn more about the problem of blast weakening in shallow-buried and extra-thick coal seams, Panjin coal mine was used to provide the engineering background for this study. The influence of blast weakening technology on the vibration of ground buildings was investigated. Based on monitoring the vibration data from the final 400 m of the working face, we established the Sadovsky formula for this coal mine through regression. The maximum safe charge of one blast at different distances was obtained. A numerical model was established and compared with field monitoring data to verify its accuracy. This numerical model was used to analyze the influence of blast weakening vibrations on ground buildings during the final mining stage. Finally, the maximum safe charge for one blast at advancing distances from the working face was derived based on numerical calculation results. It was compared with the maximum safe charge obtained from field measurements. The results show that both exhibit significant consistency, and the maximum safe charge of one blast decreases as the working face advances. In addition, the peak vibration velocity at each monitoring point does not exceed 0.2 cm/s for the remaining 400 m of the measured working face, which is lower than the allowable safety value for blasting vibrations. In the numerical simulation of the final mining stage at 200 m, the ground vibration velocity is largest for the district office, second-largest for the chimney, and smallest for the science and technology building. The maximum vibration velocity and effective stress in the three directions of the three buildings are within the allowable range, indicating that the buildings remained in a safe state. Full article
Show Figures

Figure 1

27 pages, 53601 KiB  
Article
Depositional Evolution and Controlling Factors of the Lower–Middle Jurassic in the Kuqa Depression, Tarim Basin, Northwest China
by Ming Ma, Changsong Lin, Yongfu Liu, Hao Li, Wenfang Yuan, Jingyan Liu, Chaoqun Shi, Manli Zhang and Fan Xu
Appl. Sci. 2025, 15(14), 7783; https://doi.org/10.3390/app15147783 - 11 Jul 2025
Viewed by 276
Abstract
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence [...] Read more.
The Lower–Middle Jurassic of the Kuqa Depression consists of terrestrial clastic deposits containing coal seams and thick lacustrine mudstones, and is of great significance for oil and gas exploration. Based on the comprehensive analysis of core, well-logging, outcrop, and seismic data, the sequence stratigraphy, depositional systems, and the controlling factors of the basin filling in the depression are systematically documented. Four primary depositional systems, including braided river delta, meandering river delta, lacustrine, and swamp deposits, are identified within the Ahe, Yangxia, and Kezilenuer Formations of the Lower–Middle Jurassic. The basin fills can be classified into two second-order and nine third-order sequences (SQ1–SQ9) confined by regional or local unconformities and their correlative conformities. This study shows that the sedimentary evolution has undergone the following three stages: Stage I (SQ1–SQ2) primarily developed braided river, braided river delta, and shallow lacustrine deposits; Stage II (SQ3–SQ5) primarily developed meandering river, meandering river delta, and extensive deep and semi-deep lacustrine deposits; Stage III (SQ6–SQ9) primarily developed swamp (SQ6–SQ7), meandering river delta, and shore–shallow lacustrine deposits (SQ8–SQ9). The uplift of the Tianshan Orogenic Belt in the Early Jurassic (Stage I) may have facilitated the development of braided fluvial–deltaic deposits. The subsequential expansion of the sedimentary area and the weakened sediment supply can be attributed to the planation of the source area and widespread basin subsidence, with the transition of the depositional environments from braided river delta deposits to meandering river delta and swamp deposits. The regional expansion or rise of the lake during Stage II was likely triggered by the hot and humid climate conditions, possibly associated with the Early Jurassic Toarcian Oceanic Anoxic Event. The thick swamp deposits formed during Stage III may be controlled by the interplay of rational accommodation, warm and humid climatic conditions, and limited sediment supply. Milankovitch cycles identified in Stage III further reveal that coal accumulation was primarily modulated by long-period eccentricity forcing. Full article
(This article belongs to the Section Earth Sciences)
Show Figures

Figure 1

16 pages, 4663 KiB  
Article
Geological Conditions and Reservoir Formation Models of Low- to Middle-Rank Coalbed Methane in the Northern Part of the Ningxia Autonomous Region
by Dongsheng Wang, Qiang Xu, Shuai Wang, Quanyun Miao, Zhengguang Zhang, Xiaotao Xu and Hongyu Guo
Processes 2025, 13(7), 2079; https://doi.org/10.3390/pr13072079 - 1 Jul 2025
Viewed by 279
Abstract
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of [...] Read more.
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of enrichment and accumulation rules is unclear. It is important to systematically study enrichment and accumulation, which guide the precise exploration and development of coal seam gas resources in the western wing of the basin. The coal seam collected from the Shizuishan area of Ningxia was taken as the target. Based on drilling, logging, seismic, and CBM (coalbed methane) test data, geological conditions were studied, and factors and reservoir formation modes of CBM enrichment were summarized. The results are as follows. The principal coal-bearing seams in the study area are coal seams No. 2 and No. 3 of the Shanxi Formation and No. 5 and No. 6 of the Taiyuan Formation, with thicknesses exceeding 10 m in the southwest and generally stable thickness across the region, providing favorable conditions for CBM enrichment. Spatial variations in burial depth show stability in the east and south, but notable fluctuations are observed near fault F1 in the west and north. These burial depth patterns are closely linked to coal rank, which increases with depth. Although the southeastern region exhibits a lower coal rank than the northwest, its variation is minimal, reflecting a more uniform thermal evolution. Lithologically, the roof of coal seam No. 6 is mainly composed of dense sandstone in the central and southern areas, indicating a strong sealing capacity conducive to gas preservation. This study employs a system that fuses multi-source geological data for analysis, integrating multi-dimensional data such as drilling, logging, seismic, and CBM testing data. It systematically reveals the gas control mechanism of “tectonic–sedimentary–fluid” trinity coupling in low-gentle slope structural belts, providing a new research paradigm for coalbed methane exploration in complex structural areas. It creatively proposes a three-type CBM accumulation model that includes the following: ① a steep flank tectonic fault escape type (tectonics-dominated); ② an axial tectonic hydrodynamic sealing type (water–tectonics composite); and ③ a gentle flank lithology–hydrodynamic sealing type (lithology–water synergy). This classification system breaks through the traditional binary framework, systematically explaining the spatiotemporal matching relationships of the accumulated elements in different structural positions and establishing quantitative criteria for target area selection. It systematically reveals the key controlling roles of low-gentle slope structural belts and slope belts in coalbed methane enrichment, innovatively proposing a new gentle slope accumulation model defined as “slope control storage, low-structure gas reservoir”. These integrated results highlight the mutual control of structural, thermal, and lithological factors on CBM enrichment and provide critical guidance for future exploration in the Ningxia Autonomous Region. Full article
Show Figures

Figure 1

14 pages, 10156 KiB  
Article
Seismic Waveform Feature Extraction and Reservoir Prediction Based on CNN and UMAP: A Case Study of the Ordos Basin
by Lifu Zheng, Hao Yang and Guichun Luo
Appl. Sci. 2025, 15(13), 7377; https://doi.org/10.3390/app15137377 - 30 Jun 2025
Viewed by 299
Abstract
Seismic waveform feature extraction is a critical task in seismic exploration, as it directly impacts reservoir prediction and geological interpretation. However, large-scale seismic data and nonlinear relationships between seismic signals and reservoir properties are challenging for traditional machine learning methods. To address these [...] Read more.
Seismic waveform feature extraction is a critical task in seismic exploration, as it directly impacts reservoir prediction and geological interpretation. However, large-scale seismic data and nonlinear relationships between seismic signals and reservoir properties are challenging for traditional machine learning methods. To address these limitations, this paper proposes a novel framework combining Convolutional Neural Network (CNN) and Uniform Manifold Approximation and Projection (UMAP) for seismic waveform feature extraction and analysis. The UMAP-CNN framework leverages the strengths of manifold learning and deep learning, enabling multi-scale feature extraction and dimensionality reduction while preserving both local and global data structures. The evaluation experiments, which considered runtime, receiver operating characteristic (ROC) curves, embedding distribution maps, and other quantitative assessments, illustrated that the UMAP-CNN outperformed t-distributed stochastic neighbor embedding (t-SNE), locally linear embedding (LLE) and isometric feature mapping (Isomap). A case study in the Ordos Basin further demonstrated that UMAP-CNN offers a high degree of accuracy in predicting coal seam thickness. Furthermore, our framework exhibited superior computational efficiency and robustness in handling large-scale datasets. Full article
(This article belongs to the Special Issue Current Advances and Future Trend in Enhanced Oil Recovery)
Show Figures

Figure 1

24 pages, 3847 KiB  
Article
Evaluation of Water-Inrush Risk and Water-Preserved Mining Under Goaf Water
by Hao Jiao, Zhijiang Lun, Yanxiao Ni, Zhiguo Chang, Limin Fan and Liqiang Ma
Water 2025, 17(12), 1734; https://doi.org/10.3390/w17121734 - 8 Jun 2025
Viewed by 520
Abstract
In coal seam mining operations, the presence of overlying water bodies presents persistent challenges, particularly during multi-seam extraction, where water accumulation in upper seam goafs requires careful management. This study examined the Lingzhida Coal Mine, focusing on the geological conditions of the 3# [...] Read more.
In coal seam mining operations, the presence of overlying water bodies presents persistent challenges, particularly during multi-seam extraction, where water accumulation in upper seam goafs requires careful management. This study examined the Lingzhida Coal Mine, focusing on the geological conditions of the 3# seam (upper) and the 15# seam (lower), as well as the distribution of water accumulation in the corresponding goafs. The mechanism of water inrush from the upper goaf was studied, and the role of the water-resisting belt (WRB) is suggested. By utilizing empirical equations and field measurements, a method for calculating the floor fracture depth of the 3# seam and the roof fracture height of the 15# seam was derived through multi-linear regression analysis. Based on the relationship between the thickness of the WRB (Hw) and the protective layer (Hp), a classification criterion for the water-inrush risk (the likelihood of water entering the lower seam from the upper goaf) is proposed. The mining area was divided into four risk zones: high-risk (Hw < 0), medium-risk (0 ≤ Hw < 0.5Hp), low-risk (0.5HpHw < Hp), and safe (HwHp). Then, an adaptive zoning approach for water-preserved mining was introduced, considering the spatial distribution of goaf water. This approach incorporates water-preserved mining technologies, including the staggered layout of working faces, reduction in mining height, and the transfer–storage of water resources. These research findings provide crucial insights for ensuring the safe and efficient extraction of the multi-seam. Full article
Show Figures

Figure 1

22 pages, 7345 KiB  
Article
Study on Coupled Evolution Mechanisms of Stress–Fracture–Seepage Fields in Overburden Strata During Fully Mechanized Coal Mining
by Yan Liu, Shangxin Fang, Tengfei Hu, Cun Zhang, Yuan Guo, Fuzhong Li and Jiawei Huang
Processes 2025, 13(6), 1753; https://doi.org/10.3390/pr13061753 - 2 Jun 2025
Viewed by 572
Abstract
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments [...] Read more.
Understanding the coupled evolution mechanisms of stress, fracture, and seepage fields in overburden strata is critical for preventing water inrush disasters during fully mechanized mining in deep coal seams, particularly under complex hydrogeological conditions. To address this challenge, this study integrates laboratory experiments with FLAC3D numerical simulations to systematically investigate the multi-field coupling behavior in the Luotuoshan coal mine. Three types of coal rock samples—raw coal/rock (bending subsidence zone), fractured coal/rock (fracture zone), and broken rock (caved zone)—were subjected to triaxial permeability tests under varying stress conditions. The experimental results quantitatively revealed distinct permeability evolution patterns: the fractured samples exhibited a 23–48 × higher initial permeability (28.03 mD for coal, 13.54 mD for rock) than the intact samples (0.50 mD for coal, 0.21 mD for rock), while the broken rock showed exponential permeability decay (120.32 mD to 23.72 mD) under compaction. A dynamic permeability updating algorithm was developed using FISH scripting language, embedding stress-dependent permeability models (R2 > 0.99) into FLAC3D to enable real-time coupling of stress–fracture–seepage fields during face advancement simulations. The key findings demonstrate four distinct evolutionary stages of pore water pressure: (1) static equilibrium (0–100 m advance), (2) fracture expansion (120–200 m, 484% permeability surge), (3) seepage channel formation (200–300 m, 81.67 mD peak permeability), and (4) high-risk water inrush (300–400 m, 23.72 mD stabilized permeability). The simulated fracture zone height reached 55 m, directly connecting with the overlying sandstone aquifer (9 m thick, 1 MPa pressure), validating field-observed water inrush thresholds. This methodology provides a quantitative framework for predicting water-conducting fracture zone development and optimizing real-time water hazard prevention strategies in similar deep mining conditions. Full article
(This article belongs to the Special Issue Advances in Coal Processing, Utilization, and Process Safety)
Show Figures

Figure 1

18 pages, 14806 KiB  
Article
Cross-Section Shape and Asymmetric Support Technology of Steeply Inclined Thick Coal Seam Roadway
by Fan Li, Baisheng Zhang, Junqing Guo, Zetian Li, Yanwen Xie, Qi Xu and Dong Duan
Appl. Sci. 2025, 15(11), 5976; https://doi.org/10.3390/app15115976 - 26 May 2025
Viewed by 332
Abstract
The dip angle and thickness of coal seams are key geological determinants in mine system engineering. Roadways excavated in steeply inclined or thick coal seams typically exhibit significant deformation, with the combined geological configuration of steeply inclined thick seams thus presenting heightened support [...] Read more.
The dip angle and thickness of coal seams are key geological determinants in mine system engineering. Roadways excavated in steeply inclined or thick coal seams typically exhibit significant deformation, with the combined geological configuration of steeply inclined thick seams thus presenting heightened support demands. Therefore, taking the 1502 level roadway in the Dayuan Coal Industry—situated in a steeply inclined thick coal seam—as an engineering case, mechanical models of roadways with different cross-sectional shapes are established, and the deformation and failure mechanisms of surrounding rock under different coal seam dip angles are analyzed. Based on this analysis, an asymmetric support technology scheme is proposed, followed by surrounding rock deformation monitoring and a support effectiveness evaluation. Key findings include the following: (1) in steeply inclined thick coal seam roadways with different cross-sectional shapes, the stress distribution and plastic zone development of surrounding rock follow a descending sequence, inclined roof trapezoidal section > rectangular section > arched section. Among these, the arched section is identified as the optimal roadway cross-sectional shape for this engineering context. (2) The stress-concentration area in the arch roadway aligns with the inclined direction of the coal seam, forming asymmetric stress concentration patterns. Specifically, as the coal seam dip angle increases, stress increases at the arch shoulder of the upper sidewall and the wall foundation of the lower sidewall. Concurrently, such stress concentration induces shear failure in the surrounding rock, which serves as the primary mechanism causing asymmetric deformation and failure in steeply inclined thick coal seam roadways. (3) In the 1502 level roadway, the asymmetric support technology with dip-oriented reinforcement was implemented. Compared to the original support scheme, roof deformation and sidewall convergence decreased by 46.17% and 46.8%, respectively. The revealed failure mechanisms of steeply inclined thick coal seam roadways and the proposed asymmetric support technology provide technical and engineering references for roadway support in similar mining conditions. Full article
Show Figures

Figure 1

19 pages, 4593 KiB  
Article
Applications of Advanced Presplitting Blasting Technology in the Thick and Hard Roofs of an Extra-Thick Coal Seam
by Shouguo Wang, Kai Zhang, Bin Qiao, Shaoze Liu, Junpeng An, Yingming Li and Shunjie Huang
Processes 2025, 13(5), 1539; https://doi.org/10.3390/pr13051539 - 16 May 2025
Viewed by 335
Abstract
Based on the engineering conditions of the 1303 working face in Zhaoxian Coal Mine, this study investigates the characteristics of mine pressure behavior and the stress-relief mechanism of advanced presplit blasting in a working face with a thick and hard roof in an [...] Read more.
Based on the engineering conditions of the 1303 working face in Zhaoxian Coal Mine, this study investigates the characteristics of mine pressure behavior and the stress-relief mechanism of advanced presplit blasting in a working face with a thick and hard roof in an extra-thick coal seam. Through a combination of numerical simulations and field experiments, the effects of advanced presplit blasting on stress distribution, roadway stability, and microseismic activity are analyzed. Corresponding mitigation measures and optimization strategies are proposed. The results indicate that the primary cause of deformation in the gob-side roadway is the superposition of lateral abutment pressure from the goaf and the front abutment pressure of the advancing working face. Advanced presplit blasting effectively reduces the magnitude of front abutment stress, inhibits its transmission, decreases the hanging area of the goaf roof, and alleviates vertical stress on the roadway side adjacent to the goaf. Furthermore, both the daily average and peak microseismic energy levels decrease as the working face approaches the advanced blasting zone. The implementation of advanced presplit blasting technology in working faces with thick and hard roofs within extra-thick coal seams significantly mitigates rockburst hazards, enhances roadway stability, and improves overall mining safety. Full article
Show Figures

Figure 1

18 pages, 7967 KiB  
Article
Evaluation of Water Richness in Sandstone Aquifers Based on the CRITIC-TOPSIS Method: A Case Study of the Guojiawan Coal Mine in Fugu Mining Area, Shaanxi Province, China
by Chao Niu, Xiangqun Jia, Lele Xiao, Lei Dong, Hui Qiao, Fujing Huang, Xiping Liu, Shoutao Luo and Wanxue Qian
Water 2025, 17(10), 1424; https://doi.org/10.3390/w17101424 - 9 May 2025
Cited by 1 | Viewed by 412
Abstract
Taking the Guojiawan coal mine in the Shenfu Mining Area as a case study, five evaluation factors (aquifer thickness, brittle–plastic rock thickness ratio, core recovery rate, number of sandstone–mudstone interbeds, and fractal dimension of the faults) were selected as indicators to evaluate the [...] Read more.
Taking the Guojiawan coal mine in the Shenfu Mining Area as a case study, five evaluation factors (aquifer thickness, brittle–plastic rock thickness ratio, core recovery rate, number of sandstone–mudstone interbeds, and fractal dimension of the faults) were selected as indicators to evaluate the water richness of the sandstone aquifer in the roof strata of the main coal seam. Accordingly, the weights of the water richness evaluation indicators, derived using the criteria importance through intercriteria correlation (CRITIC) evaluation method, were integrated with the computational procedures of the technique for order of preference by similarity to ideal solution (TOPSIS) evaluation method. The indicator weights and evaluation approaches were combined through different fusion strategies. Finally, based on the water richness zoning results for the study area, the advantages and disadvantages of the two fusion approaches, C-TOPSIS-a and C-TOPSIS-b, were compared. Comprehensive analysis was conducted to evaluate the rationality of the water richness zoning. The C-TOPSIS-b evaluation method achieved the optimal evaluation outcome. The water richness was classified into five grades: weak, relatively weak, moderate, relatively strong, and strong. Among these, the regions with weak to relatively weak, moderate, and strong to relatively strong water richness are primarily in the northern, central, southern, and southwestern parts, respectively. Full article
Show Figures

Figure 1

15 pages, 6634 KiB  
Article
Comprehensive Assessment of Coalbed Methane Content Through Integrated Geophysical and Geological Analysis: Case Study from YJP Block
by Kaixin Gao, Suoliang Chang, Sheng Zhang, Bo Liu and Jing Liu
Processes 2025, 13(5), 1401; https://doi.org/10.3390/pr13051401 - 4 May 2025
Viewed by 484
Abstract
The study block is located on the eastern edge of the Ordos Basin and is one of the typical medium coalbed methane blocks in China that have previously been subjected to exploration and development work. The rich CBM resource base and good exploration [...] Read more.
The study block is located on the eastern edge of the Ordos Basin and is one of the typical medium coalbed methane blocks in China that have previously been subjected to exploration and development work. The rich CBM resource base and good exploration and development situation in this block mean there is an urgent need to accelerate development efforts, but compared with the current situation for tight sandstone gas where development is in full swing in the area, the production capacity construction of CBM wells in the area shows a phenomenon of lagging to a certain degree. In this study, taking the 4 + 5 coal seam of the YJP block in the Ordos Basin as the research object, we carried out technical research on an integrated program concerning CBM geology and engineering and put forward a comprehensive seismic geology analysis method for the prediction of the CBM content. The study quantitatively assessed the tectonic conditions, depositional environment, and coal seam thickness as potential controlling factors using gray relationship analysis, trend surface analysis, and seismic geological data integration. The results show that tectonic conditions, especially the burial depth, residual deformation, and fault development, are the main controlling factors affecting the coalbed methane content, showing a strong correlation (gray relational value greater than 0.75). The effects of the depositional environment (sand–shale ratio) and coal bed thickness were negligible. A weighted fusion model incorporating seismic attributes and geological parameters was developed to predict the gas content distribution, achieving relative prediction errors of below 15% in validation wells, significantly outperforming traditional interpolation methods. The integrated approach demonstrated enhanced spatial resolution and accuracy in delineating the lateral CBM distribution, particularly in structurally complex zones. However, limitations persist due to the seismic data resolution and logging data reliability. This method provides a robust framework for CBM exploration in heterogeneous coal reservoirs, emphasizing the critical role of tectonic characterization in gas content prediction. Full article
(This article belongs to the Special Issue Coalbed Methane Development Process)
Show Figures

Figure 1

20 pages, 12803 KiB  
Article
Prediction of the Water-Conducting Fracture Zone Height Across the Entire Mining Area Based on the Multiple Nonlinear Coordinated Regression Model
by Jianye Feng, Xiaoming Shi, Jiasen Chen and Kang Wang
Water 2025, 17(9), 1303; https://doi.org/10.3390/w17091303 - 27 Apr 2025
Viewed by 426
Abstract
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured [...] Read more.
The water-conducting fracture zone (WCFZ) is a critical geological structure formed by the destruction of overburden during coal mining operations. Accurately predicting the height of the water-conducting fractured zone (HWCFZ) is essential for ensuring safe coal production. Based on more than 150 measured heights of fractured water-conducting zone samples from various mining areas in China, this study investigates the influence of five primary factors on the height: mining thickness, mining depth, length of the panel, coal seam dip, and the proportion coefficient of hard rock. The correlation degrees and relative weights of each factor are determined through grey relational analysis and principal component analysis. All five factors exhibit strong correlations with the height of the fractured water-conducting zone, with correlation degrees exceeding 0.79. Mining thickness is found to have the highest weight (0.256). A multiple nonlinear coordinated regression equation was constructed through regression analysis of the influencing factors. The prediction accuracy was compared with three other predictive models: the multiple nonlinear additive regression model, the BP neural network model, and the GA-BP neural network model. Among these models, the multiple nonlinear coordinated regression model was found to achieve the lowest error rate (7.23%) and the highest coefficient of determination (R2 = 87.42%), indicating superior accuracy and reliability. The model’s performance is further validated using drill hole data and numerical simulations at the B-1 drill hole in the Fuda Coal Mine. Predictive results for the entire Fuda Coal Mine area indicate that as the No. 15 coal seam extends northwestward, the height of the fractured water-conducting zone increases from 52.1 m to 73.9 m. These findings have significant implications for improving mine safety and preventing geological hazards in coal mining operations. Full article
Show Figures

Figure 1

26 pages, 40649 KiB  
Article
Evolution Characteristics of Roof Stress in Horizontal Segmental Mining of Steeply Inclined Coal Seams
by Guojun Zhang, Yong Zhang, Shigen Fu and Mingbo Chi
Processes 2025, 13(5), 1317; https://doi.org/10.3390/pr13051317 - 25 Apr 2025
Viewed by 334
Abstract
Steeply inclined coal seams, characterized by their significant inclination angles and complex storage conditions, are globally recognized as challenging seams to mine. An orthogonal test was conducted to study the influence of four key factors, including burial depth, inclination angle, lateral pressure coefficient, [...] Read more.
Steeply inclined coal seams, characterized by their significant inclination angles and complex storage conditions, are globally recognized as challenging seams to mine. An orthogonal test was conducted to study the influence of four key factors, including burial depth, inclination angle, lateral pressure coefficient, and maximum horizontal principal stress direction angle, on the force on the top slab of the sharply inclined extra-thick coal seam. The research findings indicate the following: The normal stress in the hollow area above the working face increases with greater burial depth, and the normal stress in the mining hollow area above the working face increases with an increase in the lateral pressure coefficient. Within the range of 4 m from the top edge of the seam, the normal stress distribution is approximately linear, and the influence of each factor on the average value of normal stress is in the following order: inclination angle > depth of burial > angle between the maximum horizontal principal stress and the strike angle of the seam > lateral pressure coefficient; outside the range of 4 m from the top edge of the seam, the distribution of normal stress is approximately linear, and the influence of each factor on the average value of normal stress is in the following order: angle between the maximum horizontal principal stress and the strike of the formation > inclination angle > depth of burial > lateral pressure coefficient. Full article
(This article belongs to the Topic Advances in Coal Mine Disaster Prevention Technology)
Show Figures

Figure 1

Back to TopTop