Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification
Abstract
:1. Introduction
2. Materials and Methods
2.1. Literature Selection Criteria
2.2. Component Analysis of Sewage Sludge
2.3. The Relationship Between Sludge Types and Thermochemical Processes
2.4. The Necessity of Resource Utilization and Environmental Relief
2.5. Traditional Treatment Methods for Sewage Sludge
2.5.1. Landfilling Method
2.5.2. Composting Treatment
2.5.3. Anaerobic Digestion
2.6. Potential Application Value of Thermochemical Conversion Technology
3. Pyrolysis Process of Sewage Sludge and Influencing Factors
3.1. Main Products of Sewage Sludge Pyrolysis
The Relationship Between Bio-Oil, Bio-Char and Pyrolysis Gas in Pyrolysis
3.2. Parameter Influence
3.2.1. Temperature
3.2.2. Residence Time
3.2.3. Heating Rate
3.3. Non-Catalytic Pyrolysis of Sewage Sludge
3.3.1. Fast Pyrolysis
3.3.2. Slow Pyrolysis
3.3.3. Flash Pyrolysis
3.3.4. Co-Pyrolysis
3.4. Catalytic Pyrolysis
3.4.1. Biochar Catalysts
3.4.2. Metal Oxide Catalysts
3.4.3. Zeolite Catalytic Pyrolysis
3.5. Comprehensive Evaluation and Challenges of Pyrolysis Technology
4. Gasification of Sewage Sludge
4.1. Gasification Process of Sewage Sludge
4.2. Types of Gasification Reactors for Sewage Sludge
4.3. Operating Parameters of Sewage Sludge Gasification Process
4.3.1. Equivalence Ratio
4.3.2. Ratio of Steam to Sewage Sludge (S/SS)
4.3.3. Temperature
4.3.4. Parameters of Sewage Sludge as Raw Material
4.3.5. Catalyst Addition
4.4. Co-Gasification
4.5. Comprehensive Evaluation and Challenges of Gasification Technology
5. Economic Feasibility Considerations
6. Conclusions and Prospects
6.1. Conclusions
6.2. Prospects
- Enhancement of sludge pretreatment technologies: Effective pretreatment methods and co-pyrolysis with biomass reduce moisture, ash, and heavy metal content, enhancing sludge safety and product quality.
- Optimization of process parameters and development of cost-effective catalysts: During pyrolysis and gasification processes, continuous adjustment of key parameters—such as temperature, residence time, and equivalence ratio—is essential to identify optimal operating conditions. Additionally, designing recyclable and low-cost catalysts can significantly improve product quality, energy output, and overall cost-effectiveness.
- Improvement of product quality and resolution of key technical bottlenecks: Enhancing bio-oil and biochar quality and tackling gasification challenges like tar management and syngas purity are key to achieving commercial viability.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
HHV | Higher Heating Value |
PS | Primary sludge |
SS | Secondary sludge |
OC | Organic Pollutants |
EU | European Union |
EPA | Environmental Protection Agency |
AD | Aerobic Digestion |
PM | Particulate Matter |
SCRs | Secondary Cracking Reactions |
TDTGmax | Maximum Weight Loss Rate |
BFB | Bubbling Fluidized Bed |
CFB | Circulating Fluidized Bed |
ER | Equivalent Ratio |
S/SS | Ratio of Steam to Sewage Sludge |
References
- Capodaglio, A.G.; Callegari, A. Energy and resources recovery from excess sewage sludge: A holistic analysis of opportunities and strategies. Resour. Conserv. Recycl. Adv. 2023, 19, 200184. [Google Scholar] [CrossRef]
- Vali, N.; Zabihi, S.; Shamim, S.; Mohsenzadeh, A.; Pettersson, A. Slow-pyrolysis of municipal sewage sludge: Biochar characteristics and advanced thermodynamics. Biomass Convers. Biorefin. 2025, in press. [Google Scholar] [CrossRef]
- Wang, B.; Liu, Y.; Guan, Y.; Feng, Y. Characteristic of the production of hydrogen-rich combustible gas by pyrolysis of high-ash sewage sludge. J. Clean. Prod. 2022, 334, 130224. [Google Scholar] [CrossRef]
- Wang, Y.C.; Zhang, T.; Westerhoff, P.; Jiang, R.F.; Ren, H.Q.; Yang, Y.; Li, Z. Microwave-assisted digestion and NaOH treatment of waste-activated sludge to recover phosphorus by crystallizing struvite. Environ. Technol. 2017, 38, 1211–1222. [Google Scholar] [CrossRef]
- Zhu, Y.; Wen, X.; Guo, Z. Research progress on high-value utilization technology of sludge solid waste in China. J. Mater. Cycles Waste Manag. 2025, 27, 654–665. [Google Scholar] [CrossRef]
- Hu, M.; Ye, Z.; Zhang, H.; Chen, B.; Pan, Z.; Wang, J. Thermochemical conversion of sewage sludge for energy and resource recovery: Technical challenges and prospects. Environ. Pollut. Bioavailab. 2021, 33, 145–163. [Google Scholar] [CrossRef]
- Veli Sezgin, İ.; Merdun, H. Estimation of fast pyrolysis product yields of different biomasses by artificial neural networks. Chem. Eng. Res. Des. 2025, 215, 32–42. [Google Scholar] [CrossRef]
- He, X.Y.; Zhang, T.; Xue, Q.; Zhou, Y.L.; Wang, H.L.; Bolan, N.S.; Jiang, R.F.; Tsang, D.C.W. Enhanced adsorption of Cu(II) and Zn(II) from aqueous solution by polyethyleneimine modified straw hydrochar. Sci. Total Environ. 2021, 778, 146116. [Google Scholar] [CrossRef]
- Xie, S.Y.; He, X.Y.; Ali Alshehri, M.; Abou-Elwafa, S.F.; Zhang, T. Elevated effect of hydrothermal treatment on phosphorus transition between solid-liquid phase in swine manure. Results Eng. 2024, 24, 102887. [Google Scholar] [CrossRef]
- Syed-Hassan, S.S.A.; Wang, Y.; Hu, S.; Su, S.; Xiang, J. Thermochemical processing of sewage sludge to energy and fuel: Fundamentals, challenges and considerations. Renew. Sustain. Energy Rev. 2017, 80, 888–913. [Google Scholar] [CrossRef]
- Gao, N.; Kamran, K.; Quan, C.; Williams, P.T. Thermochemical conversion of sewage sludge: A critical review. Prog. Energy Combust. Sci. 2020, 79, 100843. [Google Scholar] [CrossRef]
- Nabernegg, S.; Bednar-Friedl, B.; Muñoz, P.; Titz, M.; Vogel, J. National policies for global emission reductions: Effectiveness of carbon emission reductions in international supply chains. Ecol. Econ. 2019, 158, 146–157. [Google Scholar] [CrossRef]
- Gu, G.; Wang, Z.; Wu, L. Carbon emission reductions under global low-carbon technology transfer and its policy mix with R&D improvement. Energy 2021, 216, 119300. [Google Scholar]
- Lim, H.Y.; Rashidi, N.A.; Othman, M.F.H.; Ismail, I.S.; Saadon, S.Z.A.H.; Chin, B.L.F.; Yusup, S.; Rahman, M.N. Recent advancement in thermochemical conversion of biomass to biofuel. Biofuels 2024, 15, 587–604. [Google Scholar] [CrossRef]
- Deng, Y.X.; Zhang, T.; Clark, J.; Aminabhavi, T.; Kruse, A.; Tsang, D.C.W.; Sharma, B.K.; Zhang, F.S.; Ren, H.Q. Mechanisms and modelling of phosphorus solid–liquid transformation during the hydrothermal processing of swine manure. Green Chem. 2020, 22, 5628–5638. [Google Scholar] [CrossRef]
- Poornima, S.; Manikandan, S.; Prakash, R.; Deena, S.R.; Subbaiya, R.; Karmegam, N.; Kim, W.; Govarthanan, M. Biofuel and biochemical production through biomass transformation using advanced thermochemical and biochemical processes—A review. Fuel 2024, 372, 132204. [Google Scholar] [CrossRef]
- Rijo, B.; Nobre, C.; Brito, P.; Ferreira, P. An overview of the thermochemical valorization of sewage sludge: Principles and current challenges. Energies 2024, 17, 2417. [Google Scholar] [CrossRef]
- Manara, P.; Zabaniotou, A. Towards sewage sludge-based biofuels via thermochemical conversion—A review. Renew. Sustain. Energy Rev. 2012, 16, 2566–2582. [Google Scholar] [CrossRef]
- Fonts, I.; Gea, G.; Azuara, M.; Ábrego, J.; Arauzo, J. Sewage sludge pyrolysis for liquid production: A review. Renew. Sustain. Energy Rev. 2012, 16, 2781–2805. [Google Scholar] [CrossRef]
- Djandja Oraléou, S.; Wang, Z.C.; Wang, F.; Xu, Y.P.; Duan, P.G. Pyrolysis of municipal sewage sludge for biofuel production: A review. Ind. Eng. Chem. Res. 2020, 59, 16939–16956. [Google Scholar] [CrossRef]
- Chan, Y.H.; Lock, S.S.M.; Chin, B.L.F.; Wong, M.K.; Loy, A.C.M.; Foong, S.Y.; Yiin, C.L.; Lam, S.S. Progress in thermochemical co-processing of biomass and sludge for sustainable energy, value-added products and circular economy. Bioresour. Technol. 2023, 380, 129061. [Google Scholar] [CrossRef]
- Chen, M.; Oshita, K.; Mahzoun, Y.; Takaoka, M.; Fukutani, S.; Shiota, K. Survey of elemental composition in dewatered sludge in Japan. Sci. Total Environ. 2021, 752, 141857. [Google Scholar] [CrossRef] [PubMed]
- Wiśniowska, E.; Kowalczyk, M. Recovery of cellulose, extracellular polymeric substances and microplastics from sewage sludge: A review. Energies 2022, 15, 7744. [Google Scholar] [CrossRef]
- Wang, Z.; Xie, L.; Liu, K.; Wang, J.; Zhu, H.; Song, Q.; Shu, X. Co-pyrolysis of sewage sludge and cotton stalks. Waste Manag. 2019, 89, 430–438. [Google Scholar] [CrossRef] [PubMed]
- Feng, J.; Burke, I.T.; Chen, X.; Stewart, D.I. Assessing metal contamination and speciation in sewage sludge: Implications for soil application and environmental risk. Rev. Environ. Sci. Biotechnol. 2023, 22, 1037–1058. [Google Scholar] [CrossRef]
- Naqvi, S.R.; Tariq, R.; Shahbaz, M.; Naqvi, M.; Aslam, M.; Khan, Z.; Mackey, H.; McKay, G.; Al-Ansari, T. Recent developments on sewage sludge pyrolysis and its kinetics: Resources recovery, thermogravimetric platforms, and innovative prospects. Comput. Chem. Eng. 2021, 150, 107325. [Google Scholar] [CrossRef]
- Gururani, P.; Bhatnagar, P.; Bisht, B.; Jaiswal, K.K.; Kumar, V.; Kumar, S.; Vlaskin, M.S.; Grigorenko, A.V.; Rindin, K.G. Recent advances and viability in sustainable thermochemical conversion of sludge to bio-fuel production. Fuel 2022, 316, 123351. [Google Scholar] [CrossRef]
- Wu, B.; Dai, X.; Chai, X. Critical review on dewatering of sewage sludge: Influential mechanism, conditioning technologies and implications to sludge re-utilizations. Water Res. 2020, 180, 115912. [Google Scholar] [CrossRef]
- Rao, B.; Wang, G.; Xu, P. Recent advances in sludge dewatering and drying technology. Dry. Technol. 2022, 40, 3049–3063. [Google Scholar] [CrossRef]
- Patureau, D.; Mailler, R.; Delgenes, N.; Danel, A.; Vulliet, E.; Deshayes, S.; Moilleron, R.; Rocher, V.; Gasperi, J. Fate of emerging and priority micropollutants during the sewage sludge treatment—Part 2: Mass balances of organic contaminants on sludge treatments are challenging. Waste Manag. 2021, 125, 122–131. [Google Scholar] [CrossRef]
- Yakamercan, E.; Aygün, A. Anaerobic/aerobic cycle effect on di(2-ethylhexyl) phthalate and pentachlorophenol removal from real textile wastewater in sequencing batch biofilm reactor. J. Clean. Prod. 2020, 273, 122975. [Google Scholar] [CrossRef]
- Wasserman, M.; Moretti, A.; Goi, D.; Mainardis, M. Integrating renewable energy in sewage sludge treatment through greenhouse solar drying: A review. Sci. Total Environ. 2025, 965, 178634. [Google Scholar] [CrossRef]
- Tang, J.; Tang, H.; Sima, W.; Wang, H.; Zou, D.; Qiu, B.; Qu, J.; Liang, R.; Dong, J.; Liao, Y.; et al. Heavy metal pollution level and potential ecological risk assessment of sludge landfill. Environ. Prog. Sustain. Energy 2022, 41, e13761. [Google Scholar]
- Qi, C.; Cao, D.; Gao, X.; Jia, S.; Yin, R.; Nghiem, L.D.; Li, G.; Luo, W. Optimising organic composition of feedstock to improve microbial dynamics and symbiosis to advance solid-state anaerobic co-digestion of sewage sludge and organic waste. Appl. Energy 2023, 351, 121857. [Google Scholar] [CrossRef]
- Galey, B.; Gautier, M.; Kim, B.; Blanc, D.; Chatain, V.; Ducom, G.; Dumont, N.; Gourdon, R. Trace metal elements vaporization and phosphorus recovery during sewage sludge thermochemical treatment—A review. J. Hazard. Mater. 2022, 424, 127360. [Google Scholar] [CrossRef] [PubMed]
- Buss, W. Pyrolysis solves the issue of organic contaminants in sewage sludge while retaining carbon: Making the case for sewage sludge treatment via pyrolysis. ACS Sustain. Chem. Eng. 2021, 9, 10048–10053. [Google Scholar] [CrossRef]
- Menezes, L.N.B.; Silveira, E.A.; Mazzoni, J.V.S.; Evaristo, R.B.W.; Rodrigues, J.S.; Lamas, G.C.; Suarez, P.A.Z.; Ghesti, G.F. Alternative valuation pathways for primary, secondary, and tertiary sewage sludge: Biochar and bio-oil production for sustainable energy. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Kulikova, Y.; Babich, O.; Tsybina, A.; Sukhikh, S.; Mokrushin, I.; Noskova, S.; Orlov, N. Feasibility of Thermal Utilization of Primary and Secondary Sludge from a Biological Wastewater Treatment Plant in Kaliningrad City. Energies 2022, 15, 5639. [Google Scholar] [CrossRef]
- Purkayastha, R.; Choudhury, B.J.; Mahanta, P.; Suami, A.; Itaya, Y.; Moholkar, V.S.; Kobayashi, N. Investigations in pyrolysis kinetics of sludges of different origins: Chemical sludge, biological sludge and oily sludge. J. Mater. Cycles Waste Manag. 2024, 26, 2754–2769. [Google Scholar] [CrossRef]
- Hu, M.; Hu, H.; Ye, Z.; Tan, S.; Yin, K.; Chen, Z.; Guo, D.; Rong, H.; Wang, J.; Pan, Z.; et al. A review on turning sewage sludge to value-added energy and materials via thermochemical conversion towards carbon neutrality. J. Clean. Prod. 2022, 379, 134657. [Google Scholar] [CrossRef]
- Chang, H.; Yuan, J.; Zhao, Y.; Bisinella, V.; Damgaard, A.; Christensen, T.H. Carbon footprints of incineration, pyrolysis, and gasification for sewage sludge treatment. Resour. Conserv. Recycl. 2025, 212, 107939. [Google Scholar] [CrossRef]
- An, Q.; Chen, D.; Han, M.; Feng, Y. High-quality hydrochar production through co-hydrothermal treatment of sewage sludge and wheat straw: Novel properties. Biomass Convers. Biorefin. 2025, 15, 141–153. [Google Scholar] [CrossRef]
- Jiang, G.; Xu, D.; Hao, B.; Liu, L.; Wang, S.; Wu, Z. Thermochemical methods for the treatment of municipal sludge. J. Clean. Prod. 2021, 311, 127811. [Google Scholar] [CrossRef]
- O’Kelly, B.C. Sewage sludge to landfill: Some pertinent engineering properties. J. Air Waste Manag. Assoc. 2005, 55, 765–771. [Google Scholar] [CrossRef]
- Bagheri, M.; Bauer, T.; Burgman, L.E.; Wetterlund, E. Fifty years of sewage sludge management research: Mapping researchers’ motivations and concerns. J. Environ. Manag. 2023, 325, 116412. [Google Scholar] [CrossRef]
- Liu, S.; Liu, H.; Wei, G.; Zhu, Y.; Zhao, H.; Shi, H.; Lian, Y. Comparative life cycle assessment of landfill sludge treatment technologies in China. Environ. Sci. Pollut. Res. Int. 2024, 31, 41208–41220. [Google Scholar] [CrossRef]
- Yang, Y.; Luan, J.; Nie, J.; Zhang, X.; Du, J.; Zhao, G.; Dong, L.; Fan, Y.; Cui, H.; Li, Y. Reprocessing and resource utilization of landfill sludge—A case study in a Chinese megacity. Water 2024, 16, 468. [Google Scholar] [CrossRef]
- Yuan, J.; Chadwick, D.; Zhang, D.; Li, G.; Chen, S.; Luo, W.; Du, L.; He, S.; Peng, S. Effects of aeration rate on maturity and gaseous emissions during sewage sludge composting. Waste Manag. 2016, 56, 403–410. [Google Scholar] [CrossRef] [PubMed]
- Han, W.; Chen, S.; Tan, X.; Li, X.; Pan, H.; Ma, P.; Wu, Z.; Xie, Q. Microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge composting. Front. Microbiol. 2022, 13, 1015949. [Google Scholar] [CrossRef]
- Manea, E.E.; Bumbac, C. Sludge composting—Is this a viable solution for wastewater sludge management? Water 2024, 16, 2241. [Google Scholar] [CrossRef]
- Stürmer, B.; Waltner, M. Best available technology for P-recycling from sewage sludge—An overview of sewage sludge composting in Austria. Recycling 2021, 6, 82. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Gabriel, D.; Sánchez, A. The effect of the composting time on the gaseous emissions and the compost stability in a full-scale sewage sludge composting plant. Sci. Total Environ. 2019, 654, 311–323. [Google Scholar] [CrossRef]
- González, D.; Colón, J.; Sánchez, A.; Gabriel, D. A systematic study on the VOCs characterization and odour emissions in a full-scale sewage sludge composting plant. J. Hazard. Mater. 2019, 373, 733–740. [Google Scholar] [CrossRef] [PubMed]
- Nie, E.; Zheng, G.; Gao, D.; Chen, T.; Yang, J.; Wang, Y.; Wang, X. Emission characteristics of VOCs and potential ozone formation from a full-scale sewage sludge composting plant. Sci. Total Environ. 2019, 659, 664–672. [Google Scholar] [CrossRef] [PubMed]
- Neumann, P.; Pesante, S.; Venegas, M.; Vidal, G. Developments in pre-treatment methods to improve anaerobic digestion of sewage sludge. Rev. Environ. Sci. Biotechnol. 2016, 15, 173–211. [Google Scholar] [CrossRef]
- Lafratta, M.; Thorpe, R.B.; Ouki, S.K.; Shana, A.; Germain, E.; Willcocks, M.; Lee, J. Dynamic biogas production from anaerobic digestion of sewage sludge for on-demand electricity generation. Bioresour. Technol. 2020, 310, 123415. [Google Scholar] [CrossRef]
- Khanh Nguyen, V.; Kumar Chaudhary, D.; Hari Dahal, R.; Hoang Trinh, N.; Kim, J.; Chang, S.W.; Hong, Y.; Duc La, D.; Nguyen, X.C.; Hao Ngo, H.; et al. Review on pretreatment techniques to improve anaerobic digestion of sewage sludge. Fuel 2021, 285, 119105. [Google Scholar] [CrossRef]
- Khawer, M.U.B.; Naqvi, S.R.; Ali, I.; Arshad, M.; Juchelková, D.; Anjum, M.W.; Naqvi, M. Anaerobic digestion of sewage sludge for biogas and biohydrogen production: State-of-the-art trends and prospects. Fuel 2022, 329, 125416. [Google Scholar] [CrossRef]
- Di Capua, F.; Spasiano, D.; Giordano, A.; Adani, F.; Fratino, U.; Pirozzi, F.; Esposito, G. High-solid anaerobic digestion of sewage sludge: Challenges and opportunities. Appl. Energy 2020, 278, 115608. [Google Scholar] [CrossRef]
- Wu, Q.; Zou, D.; Zheng, X.; Liu, F.; Li, L.; Xiao, Z. Effects of antibiotics on anaerobic digestion of sewage sludge: Performance of anaerobic digestion and structure of the microbial community. Sci. Total Environ. 2022, 845, 157384. [Google Scholar] [CrossRef]
- Feng, L.; Hu, T.; Ma, H.; Gao, Z.; Liu, Y.; He, S.; Ding, J.; Jiang, J.; Zhao, Q.; Wei, L. Impacts of biochar derived from oil sludge on anaerobic digestion of sewage sludge: Performance and associated mechanisms. J. Clean. Prod. 2023, 425, 138838. [Google Scholar] [CrossRef]
- Zielińska, M.; Cydzik-Kwiatkowska, A. Effect of emerging micropollutants on the anaerobic digestion of sewage sludge. Energies 2024, 17, 1033. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Liu, F.; Zhang, X.; Song, M.; Li, R. Pyrolysis of sewage sludge to biochar: Transformation mechanism of phosphorus. J. Anal. Appl. Pyrolysis 2023, 173, 106065. [Google Scholar] [CrossRef]
- Yuan, Z.; Luo, J.; Ndudi, E.A.; Ma, W.; Zhu, N.; Lou, Z. Systematic understanding of char-volatile evolution and interaction mechanism during sewage sludge pyrolysis through in-situ tracking solid-state reaction and products fate. J. Hazard. Mater. 2022, 432, 128669. [Google Scholar] [CrossRef]
- Moško, J.; Pohořelý, M.; Skoblia, S.; Beňo, Z.; Jeremiáš, M. Detailed analysis of sewage sludge pyrolysis gas: Effect of pyrolysis temperature. Energies 2020, 13, 4087. [Google Scholar] [CrossRef]
- Racek, J.; Sevcik, J.; Chorazy, T.; Kucerik, J.; Hlavinek, P. Biochar—Recovery material from pyrolysis of sewage sludge: A review. Waste Biomass Valorization 2020, 11, 3677–3709. [Google Scholar] [CrossRef]
- Li, X.; Cen, K.; Wang, L.; Jia, D.; Zhu, X.; Chen, D. Co-pyrolysis of cellulose and lignin: Effects of pyrolysis temperature, residence time, and lignin percentage on the properties of biochar using response surface methodology. Ind. Crops Prod. 2024, 219, 119071. [Google Scholar] [CrossRef]
- Das, S.K.; Ghosh, G.K.; Avasthe, R.K.; Sinha, K. Compositional heterogeneity of different biochar: Effect of pyrolysis temperature and feedstocks. J. Environ. Manag. 2021, 278, 111501. [Google Scholar] [CrossRef]
- Guo, S.; Xiong, X.; Che, D.; Liu, H.; Sun, B. Effects of sludge pyrolysis temperature and atmosphere on characteristics of biochar and gaseous products. Korean J. Chem. Eng. 2021, 38, 55–63. [Google Scholar] [CrossRef]
- Trinh, T.N.; Jensen, P.A.; Dam-Johansen, K.; Knudsen, N.O.; Sørensen, H.R. Influence of the pyrolysis temperature on sewage sludge product distribution, bio-oil, and char properties. Energy Fuels 2013, 27, 1419–1427. [Google Scholar] [CrossRef]
- Huang, X.; Cao, J.P.; Shi, P.; Zhao, X.Y.; Feng, X.B.; Zhao, Y.P.; Fan, X.; Wei, X.Y.; Takarada, T. Influences of pyrolysis conditions in the production and chemical composition of the bio-oils from fast pyrolysis of sewage sludge. J. Anal. Appl. Pyrolysis 2014, 110, 353–362. [Google Scholar] [CrossRef]
- Guedes, R.E.; Luna, A.S.; Torres, A.R. Operating parameters for bio-oil production in biomass pyrolysis: A review. J. Anal. Appl. Pyrolysis 2018, 129, 134–149. [Google Scholar] [CrossRef]
- Shen, Q.; Wu, H. Rapid pyrolysis of biochar prepared from slow and fast pyrolysis: The effects of particle residence time on char properties. Proc. Combust. Inst. 2023, 39, 3371–3378. [Google Scholar] [CrossRef]
- Zhai, Y.; Peng, W.; Zeng, G.; Fu, Z.; Lan, Y.; Chen, H.; Wang, C.; Fan, X. Pyrolysis characteristics and kinetics of sewage sludge for different sizes and heating rates. J. Therm. Anal. Calorim. 2012, 107, 1015–1022. [Google Scholar] [CrossRef]
- Shahraki, S.; Miri, M.; Motahari-Nezhad, M. Experimental analysis of pyrolysis of sewage sludge. Energy Sources Part A Recovery Util. Environ. Eff. 2018, 40, 2037–2043. [Google Scholar] [CrossRef]
- Kan, T.; Strezov, V.; Evans, T. Effect of the heating rate on the thermochemical behavior and biofuel properties of sewage sludge pyrolysis. Energy Fuels 2016, 30, 1564–1570. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhai, Y.; Li, S.; Liu, X.; Wang, B.; Liu, X.; Fan, Y.; Shi, H.; Li, C.; Zhu, Y. Thermal treatment of sewage sludge: A comparative review of the conversion principle, recovery methods and bioavailability-predicting of phosphorus. Chemosphere 2022, 291, 133053. [Google Scholar] [CrossRef]
- Sajid, M.; Raheem, A.; Ullah, N.; Asim, M.; Saif Ur Rehman, M.; Ali, N. Gasification of municipal solid waste: Progress, challenges, and prospects. Renew. Sustain. Energy Rev. 2022, 168, 112815. [Google Scholar] [CrossRef]
- Ofori-Boateng, C.; Service, S.L.O. Sustainability of Thermochemical Waste Conversion Technologies; Springer International Publisher: Cham, Switzerland, 2024. [Google Scholar]
- Siwal, S.S.; Sheoran, K.; Saini, A.K.; Vo, D.V.N.; Wang, Q.; Thakur, V.K. Advanced thermochemical conversion technologies used for energy generation: Advancement and prospects. Fuel 2022, 321, 124107. [Google Scholar] [CrossRef]
- Kasiński, S.; Dębowski, M. Municipal solid waste as a renewable energy source: Advances in thermochemical conversion technologies and environmental impacts. Energies 2024, 17, 4704. [Google Scholar] [CrossRef]
- Basar, I.A.; Liu, H.; Eskicioglu, C. Effects of municipal sludge composition on hydrothermal liquefaction products: Aqueous phase characterization and biodegradability assessment. Bioresour. Technol. 2024, 400, 130671. [Google Scholar] [CrossRef]
- Nandhini, R.; Berslin, D.; Sivaprakash, B.; Rajamohan, N.; Vo, D.V.N. Thermochemical conversion of municipal solid waste into energy and hydrogen: A review. Environ. Chem. Lett. 2022, 20, 1645–1669. [Google Scholar] [CrossRef] [PubMed]
- Pahnila, M.; Koskela, A.; Sulasalmi, P.; Fabritius, T. A review of pyrolysis technologies and the effect of process parameters on biocarbon properties. Energies 2023, 16, 6936. [Google Scholar] [CrossRef]
- Li, J.; Xu, K.; Yao, X.; Liu, J. Investigation of biomass slow pyrolysis mechanisms based on the generation trends in pyrolysis products. Process Saf. Environ. Prot. 2024, 183, 327–338. [Google Scholar] [CrossRef]
- Mohamed, B.A.; Li, L.Y. Biofuel production by co-pyrolysis of sewage sludge and other materials: A review. Environ. Chem. Lett. 2023, 21, 153–182. [Google Scholar] [CrossRef]
- Yang, Y.; Luo, X.; Zhang, J.; Ma, X.; Sun, P.; Zhao, L. Sewage sludge–coconut fiber co-pyrolysis biochar: Mechanisms underlying synergistic heavy metal stabilization and ciprofloxacin adsorption. J. Clean. Prod. 2022, 375, 134149. [Google Scholar] [CrossRef]
- Awasthi, M.K.; Ganeshan, P.; Gohil, N.; Kumar, V.; Singh, V.; Rajendran, K.; Harirchi, S.; Solanki, M.K.; Sindhu, R.; Binod, P.; et al. Advanced approaches for resource recovery from wastewater and activated sludge: A review. Bioresour. Technol. 2023, 384, 129250. [Google Scholar] [CrossRef]
- Khan, R.; Shukla, S.; Kumar, M.; Zuorro, A.; Pandey, A. Sewage sludge-derived biochar and its potential for sustainable environment in circular economy: Advantages and challenges. Chem. Eng. J. 2023, 471, 144495. [Google Scholar] [CrossRef]
- del Pozo, C.; Rego, F.; Puy, N.; Bartrolí, J.; Fàbregas, E.; Yang, Y.; Bridgwater, A.V. The effect of reactor scale on biochars and pyrolysis liquids from slow pyrolysis of coffee silverskin, grape pomace and olive mill waste, in auger reactors. Waste Manag. 2022, 148, 106–116. [Google Scholar] [CrossRef]
- Vieira, F.R.; Romero Luna, C.M.; Arce, G.L.A.F.; Ávila, I. Optimization of slow pyrolysis process parameters using a fixed bed reactor for biochar yield from rice husk. Biomass Bioenergy 2020, 132, 105412. [Google Scholar] [CrossRef]
- Tabakaev, R.; Astafev, A.; Shanenkova, Y.; Dubinin, Y.; Yazykov, N.; Yakovlev, V. Thermal effects investigation during biomass slow pyrolysis in a fixed bed reactor. Biomass Bioenergy 2019, 126, 26–33. [Google Scholar] [CrossRef]
- Embaye, T.M.; Zhou, A.; Li, R.; Ahmed, M.B.; Ruan, R.; Wu, D.; Deng, N.; Wang, X. Assessment of heavy metals distribution and environmental risks in biochar from co-pyrolysis of sewage sludge and mixed municipal waste. Process Saf. Environ. Prot. 2025, 193, 1332–1342. [Google Scholar] [CrossRef]
- Ruiz-Gómez, N.; Quispe, V.; Ábrego, J.; Atienza-Martínez, M.; Murillo, M.B.; Gea, G. Co-pyrolysis of sewage sludge and manure. Waste Manag. 2017, 59, 211–221. [Google Scholar] [CrossRef]
- Wang, X.; Wei-Chung Chang, V.; Li, Z.; Song, Y.; Li, C.; Wang, Y. Co-pyrolysis of sewage sludge and food waste digestate to synergistically improve biochar characteristics and heavy metals immobilization. Waste Manag. 2022, 141, 231–239. [Google Scholar] [CrossRef]
- Yin, Q.; Liu, M.; Ren, H. Biochar produced from the co-pyrolysis of sewage sludge and walnut shell for ammonium and phosphate adsorption from water. J. Environ. Manag. 2019, 249, 109410. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Lyu, Z.; Zheng, Y.; Gao, H.; Wang, J. Comprehensive analysis of bio-syngas production via the co-pyrolysis of sewage sludge and cotton stalk: Products, optimal conditions, kinetics, and synergistic effects. J. Anal. Appl. Pyrolysis 2025, 186, 106980. [Google Scholar] [CrossRef]
- Duan, X.Y.; Cao, Y.; Liu, T.Z.; Li, L.; Wang, B.; Wang, X.D. Nutrient stability and sorption of sewage sludge biochar prepared from co-pyrolysis of sewage sludge and stalks/mineral materials. Environ. Pollut. Bioavailab. 2020, 32, 12–18. [Google Scholar] [CrossRef]
- Zhang, J.; Jin, J.; Wang, M.; Naidu, R.; Liu, Y.; Man, Y.B.; Liang, X.; Wong, M.H.; Christie, P.; Zhang, Y.; et al. Co-pyrolysis of sewage sludge and rice husk/bamboo sawdust for biochar with high aromaticity and low metal mobility. Environ. Res. 2020, 191, 110034. [Google Scholar] [CrossRef]
- Ma, M.; Xu, D.; Gong, X.; Diao, Y.; Feng, P.; Kapusta, K. Municipal sewage sludge product recirculation catalytic pyrolysis mechanism from a kinetic perspective. Renew. Energy 2023, 215, 118955. [Google Scholar] [CrossRef]
- Qiu, Z.; Zhai, Y.; Li, S.; Liu, X.; Liu, X.; Wang, B.; Liu, Y.; Li, C.; Hu, Y. Catalytic co-pyrolysis of sewage sludge and rice husk over biochar catalyst: Bio-oil upgrading and catalytic mechanism. Waste Manag. 2020, 114, 225–233. [Google Scholar] [CrossRef]
- Shrestha, P.; Chun, D.D.; Kang, K.; Simson, A.E.; Klinghoffer, N.B. Role of Metals in Biochar Production and Utilization in Catalytic Applications: A Review. Waste Biomass Valorization 2022, 13, 797–822. [Google Scholar] [CrossRef]
- Liu, Z.; Li, P.; Chang, C.; Wang, X.; Song, J.; Fang, S.; Pang, S. Influence of metal chloride modified biochar on products characteristics from biomass catalytic pyrolysis. Energy 2022, 250, 123776. [Google Scholar] [CrossRef]
- Shao, J.; Yan, R.; Chen, H.; Yang, H.; Lee, D.H. Catalytic effect of metal oxides on pyrolysis of sewage sludge. Fuel Process. Technol. 2010, 91, 1113–1118. [Google Scholar] [CrossRef]
- Cai, R.; Pei, X.; Pan, H.; Wan, K.; Chen, H.; Zhang, Z.; Zhang, Y. Biomass Catalytic Pyrolysis over Zeolite Catalysts with an Emphasis on Porosity and Acidity: A State-of-the-Art Review. Energy Fuels 2020, 34, 11771–11790. [Google Scholar] [CrossRef]
- Csutoras, B.; Miskolczi, N. Thermo-catalytic pyrolysis of sewage sludge and techno-economic analysis: The effect of synthetic zeolites and natural sourced catalysts. Bioresour. Technol. 2024, 400, 130676. [Google Scholar] [CrossRef]
- Valizadeh, S.; Valizadeh, B.; Kang, B.S.; Shim, H.; Park, Y.K. Enhanced generation of aromatic-enriched bio-oil from sewage sludge pyrolysis using zeolite-based catalysts under H2-rich conditions. Energy Convers. Manag. 2024, 311, 118530. [Google Scholar] [CrossRef]
- Czerski, G.; Śpiewak, K.; Makowska, D.; Grycova, B. Study on steam co-gasification of waste tire char and sewage sludge. Energies 2023, 16, 2156. [Google Scholar] [CrossRef]
- Bayat, D.; Sharifian, M.; Khajehpour, H. Comprehensive 4E (energy, exergy, exergoeconomic, and exergoenvironmental) analysis and optimization of wastewater sludge gasification: A case study in a resource-constrained area. Energy 2025, 317, 134633. [Google Scholar] [CrossRef]
- Li, H.; Li, M.; Wang, H.; Tan, M.; Zhang, G.; Huang, Z.; Yuan, X. A review on migration and transformation of nitrogen during sewage sludge thermochemical treatment: Focusing on pyrolysis, gasification and combustion. Fuel Process. Technol. 2023, 240, 107562. [Google Scholar] [CrossRef]
- Quan, L.M.; Kamyab, H.; Yuzir, A.; Ashokkumar, V.; Hosseini, S.E.; Balasubramanian, B.; Kirpichnikova, I. Review of the application of gasification and combustion technology and waste-to-energy technologies in sewage sludge treatment. Fuel 2022, 316, 123199. [Google Scholar] [CrossRef]
- Dai, F.; Zhang, S.; Luo, Y.; Wang, K.; Liu, Y.; Ji, X. Recent progress on hydrogen-rich syngas production from coal gasification. Processes 2023, 11, 1765. [Google Scholar] [CrossRef]
- Tremel, A.; Becherer, D.; Fendt, S.; Gaderer, M.; Spliethoff, H. Performance of entrained flow and fluidised bed biomass gasifiers on different scales. Energy Convers. Manag. 2013, 69, 95–106. [Google Scholar] [CrossRef]
- Kuttin, K.W.; Ding, L.; Yu, G. Numerical and experimental assessment of parametric effect on steam-carbon dioxide co-gasification of sewage sludge and coal in an updraft reactor. Int. J. Hydrogen Energy 2024, 91, 204–218. [Google Scholar] [CrossRef]
- Emami Taba, L.; Irfan, M.F.; Wan Daud, W.A.M.; Chakrabarti, M.H. The effect of temperature on various parameters in coal, biomass and CO-gasification: A review. Renew. Sustain. Energy Rev. 2012, 16, 5584–5596. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, M.; Wang, H.; Kong, J.; Xie, W.; Wang, J.; Chang, L.; Bao, W. Effect of temperature and gasification gas from char on the reactions of volatiles generated from rapid pyrolysis of a low rank coal. Fuel Process. Technol. 2021, 212, 106601. [Google Scholar] [CrossRef]
- Galiwango, E.; Butler, J.; Lotfi, S. A review of catalyst integration in hydrothermal gasification. Fuels 2024, 5, 375–393. [Google Scholar] [CrossRef]
- Chen, Y.; Yi, L.; Li, S.; Yin, J.; Jin, H. Catalytic gasification of sewage sludge in near and supercritical water with different catalysts. Chem. Eng. J. 2020, 388, 124292. [Google Scholar] [CrossRef]
- Kang, B.S.; Farooq, A.; Valizadeh, B.; Lee, D.; Seo, M.W.; Jung, S.C.; Hussain, M.; Kim, Y.M.; Khan, M.A.; Jeon, B.H.; et al. Valorization of sewage sludge via air/steam gasification using activated carbon and biochar as catalysts. Int. J. Hydrogen Energy 2024, 54, 284–293. [Google Scholar] [CrossRef]
- Alper, D.; Babayiğit, E.; Zengin, G.E.; Okutan, H.C.; Sarıoğlan, A. The catalytic influence of low-cost natural minerals on sewage sludge gasification for hydrogen production. Int. J. Hydrogen Energy 2025, in press. [CrossRef]
- Shahbaz, M.; Al-Ansari, T.; Inayat, M.; Sulaiman, S.A.; Parthasarathy, P.; McKay, G. A critical review on the influence of process parameters in catalytic co-gasification: Current performance and challenges for a future prospectus. Renew. Sustain. Energy Rev. 2020, 134, 110382. [Google Scholar] [CrossRef]
- Gabbrielli, R.; Frigo, S.; Bressan, L. Oxy-steam co-gasification of sewage sludge and woody biomass for biomethane production: An experimental and numerical approach. E3S Web Conf. 2021, 238, 01006. [Google Scholar] [CrossRef]
- Yan, J.; Yan, Y.; Lai, J.; Jia, D.; Jiao, Y.; Zhao, X.; Yang, L. Co-gasification of municipal sewage sludge and cotton stalk enhanced by metal-enriched texture dyeing sludge additives for syngas production. Fuel 2023, 341, 127669. [Google Scholar] [CrossRef]
- Zhou, A.; Ma, L. Thermogravimetric analysis on co-gasification characteristics of sludge and straw under CO2 atmosphere. Processes 2023, 11, 1402. [Google Scholar] [CrossRef]
- Rey, J.R.C.; Longo, A.; Rijo, B.; Pedrero, C.M.; Tarelho, L.A.C.; Brito, P.S.D.; Nobre, C. A review of cleaning technologies for biomass-derived syngas. Fuel 2024, 377, 132776. [Google Scholar] [CrossRef]
- Chen, D.; Yin, L.; Wang, H.; He, P. Pyrolysis technologies for municipal solid waste: A review. Waste Manag. 2014, 34, 2466–2486. [Google Scholar] [CrossRef]
Category | Parameter | Range | References |
---|---|---|---|
Ultimate Analysis | Carbon (C) | 23.1–58.5 wt% | [11,19,20,21] |
Hydrogen (H) | 3.2–7.18 wt% | [11,19,20,21,22] | |
Nitrogen (N) | 0.53–9.9 wt% | [11,19,20,21] | |
Sulfur (S) | 0.09–2.7 wt% | [11,20,21] | |
Oxygen (O) | 13.64–33.74 wt% | [11,19,20,21] | |
Proximate Analysis | Moisture Content | 1.05–96.94 wt% | [11,19,21] |
Ash Content | 16–64.82 wt% | [11,19,20,21] | |
Volatile Matter | 29.88–66.8 wt% | [11,19,21] | |
Fixed Carbon | 0.8–19.7 wt% | [11,19,20,21] | |
Grease and Fats | 5–35 wt% | [20] | |
Chemical Composition | Cellulose | 7–35 wt% | [20,23] |
Lignin | 11.5–20.3 wt% | [20] | |
Protein | 15–41 wt% | [20,24] | |
Phosphorus (P) | 0.5–4.14 wt% | [20,21] | |
Silica (Si) | 10–20 wt% | [20,21] | |
Potassium (K) | 0.24–3.0 wt% | [20,21] | |
Other Properties | Alkalinity | 500–1500 mg/L | [11] |
Organic Acids | 200–2000 mg/L | [11] | |
pH | 5.0–8.0 wt% | [11] | |
Higher Heating Value (HHV) | 9–29 MJ/kg | [11,20,21] | |
Heavy metals | Cd | 1.0–40 | [25] |
Cr | 30.2–542 | [25] | |
Cu | 239.6–1180 | [25] | |
Ni | 19.4–288 | [25] | |
Pb | 18.8–470 | [25] | |
Zn | 432.1–2088 | [25] |
Parameter | Primary Sludge | Secondary Sludge | References |
---|---|---|---|
Carbon (%) | 32.70–54.58 | 36.67–56.66 | [37,38] |
Hydrogen (%) | 2.83–8.20 | 2.27–8.93 | [37,38] |
Oxygen (%) | 10.34–25.30 | 9.28–20.74 | [37,38] |
Nitrogen (%) | 3.85–4.22 | 6.43–10.22 | [37,38] |
Sulfur (%) | 0.32 | 0.28 | [37,38] |
O/C | 0.22–0.35 | 0.19–0.27 | [37,38] |
H/C | 0.94–1.80 | 0.74–1.89 | [37,38] |
Ash Content (%) | 26.93–59.96 | 31.30–45.07 | [37,38] |
Pyrolysis Type | Residence Time | Heating Rate | Temperature (°C) | Objectives | References |
---|---|---|---|---|---|
Fast Pyrolysis | Seconds | High heating rate | 500–700 | Maximizing bio-oil production, suitable for fine particles. | [10,27,81,83] |
Slow Pyrolysis | Minutes to hours | Low heating rate | 400–500 | Produces high-quality biochar while reducing gas and bio-oil yield. | [27,77,81,85] |
Flash Pyrolysis | Less than 1 s | Extremely high heating rate (up to 2500 °C/s) | ~1000 | Produces bio-oil with up to 75% yield, rapid volatilization, and improved efficiency. | [27,84] |
Co-Pyrolysis | Depends on feedstocks | Medium heating rate | Depends on feedstocks | Optimizes biochar and bio-oil quality through synergistic effects, enhancing resource efficiency. | [11,24,86,87] |
Reactor Type | Characteristics | Advantages | Limitations | Applications | References |
---|---|---|---|---|---|
Fluidized Bed Reactor | Solid particles suspended in a gas flow form a fluidized state, enabling efficient heat and mass transfer. | Uniform temperature distribution, stable operation, capable of processing various materials. | Particle separation and erosion at high gas velocities; high maintenance costs. | Suitable for processing fine sewage sludge and highly reactive materials in fast pyrolysis. | [77,84] |
Circulating Fluidized Bed Reactor | Continuous operation enhances contact between gas and solid particles, improving heat transfer efficiency. | High efficiency, suitable for large-scale operations. | High operational costs and potential erosion and intrusion issues. | Large-scale processing of sewage sludge and highly reactive biomass materials. | [77,84] |
Vacuum Pyrolysis Reactor | Operates under vacuum or inert gas to reduce reaction temperature and byproduct formation. | Minimizes oxidation during pyrolysis, producing high-quality bio-oil. | Higher system costs and lower processing efficiency; suitable for lab or small-scale use. | Production of high-quality bio-oil for specialized applications. | [77] |
Ablative Pyrolysis Reactor | High-temperature pyrolysis: material rotates to contact a heated surface for rapid heating. | High heating rate, high bio-oil yield, reduced byproducts. | High energy consumption, strict particle size requirements, and rapid equipment wear. | Processing high-value sewage sludge with rapid pyrolysis. | [77] |
Rotating Cone Reactor | Rotational design allows material to contact the heated surface directly, ensuring uniform heating. | No inert gas required, energy-efficient, uniform heating. | Strict particle size requirements, limited processing capacity, and complex design. | High-efficiency rapid pyrolysis and small-scale bio-oil production. | [77,84] |
Screw Reactor | Uses a screw to feed and mix particles, controlling residence time and ensuring even heating. | Simple operation, suitable for larger particles; temperature and residence time controllable. | Risk of clogging, potential for wear under high temperatures. | Slow pyrolysis for biochar production and processing mixed feedstocks. | [84,90] |
Fixed-Bed Reactor | Cylindrical reactor. N2 gas was introduced to establish an inert environment. The tubular condenser collects the bio-oil. | Simple structure and convenient operation, highly suitable for the slow pyrolysis of biomass. | low heat conduction efficiency, difficult to achieve uniform heating, etc. Capacity limited. | Slow pyrolysis of biomass for the preparation of biochar and other thermochemical conversion processes. | [91,92] |
Co-Pyrolysis Material | Product | Product Results | Reasons for Results | References |
---|---|---|---|---|
Coconut Fiber | Biochar | Significant heavy metal stabilization and improved antibiotic adsorption. | Crystal structure formation, functional group complexation, electrostatic interactions, and pore filling | [87] |
Manure | Biochar, Gas, Liquid | Higher product yield with slightly improved organic matter distribution. | Differences in organic matter composition lead to synergistic or antagonistic effects | [94] |
Kitchen Waste | Biochar | Increased biochar aromaticity, higher pH, and stable heavy metal transformation. | High mineral content in food waste promotes the conversion of heavy metals into stable forms. | [95] |
Walnut Shell | Biochar | Improved porous structure and enhanced ammonium and phosphate adsorption. | Addition enhances biochar porosity and improves adsorption through metal oxides and functional groups. | [96] |
Cotton Stalk | Biochar | Increased carbon content and reduced heavy metal mobility. | Improves the structure and composition of biochar, reducing heavy metal bioavailability. | [24,97] |
Stalks and Minerals | Biochar | Enhanced nutrient stability and improved nitrate and ammonium adsorption. | Synergistically improve biochar structure and nutrient fixation. | [98] |
Rice Husk and Bamboo Sawdust | Biochar | Significantly increased aromaticity and reduced metal mobility. | Promote biochar carbonization and aromaticity while reducing metal bioavailability. | [99] |
Reactor Type | Principle | Advantages | Disadvantages | References |
---|---|---|---|---|
Downward Flow Gasification | Fuel and gas move downward together. | Low tar, clean gas, efficient, simple, small-scale use. | Strict fuel requirements, small-scale only. | [18,112] |
Upward Flow Gasification | Fuel moves upward against gas flow. | High efficiency, good for high temperatures, and easy to maintain. | High tar, poor gas quality, needs extra cleaning. | [18,112] |
Bubbling Fluidized Bed (BFB) | Gas mixes with solid fuel in a bubbling state. | Good heat transfer, uniform temperature, stable process. | Limited capacity, fluidization issues. | [18,80,112] |
Circulating Fluidized Bed (CFB) | Fuel and gas circulate at high velocity. | High capacity, suitable for large-scale use, efficient. | Complex, high cost, precise control needed. | [18,80,112] |
Entrained bed gasifier | High-temperature and pressure gasification: fine particles are fed into the reactor, and oxygen or steam is used as gasifying agents. | High syngas quality with low tar content; near-complete carbon conversion; compact design minimizes heat losses. | Requires fine pulverization; high operational and capital costs. | [111,113] |
Dual-Fluidized Bed | Combines gasification and combustion zones in separate fluidized beds with material circulation. | High hydrogen yield; flexibility for feedstock blending; recycling enhanced energy efficiency. | Complex design and operation; high maintenance and operational cost; limited to specific feedstocks. | [111] |
Parameter | Definition | Impact | References |
---|---|---|---|
Equivalent Ratio (ER) | The actual air quality entering the gasifier divided by the air quality required for the complete combustion of sludge | Affects syngas composition, tar content, and final product conversion rate | [27,114] |
Steam-to-Sludge Ratio (S/SS) | The ratio of steam to the amount of sewage sludge introduced into the gasifier | Improves gasification efficiency, increases H2 and CO production, and reduces tar and char | [114] |
Temperature | Directly affects gas yield, calorific value, cold gas efficiency, tar, and char yield | Promotes endothermic reactions, increases H2 and CO production, and reduces tar and residue | [115,116] |
Sewage Sludge Feedstock Parameters | The effects of sludge moisture content and particle size on the gasification process | High moisture increases energy consumption; small particle size enhances reaction rate and heat transfer | [11,108,111] |
Catalyst Addition | Catalysts lower reaction temperature, enhance reaction rate, and improve gas yield | Increases H2 production, reduces tar content, and enhances gasification efficiency | [117,118,119] |
Factor | Challenges | Optimization Strategies | References |
---|---|---|---|
Capital and Operational Costs | High equipment investment, high energy consumption, complex design, expensive catalysts | Develop low-cost catalysts, improve process parameters, and adopt modular designs | [11] |
Process Complexity and Pretreatment Needs | High moisture and ash content require costly drying or pretreatment | Co-processing with biomass, introducing energy recovery systems, and using integrated processes | [126] |
Energy Recovery Efficiency | Gasification offers high efficiency but requires a larger investment; pyrolysis is more flexible but slightly less efficient | Optimize gasification parameters (ER, temperature, steam ratio), and adopt hybrid systems (e.g., pyrolysis + gasification) | [41] |
Byproduct Management and Environmental Impact | Production of tar, NOx, and other pollutants increases purification costs | Use catalysts to reduce tar and NOx formation, and design byproduct recovery systems | [78] |
Commercialization and Scale-up | Lack of large-scale investments, market uncertainties, insufficient policy support | Conduct comprehensive techno-economic assessments, implement demonstration projects, and strengthen policy integration | [17] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Y.; Chen, Z. Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification. Water 2025, 17, 1833. https://doi.org/10.3390/w17121833
Hu Y, Chen Z. Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification. Water. 2025; 17(12):1833. https://doi.org/10.3390/w17121833
Chicago/Turabian StyleHu, Yibo, and Ziwei Chen. 2025. "Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification" Water 17, no. 12: 1833. https://doi.org/10.3390/w17121833
APA StyleHu, Y., & Chen, Z. (2025). Thermochemical Conversion of Sewage Sludge: Progress in Pyrolysis and Gasification. Water, 17(12), 1833. https://doi.org/10.3390/w17121833