Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (404)

Search Parameters:
Keywords = thermo-chemical technology

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1167 KiB  
Article
Comparative Techno-Environmental Assessment of Green Hydrogen Production via Steam Methane Reforming and Chemical Looping Reforming of Biomethane
by Salmi Mohd Yunus, Siti Sorfina Johari, Nurfanizan Mohd Afandi and Abreeza Manap
Hydrogen 2025, 6(3), 56; https://doi.org/10.3390/hydrogen6030056 - 11 Aug 2025
Viewed by 167
Abstract
Green hydrogen derived from renewable resources is increasingly recognized as a basis for future low-carbon energy systems. This study presents a comprehensive techno-environmental comparison of two thermochemical conversion pathways utilizing biomethane: steam methane reforming (SMR) and chemical looping reforming (CLR). Through integrated process [...] Read more.
Green hydrogen derived from renewable resources is increasingly recognized as a basis for future low-carbon energy systems. This study presents a comprehensive techno-environmental comparison of two thermochemical conversion pathways utilizing biomethane: steam methane reforming (SMR) and chemical looping reforming (CLR). Through integrated process simulations, compositional analyses, energy modeling, and cost evaluation, we examine the comparative advantages of each route in terms of hydrogen yield, carbon separation efficiency, process energy intensity, and economic performance. The results demonstrate that CLR achieves a significantly higher hydrogen concentration in the raw syngas stream (62.44%) than SMR (43.14%), with reduced levels of residual methane and carbon monoxide. The energy requirements for hydrogen production are lower in the CLR system, averaging 1.2 MJ/kg, compared to 3.2 MJ/kg for SMR. Furthermore, CLR offers a lower hydrogen production cost (USD 4.3/kg) compared to SMR (USD 6.4/kg), primarily due to improved thermal integration and the absence of solvent-based CO2 capture. These insights highlight the potential of CLR as a next-generation reforming strategy for producing green hydrogen. To advance its technology readiness, it is proposed to develop a pilot-scale CLR facility to validate system performance under operational conditions and support the pathway to commercial implementation. Full article
Show Figures

Figure 1

24 pages, 1356 KiB  
Review
Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery
by Marta Kuta, Agata Mlonka-Mędrala, Ewelina Radomska and Andrzej Gołdasz
Energies 2025, 18(15), 4136; https://doi.org/10.3390/en18154136 - 4 Aug 2025
Viewed by 329
Abstract
The global energy transition and increasingly rigorous legal regulations aimed at climate protection are driving the search for alternative energy sources, including renewable energy sources (RESs) and waste heat. However, the mismatch between supply and demand presents a significant challenge. Thermal energy storage [...] Read more.
The global energy transition and increasingly rigorous legal regulations aimed at climate protection are driving the search for alternative energy sources, including renewable energy sources (RESs) and waste heat. However, the mismatch between supply and demand presents a significant challenge. Thermal energy storage (TES) technologies, particularly mobile thermal energy storage (M-TES), offer a potential solution to address this gap. M-TES can not only balance supply and demand but also facilitate the transportation of heat from the source to the recipient. This paper reviews the current state of M-TES technologies, focusing on their technology readiness level, key operating parameters, and advantages and disadvantages. It is found that M-TES can be based on sensible heat, latent heat, or thermochemical reactions, with the majority of research and projects centered around latent heat storage. Regarding the type of research, significant progress has been made at the laboratory and simulation levels, while real-world implementation remains limited, with few pilot projects and commercially available systems. Despite the limited number of real-world M-TES implementations, currently existing M-TES systems can store up to 5.4 MWh in temperatures ranging from 58 °C to as high as 1300 °C. These findings highlight the potential of the M-TES and offer data for technology selection, simultaneously indicating the research gaps and future research directions. Full article
(This article belongs to the Special Issue Highly Efficient Thermal Energy Storage (TES) Technologies)
Show Figures

Figure 1

42 pages, 1506 KiB  
Review
Direct Air Capture Using Pyrolysis and Gasification Chars: Key Findings and Future Research Needs
by Wojciech Jerzak, Bin Li, Dennys Correia da Silva and Glauber Cruz
Energies 2025, 18(15), 4120; https://doi.org/10.3390/en18154120 - 3 Aug 2025
Viewed by 401
Abstract
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, [...] Read more.
Direct Air Capture (DAC) is gaining worldwide attention as a negative emissions strategy critical to meeting climate targets. Among emerging DAC materials, pyrolysis chars (PCs) and gasification chars (GCs) derived from biomass present a promising pathway due to their tunable porosity, surface chemistry, and low-cost feedstocks. This review critically examines the current state of research on the physicochemical properties of PCs and GCs relevant to CO2 adsorption, including surface area, pore structure, surface functionality and aromaticity. Comparative analyses show that chemical activation, especially with KOH, can significantly improve CO2 adsorption capacity, with some PCs achieving more than 308 mg/g (100 kPa CO2, 25 °C). Additionally, nitrogen and sulfur doping further improves the affinity for CO2 through increased surface basicity. GCs, although inherently more porous, often require additional modification to achieve a similar adsorption capacity. Importantly, the long-term stability and regeneration potential of these chars remain underexplored, but are essential for practical DAC applications and economic viability. The paper identifies critical research gaps related to material design and techno-economic feasibility. Future directions emphasize the need for integrated multiscale research that bridges material science, process optimization, and real-world DAC deployment. A synthesis of findings and a research outlook are provided to support the advancement of carbon-negative technologies using thermochemically derived biomass chars. Full article
(This article belongs to the Section B3: Carbon Emission and Utilization)
Show Figures

Figure 1

19 pages, 2806 KiB  
Article
Operating Solutions to Improve the Direct Reduction of Iron Ore by Hydrogen in a Shaft Furnace
by Antoine Marsigny, Olivier Mirgaux and Fabrice Patisson
Metals 2025, 15(8), 862; https://doi.org/10.3390/met15080862 - 1 Aug 2025
Viewed by 433
Abstract
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based [...] Read more.
The production of iron and steel plays a significant role in the anthropogenic carbon footprint, accounting for 7% of global GHG emissions. In the context of CO2 mitigation, the steelmaking industry is looking to potentially replace traditional carbon-based ironmaking processes with hydrogen-based direct reduction of iron ore in shaft furnaces. Before industrialization, detailed modeling and parametric studies were needed to determine the proper operating parameters of this promising technology. The modeling approach selected here was to complement REDUCTOR, a detailed finite-volume model of the shaft furnace, which can simulate the gas and solid flows, heat transfers and reaction kinetics throughout the reactor, with an extension that describes the whole gas circuit of the direct reduction plant, including the top gas recycling set up and the fresh hydrogen production. Innovative strategies (such as the redirection of part of the bustle gas to a cooling inlet, the use of high nitrogen content in the gas, and the introduction of a hot solid burden) were investigated, and their effects on furnace operation (gas utilization degree and total energy consumption) were studied with a constant metallization target of 94%. It has also been demonstrated that complete metallization can be achieved at little expense. These strategies can improve the thermochemical state of the furnace and lead to different energy requirements. Full article
(This article belongs to the Special Issue Recent Developments and Research on Ironmaking and Steelmaking)
Show Figures

Graphical abstract

49 pages, 4131 KiB  
Review
Municipal Solid Waste Gasification: Technologies, Process Parameters, and Sustainable Valorization of By-Products in a Circular Economy
by Nicoleta Ungureanu, Nicolae-Valentin Vlăduț, Sorin-Ștefan Biriș, Mariana Ionescu and Neluș-Evelin Gheorghiță
Sustainability 2025, 17(15), 6704; https://doi.org/10.3390/su17156704 - 23 Jul 2025
Viewed by 620
Abstract
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper [...] Read more.
Gasification of municipal solid waste and other biogenic residues (e.g., biomass and biowaste) is increasingly recognized as a promising thermochemical pathway for converting non-recyclable fractions into valuable energy carriers, with applications in electricity generation, district heating, hydrogen production, and synthetic fuels. This paper provides a comprehensive analysis of major gasification technologies, including fixed bed, fluidized bed, entrained flow, plasma, supercritical water, microwave-assisted, high-temperature steam, and rotary kiln systems. Key aspects such as feedstock compatibility, operating parameters, technology readiness level, and integration within circular economy frameworks are critically evaluated. A comparative assessment of incineration and pyrolysis highlights the environmental and energetic advantages of gasification. The valorization pathways for main product (syngas) and by-products (syngas, ash, tar, and biochar) are also explored, emphasizing their reuse in environmental, agricultural, and industrial applications. Despite progress, large-scale adoption in Europe is constrained by economic, legislative, and technical barriers. Future research should prioritize scaling emerging systems, optimizing by-product recovery, and improving integration with carbon capture and circular energy infrastructures. Supported by recent European policy frameworks, gasification is positioned to play a key role in sustainable waste-to-energy strategies, biomass valorization, and the transition to a low-emission economy. Full article
(This article belongs to the Special Issue Sustainable Waste Process Engineering and Biomass Valorization)
Show Figures

Figure 1

24 pages, 3016 KiB  
Article
Industrial Off-Gas Fermentation for Acetic Acid Production: A Carbon Footprint Assessment in the Context of Energy Transition
by Marta Pacheco, Adrien Brac de la Perrière, Patrícia Moura and Carla Silva
C 2025, 11(3), 54; https://doi.org/10.3390/c11030054 - 23 Jul 2025
Viewed by 628
Abstract
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and [...] Read more.
Most industrial processes depend on heat, electricity, demineralized water, and chemical inputs, which themselves are produced through energy- and resource-intensive industrial activities. In this work, acetic acid (AA) production from syngas (CO, CO2, and H2) fermentation is explored and compared against a thermochemical fossil benchmark and other thermochemical/biological processes across four main Key Performance Indicators (KPI)—electricity use, heat use, water consumption, and carbon footprint (CF)—for the years 2023 and 2050 in Portugal and France. CF was evaluated through transparent and public inventories for all the processes involved in chemical production and utilities. Spreadsheet-traceable matrices for hotspot identification were also developed. The fossil benchmark, with all the necessary cascade processes, was 0.64 kg CO2-eq/kg AA, 1.53 kWh/kg AA, 22.02 MJ/kg AA, and 1.62 L water/kg AA for the Portuguese 2023 energy mix, with a reduction of 162% of the CO2-eq in the 2050 energy transition context. The results demonstrated that industrial practices would benefit greatly from the transition from fossil to renewable energy and from more sustainable chemical sources. For carbon-intensive sectors like steel or cement, the acetogenic syngas fermentation appears as a scalable bridge technology, converting the flue gas waste stream into marketable products and accelerating the transition towards a circular economy. Full article
(This article belongs to the Section Carbon Cycle, Capture and Storage)
Show Figures

Graphical abstract

35 pages, 1196 KiB  
Review
Reversible Thermochemical Routes for Carbon Neutrality: A Review of CO2 Methanation and Steam Methane Reforming
by Marisa Martins, Carlos Andrade and Amadeu D. S. Borges
Physchem 2025, 5(3), 29; https://doi.org/10.3390/physchem5030029 - 23 Jul 2025
Viewed by 446
Abstract
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions, each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes, highlighting how reaction reversibility [...] Read more.
This review explores CO2 methanation and steam methane reforming (SMR) as two key thermochemical processes governed by reversible reactions, each offering distinct contributions to carbon-neutral energy systems. The objective is to provide a comparative assessment of both processes, highlighting how reaction reversibility can be strategically leveraged for decarbonization. The study addresses methane production via CO2 methanation and hydrogen production via SMR, focusing on their thermodynamic behaviors, catalytic systems, environmental impacts, and economic viability. CO2 methanation, when powered by renewable hydrogen, can result in emissions ranging from −471 to 1076 kg CO2-equivalent per MWh of methane produced, while hydrogen produced from SMR ranges from 90.9 to 750.75 kg CO2-equivalent per MWh. Despite SMR’s lower production costs (USD 21–69/MWh), its environmental footprint is considerably higher. In contrast, methanation offers environmental benefits but remains economically uncompetitive (EUR 93.53–204.62/MWh). Both processes rely primarily on Ni-based catalysts, though recent developments in Ru-based and bimetallic systems have demonstrated improved performance. The review also examines operational challenges such as carbon deposition and catalyst deactivation. By framing these technologies through the shared lens of reversibility, this work outlines pathways toward integrated, efficient, and circular energy systems aligned with long-term sustainability and climate neutrality goals. Full article
(This article belongs to the Section Kinetics and Thermodynamics)
Show Figures

Figure 1

31 pages, 2773 KiB  
Review
Actualized Scope of Forestry Biomass Valorization in Chile: Fostering the Bioeconomy
by Cecilia Fuentalba, Victor Ferrer, Luis E. Arteaga-Perez, Jorge Santos, Nacarid Delgado, Yannay Casas-Ledón, Gastón Bravo-Arrepol, Miguel Pereira, Andrea Andrade, Danilo Escobar-Avello and Gustavo Cabrera-Barjas
Forests 2025, 16(8), 1208; https://doi.org/10.3390/f16081208 - 23 Jul 2025
Viewed by 612
Abstract
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It [...] Read more.
Chile is among the leading global exporters of pulp and paper, supported by extensive plantations of Pinus radiata and Eucalyptus spp. This review synthesizes recent progress in the valorization of forestry biomass in Chile, including both established practices and emerging bio-based applications. It highlights advances in lignin utilization, nanocellulose production, hemicellulose processing, and tannin extraction, as well as developments in thermochemical conversion technologies, including torrefaction, pyrolysis, and gasification. Special attention is given to non-timber forest products and essential oils due to their potential bioactivity. Sustainability perspectives, including Life Cycle Assessments, national policy instruments such as the Circular Economy Roadmap and Extended Producer Responsibility (REP) Law, are integrated to provide context. Barriers to technology transfer and industrial implementation are also discussed. This work contributes to understanding how forestry biomass can support Chile’s transition toward a circular bioeconomy. Full article
Show Figures

Figure 1

37 pages, 5280 KiB  
Review
Thermal Issues Related to Hybrid Bonding of 3D-Stacked High Bandwidth Memory: A Comprehensive Review
by Seung-Hoon Lee, Su-Jong Kim, Ji-Su Lee and Seok-Ho Rhi
Electronics 2025, 14(13), 2682; https://doi.org/10.3390/electronics14132682 - 2 Jul 2025
Viewed by 3419
Abstract
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass [...] Read more.
High-Bandwidth Memory (HBM) enables the bandwidth required by modern AI and high-performance computing, yet its three dimensional stack traps heat and amplifies thermo mechanical stress. We first review how conventional solutions such as heat spreaders, microchannels, high density Through-Silicon Vias (TSVs), and Mass Reflow Molded Underfill (MR MUF) underfills lower but do not eliminate the internal thermal resistance that rises sharply beyond 12layer stacks. We then synthesize recent hybrid bonding studies, showing that an optimized Cu pad density, interface characteristic, and mechanical treatments can cut junction-to-junction thermal resistance by between 22.8% and 47%, raise vertical thermal conductivity by up to three times, and shrink the stack height by more than 15%. A meta-analysis identifies design thresholds such as at least 20% Cu coverage that balances heat flow, interfacial stress, and reliability. The review next traces the chain from Coefficient of Thermal Expansion (CTE) mismatch to Cu protrusion, delamination, and warpage and classifies mitigation strategies into (i) material selection including SiCN dielectrics, nano twinned Cu, and polymer composites, (ii) process technologies such as sub-200 °C plasma-activated bonding and Chemical Mechanical Polishing (CMP) anneal co-optimization, and (iii) the structural design, including staggered stack and filleted corners. Integrating these levers suppresses stress hotspots and extends fatigue life in more than 16layer stacks. Finally, we outline a research roadmap combining a multiscale simulation with high layer prototyping to co-optimize thermal, mechanical, and electrical metrics for next-generation 20-layer HBM. Full article
(This article belongs to the Section Semiconductor Devices)
Show Figures

Figure 1

27 pages, 870 KiB  
Review
Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification
by Yibo Hu and Ziwei Chen
Water 2025, 17(12), 1833; https://doi.org/10.3390/w17121833 - 19 Jun 2025
Cited by 1 | Viewed by 859
Abstract
Sewage sludge, as a by-product of wastewater treatment, poses severe environmental challenges due to its high moisture, ash, and heavy metal content. Thermochemical conversion technologies, including pyrolysis and gasification, offer promising pathways for transforming sludge into valuable products such as bio-oil, biochar, and [...] Read more.
Sewage sludge, as a by-product of wastewater treatment, poses severe environmental challenges due to its high moisture, ash, and heavy metal content. Thermochemical conversion technologies, including pyrolysis and gasification, offer promising pathways for transforming sludge into valuable products such as bio-oil, biochar, and syngas. This paper systematically reviews recent advancements in pyrolysis and gasification, focusing on process optimization and catalyst development to enhance product quality and energy recovery. In pyrolysis, factors such as temperature, residence time, and heating rate significantly influence product yields and properties, while catalytic and co-pyrolysis approaches further improve product structure and reduce environmental risks. In gasification, parameters like the equivalence ratio, steam-to-sludge ratio, and catalyst application are key to enhancing syngas yield and quality, with biomass co-gasification offering additional benefits. Despite substantial progress, commercialization remains challenged by high operational costs, catalyst durability, and environmental impacts. Future research should emphasize improving sludge pretreatment, optimizing thermochemical processes, developing efficient and cost-effective catalysts, and addressing critical issues such as bio-oil quality, tar management, and syngas purification to promote the industrial application of these technologies. Full article
Show Figures

Figure 1

39 pages, 3650 KiB  
Review
Molten Salt Mixtures as an Energy Carrier for Thermochemical Processes of Renewable Gas Production: Review and Perspectives
by Marco D’Auria, Anna Chiara Tizzoni, Francesco Rovense, Salvatore Sau, Luca Turchetti, Diogo Canavarro, João Marchã, Pedro Horta and Michela Lanchi
Appl. Sci. 2025, 15(12), 6916; https://doi.org/10.3390/app15126916 - 19 Jun 2025
Viewed by 644
Abstract
This study provides a comprehensive review of molten salt technology, as well as electrochemical and thermochemical processes aimed at hydrogen and syngas production. First, this research illustrates the current types of molten salt mixtures, detailing their main applications and thermophysical properties. Then, the [...] Read more.
This study provides a comprehensive review of molten salt technology, as well as electrochemical and thermochemical processes aimed at hydrogen and syngas production. First, this research illustrates the current types of molten salt mixtures, detailing their main applications and thermophysical properties. Then, the analysis delves into existing thermo-electrochemical cycles and their specific operating conditions for producing hydrogen and syngas. Moreover, this study assesses the compatibility of these processes with molten salt integration. This investigation involved a comprehensive review of the existing technical and scientific literature, blending insights and practical experiences to offer detailed data on the topics explored. The findings suggest that molten salts, with their medium–high operating temperatures, can markedly improve the efficiency and sustainability of hydrogen and syngas production. Furthermore, this study outlines the pivotal role these technologies can play in achieving the European Union’s ambitious goals by enhancing the use of renewable energy sources and advancing the shift to carbon-free solutions. Full article
(This article belongs to the Special Issue Advanced Solar Energy Materials: Methods and Applications)
Show Figures

Figure 1

17 pages, 914 KiB  
Article
Characterization of Liquefaction Products from Lignocellulosic and Aquatic Biomass
by Telma Moreira, Maria Margarida Mateus, Luís C. Duarte and Maria Joana Neiva Correia
Biomass 2025, 5(2), 36; https://doi.org/10.3390/biomass5020036 - 13 Jun 2025
Viewed by 463
Abstract
Biomass liquefaction is a promising thermochemical route to convert lignocellulosic residues into bio-oil. This study evaluates the liquefaction behavior of 13 biomasses with varying particle sizes (0.3–2.0 mm) and moisture contents (5–11%) under mild solvolysis conditions. High-performance liquid chromatography (HPLC-RID) and thermogravimetric analysis [...] Read more.
Biomass liquefaction is a promising thermochemical route to convert lignocellulosic residues into bio-oil. This study evaluates the liquefaction behavior of 13 biomasses with varying particle sizes (0.3–2.0 mm) and moisture contents (5–11%) under mild solvolysis conditions. High-performance liquid chromatography (HPLC-RID) and thermogravimetric analysis (TGA) were used to characterize bio-oil composition and biomass properties, respectively. Maximum conversion (72%) was achieved for Miscanthus, while Ulva lactuca reached only 23% due to its low carbohydrate content. Hemicellulose-rich feedstocks showed higher yields, whereas high lignin content generally reduced conversion. Furfural was the main compound identified in the aqueous phase (up to 51 g/L), reflecting extensive pentose degradation. Laboratory and industrial-scale liquefaction of cork and eucalyptus revealed scale-dependent differences. Industrial cork bio-oil showed increased xylose (0.70 g/L) and furfural (0.40 g/L), while industrial eucalyptus exhibited elevated levels of acetic (0.46 g/L) and formic acids (0.71 g/L), indicating enhanced deacetylation and demethoxylation reactions. These findings offer valuable insights for optimizing feedstock selection and process conditions in biomass liquefaction. The valorization of lignocellulosic residues into bio-oil contributes to the development of scalable, low-carbon technologies aligned with circular economy principles and bio-based industrial strategies. Full article
Show Figures

Figure 1

19 pages, 2216 KiB  
Article
Study on the Design and Development of Advanced Inorganic Polymers for Thermal Energy Storage (TES) Systems
by Ioanna Giannopoulou, Loizos Georgiou, Konstantina Oikonomopoulou, Maria Spanou, Alexandros Michaelides and Demetris Nicolaides
Energies 2025, 18(12), 3107; https://doi.org/10.3390/en18123107 - 12 Jun 2025
Viewed by 544
Abstract
Thermal Energy Storage (TES) technologies improve solar power dispatchability by addressing the important challenge of energy intermittency. Sensible heat energy storage technology using materials based on Ordinary Portland Cement (OPC) is the simplest and most economical. However, the operation of these materials is [...] Read more.
Thermal Energy Storage (TES) technologies improve solar power dispatchability by addressing the important challenge of energy intermittency. Sensible heat energy storage technology using materials based on Ordinary Portland Cement (OPC) is the simplest and most economical. However, the operation of these materials is limited to temperatures below 400 °C due to the structural degradation of OPC at this temperature. This paper investigates the design and development of inorganic polymers based on Construction and Demolition Waste (CDW) as a sustainable, low-cost, and environmentally friendly alternative to OPC-based materials for high-temperature sensible TES applications. Based on the ternary systems Na2O-SiO2-Al2O3 and K2O-SiO2-Al2O3, representative compositions of CDW-based inorganic polymers were theoretically designed and evaluated using the thermochemical software FactSage 7.0. The experimental verification of the theoretically designed inorganic polymers confirmed that they can withstand temperatures higher than 500 and up to 700 °C. The optimized materials developed compressive strength around 20 MPa, which was improved with temperatures up to 500 °C and then decreased. Moreover, they presented thermal capacities from 600 to 1090 J kg−1 °C −1, thermal diffusivity in the range of 4.7–5.6 × 10−7 m2 s−1, and thermal conductivity from 0.6 to 1 W m−1 °C−1. These properties render the developed inorganic polymers significant candidates for TES applications. Full article
(This article belongs to the Special Issue Advanced Technologies and Materials for Thermal Energy Storage)
Show Figures

Figure 1

27 pages, 2759 KiB  
Review
A Review of Global Municipal Solid Waste Management and Valorization Pathways
by Sagar Kafle, Bhesh Kumar Karki, Manish Sakhakarmy and Sushil Adhikari
Recycling 2025, 10(3), 113; https://doi.org/10.3390/recycling10030113 - 6 Jun 2025
Cited by 1 | Viewed by 3930
Abstract
Municipal solid waste (MSW) is rising globally, and improper management harms the environment and public health. As a result, there is heightened interest in finding effective solutions, and identifying research trends helps determine the best management and valorization pathways. However, the existing reviews [...] Read more.
Municipal solid waste (MSW) is rising globally, and improper management harms the environment and public health. As a result, there is heightened interest in finding effective solutions, and identifying research trends helps determine the best management and valorization pathways. However, the existing reviews often focus narrowly on specific technologies or regional case studies, lacking a comprehensive analysis of global research trends. This study addresses this significant gap by conducting a large-scale trend analysis based on 15,646 relevant articles screened from 25,068 Scopus-indexed publications from 1904 to 2023 using title, abstract, and keyword analysis. Literature-based comparative assessments were conducted to critically evaluate the pathways through TEE (techno-economic and environmental), SWOT (strengths, weaknesses, opportunities, and threats), and PESTEL (political, economic, social, technological, environmental, and legal) frameworks. Since 1990, article publication has increased by about 10% annually, consistently concentrating on thermochemical conversion and, more recently, on sustainability and circular economy perspectives. Seven distinct pathways for MSW management were identified, with recycling and material recovery, followed by thermochemical conversion for high-calorific waste and biochemical conversion for high-organic waste, showing the most promise. The findings aim to help researchers understand MSW research trends and assist planners in identifying effective management and valorization strategies. Full article
(This article belongs to the Topic Advances and Innovations in Waste Management)
Show Figures

Figure 1

26 pages, 1615 KiB  
Review
Economic Analysis of Nuclear Energy Cogeneration: A Comprehensive Review on Integrated Utilization
by Guobin Jia, Guifeng Zhu, Yang Zou, Yuwen Ma, Ye Dai, Jianhui Wu and Jian Tian
Energies 2025, 18(11), 2929; https://doi.org/10.3390/en18112929 - 3 Jun 2025
Viewed by 989
Abstract
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of [...] Read more.
Nuclear energy cogeneration, which integrates electricity generation with thermal energy utilization, presents a transformative pathway for enhancing energy efficiency and decarbonizing industrial and urban sectors. This comprehensive review synthesizes advancements in technological stratification, economic modeling, and sectoral practices to evaluate the viability of nuclear cogeneration as a cornerstone of low-carbon energy transitions. By categorizing applications based on temperature requirements (low: <250 °C, medium: 250–550 °C, high: >550 °C), the study highlights the adaptability of reactor technologies, including light water reactors (LWRs), high-temperature gas-cooled reactors (HTGRs), and molten salt reactors (MSRs), to sector-specific demands. Key findings reveal that nuclear cogeneration systems achieve thermal efficiencies exceeding 80% in low-temperature applications and reduce CO2 emissions by 1.5–2.5 million tons annually per reactor by displacing fossil fuel-based heat sources. Economic analyses emphasize the critical role of cost allocation methodologies, with exergy-based approaches reducing levelized costs by 18% in high-temperature applications. Policy instruments, such as carbon pricing, value-added tax (VAT) exemptions, and subsidized loans, enhance project viability, elevating net present values by 25–40% for district heating systems. Case studies from Finland, China, and Canada demonstrate operational successes, including 30% emission reductions in oil sands processing and hydrogen production costs as low as USD 3–5/kg via thermochemical cycles. Hybrid nuclear–renewable systems further stabilize energy supply, reducing the levelized cost of heat by 18%. The review underscores the necessity of integrating Generation IV reactors, thermal storage, and policy alignment to unlock nuclear cogeneration’s full potential in achieving global decarbonization and energy security goals. Full article
(This article belongs to the Section C: Energy Economics and Policy)
Show Figures

Figure 1

Back to TopTop