Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery
Abstract
1. Introduction
1.1. Heating Sector in the World, EU, and Poland in the Light of Energy Transition
1.2. The Potential of Waste Heat in Poland and the EU
1.3. Utilizing Mobile Thermal Energy Storage for Improved Waste Heat Recovery
- Heat acquisition; M-TES charging;
- Transportation to the recipient;
- Heat utilization; M-TES discharging;
- Return of the M-TES to the heat source for recharging.
2. State-of-the-Art Analysis
2.1. Thermal Energy Storage Technologies in the Mobile Applications
2.2. Bibliometric Analysis
2.3. M-TES—Sensible Thermal Energy Storage
2.4. M-TES—Thermochemical Reactions
2.5. M-TES—Latent Thermal Energy Storage
3. Discussion
- There is a limited number of commercially available solutions. M-TES is an emerging technology. Only a few commercial offerings have been identified, yet the technology’s potential and opportunities for improvement and market uptake are clear. Grant support and the development of appropriate regulations could further stimulate the M-TES market.
- Thermal energy storage density is limited. Given the constraints on mass and volume in M-TES applications, there is a need to maximize the amount of heat stored per unit mass and volume.
- Heat-exchange rate is limited. To enhance system utilization, charging and discharging rates must be maximized. For PCM-based systems, this calls for improved PCM thermal conductivity or more efficient heat exchanger designs.
- There are important technical transport limitations. There is a lack of standardized transport solutions and effective distance is severely constrained. The development of lighter tank structures and better thermal insulation to reduce weight, size, and cost is required.
- There are important scalability and integration constraints. Solutions capable of flexible scaling to match the needs of both heat suppliers and end users are missing. Work is needed on turnkey systems that can be rapidly deployed in district heating networks, in individual buildings, and with various heat sources (waste heat, renewables).
- Economic aspects and business models need to be better analyzed. Data on capital and operating costs are scarce, and comprehensive profitability analyses are lacking. Pilot projects exploring diverse business and operational models, as well as leveraging low-cost waste heat, are necessary.
- Life-cycle assessments (LCA) for complete systems and individual components (especially PCMs), as well as emissions data, remain limited. Comparative studies of different storage media and transport methods are needed.
- Due to the novelty of the technology, unified regulations and procedures for M-TES approval and road transport are absent. The development of industry standards and streamlined certification pathways is essential.
- Advanced digital tools and models for scheduling and logistics optimization are lacking. The application of digital twins and predictive algorithms could greatly enhance system management.
- The awareness of M-TES benefits among potential users is low. Outreach campaigns, informational programs, and training for district heating operators will be critical to foster adoption.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
BTX | benzene, toluene, xylene |
CFD | computational fluid dynamics |
EED | Energy Efficiency Directive |
EU | European Union |
HTF | heat transfer fluid |
HTHP | high-temperature heat pump |
IWH | industrial waste heat |
M-TES | mobile thermal energy storage |
ORC | Organic Rankine Cycle |
PCM | phase change material |
RE | renewable energy |
RED | Renewable Energy Directive |
RNG | renewable natural gas |
TEG | thermoelectric generator |
TES | thermal energy storage |
WHP | waste heat to power |
References
- IEA Renewable Heat. Available online: https://www.iea.org/reports/renewables-2022/renewable-heat (accessed on 7 July 2025).
- IEA Heating. Available online: https://www.iea.org/energy-system/buildings/heating (accessed on 7 July 2025).
- Eurostat Electricity and Heat Statistics. Available online: https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Electricity_and_heat_statistics#Derived_heat_production (accessed on 7 July 2025).
- Zużycie Paliw i Nośników Energii w 2023 r.; Warszawa, 2024. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/zuzycie-paliw-i-nosnikow-energii-w-2023-roku,6,18.html (accessed on 7 July 2025).
- Szczerbowski, R. Stan obecny i przyszłość ciepłownictwa w Polsce. Zesz. Nauk. Inst. Gospod. Surowcami Miner. Energią Pol. Akad. Nauk 2024, 112, 53–62. Available online: https://bibliotekanauki.pl/articles/59112299 (accessed on 7 July 2025).
- Energy Efficiency Targets. Available online: https://energy.ec.europa.eu/topics/energy-efficiency/energy-efficiency-targets-directive-and-rules/energy-efficiency-targets_en (accessed on 24 March 2025).
- Directive (EU) 2023/2413 of the European Parliament and of the Council of 18 October 2023 Amending Directive (EU) 2018/2001, Regulation (EU) 2018/1999 and Directive 98/70/EC as Regards the Promotion of Energy from Renewable Sources, and Repealing Council. Available online: https://eur-lex.europa.eu/eli/dir/2023/2413/oj/eng (accessed on 7 July 2025).
- Energetyka Cieplna w Liczbach; Warszawa, 2025. Available online: https://www.ure.gov.pl/pl/cieplo/energetyka-cieplna-w-l/12424,2023.html (accessed on 7 July 2025).
- Tobolczyk, G. Szanse i Wyzwania Ciepłownictwa Systemowego w Polsce. Available online: https://www.gov.pl/attachment/cd27e4af-f258-4e5a-a842-40c17d3f9aa6 (accessed on 28 March 2025).
- Luberti, M.; Gowans, R.; Finn, P.; Santori, G. An estimate of the ultralow waste heat available in the European Union. Energy 2022, 238, 121967. [Google Scholar] [CrossRef]
- Brueckner, S.; Miró, L.; Cabeza, L.F.; Pehnt, M.; Laevemann, E. Methods to estimate the industrial waste heat potential of regions—A categorization and literature review. Renew. Sustain. Energy Rev. 2014, 38, 164–171. [Google Scholar] [CrossRef]
- Brueckner, S.; Arbter, R.; Pehnt, M.; Laevemann, E. Industrial waste heat potential in Germany—A bottom-up analysis. Energy Effic. 2017, 10, 513–525. [Google Scholar] [CrossRef]
- Attar, A.; Albatati, F. Analytical and experimental investigation of thermoelectric generators for low-grade waste heat recovery from air conditioning units. Int. Commun. Heat Mass Transf. 2025, 165, 109083. [Google Scholar] [CrossRef]
- Papapetrou, M.; Kosmadakis, G.; Cipollina, A.; La Commare, U.; Micale, G. Industrial waste heat: Estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng. 2018, 138, 207–216. [Google Scholar] [CrossRef]
- Kosmadakis, G. Industrial waste heat potential and heat exploitation solutions. Appl. Therm. Eng. 2024, 246, 122957. [Google Scholar] [CrossRef]
- Ja’fari, M.; Khan, M.I.; Al-Ghamdi, S.G.; Jaworski, A.J.; Asfand, F. Waste heat recovery in iron and steel industry using organic Rankine cycles. Chem. Eng. J. 2023, 477, 146925. [Google Scholar] [CrossRef]
- Panayiotou, G.P.; Bianchi, G.; Georgiou, G.; Aresti, L.; Argyrou, M.; Agathokleous, R.; Tsamos, K.M.; Tassou, S.A.; Florides, G.; Kalogirou, S.; et al. Preliminary assessment of waste heat potential in major European industries. Energy Procedia 2017, 123, 335–345. [Google Scholar] [CrossRef]
- Rahman, M.M.; Bandhan, L.R.; Asma-Ul-Husna; Monir, L.; Das, B.K. Energy, exergy, sustainability, and economic analysis of a waste heat recovery for a heavy fuel oil-based power plant using Kalina cycle integrated with Rankine cycle. Next Res. 2025, 2, 100398. [Google Scholar] [CrossRef]
- Miró, L.; Gasia, J.; Cabeza, L.F. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review. Appl. Energy 2016, 179, 284–301. [Google Scholar] [CrossRef]
- Anandan, S.S.; Sundarababu, J. A comprehensive review on mobilized thermal energy storage. Energy Sources Part A Recover. Util. Environ. Eff. 2025, 47, 9076–9099. [Google Scholar] [CrossRef]
- Kuta, M. Mobilized Thermal Energy Storage for Waste Heat Recovery and Utilization-Discussion on Crucial Technology Aspects. Energies 2022, 15, 8713. [Google Scholar] [CrossRef]
- Nemś, M.; Nemś, A. Mobilne akumulatory ciepła. Instal 2016, 4, 18–24. [Google Scholar]
- Jouhara, H.; Żabnieńska-Góra, A.; Khordehgah, N.; Ahmad, D.; Lipinski, T. Latent thermal energy storage technologies and applications: A review. Int. J. Thermofluids 2020, 5–6, 100039. [Google Scholar] [CrossRef]
- Sadeghi, G. Energy storage on demand: Thermal energy storage development, materials, design, and integration challenges. Energy Storage Mater. 2022, 46, 192–222. [Google Scholar] [CrossRef]
- Parrado, C.; Marzo, A.; Fuentealba, E.; Fernández, A.G. 2050 LCOE improvement using new molten salts for thermal energy storage in CSP plants. Renew. Sustain. Energy Rev. 2016, 57, 505–514. [Google Scholar] [CrossRef]
- Sharma, A.; Tyagi, V.V.; Chen, C.R.; Buddhi, D. Review on thermal energy storage with phase change materials and applications. Renew. Sustain. Energy Rev. 2009, 13, 318–345. [Google Scholar] [CrossRef]
- Chandel, S.S.; Agarwal, T. Review of current state of research on energy storage, toxicity, health hazards and commercialization of phase changing materials. Renew. Sustain. Energy Rev. 2017, 67, 581–596. [Google Scholar] [CrossRef]
- Vasu, A.; Hagos, F.Y.; Noor, M.M.; Mamat, R.; Azmi, W.H.; Abdullah, A.A.; Ibrahim, T.K. Corrosion effect of phase change materials in solar thermal energy storage application. Renew. Sustain. Energy Rev. 2017, 76, 19–33. [Google Scholar] [CrossRef]
- Purohit, B.K.; Sistla, V.S. Inorganic salt hydrate for thermal energy storage application: A review. Energy Storage 2021, 3, 1–26. [Google Scholar] [CrossRef]
- Pardo, P.; Deydier, A.; Anxionnaz-Minvielle, Z.; Rougé, S.; Cabassud, M.; Cognet, P. A review on high temperature thermochemical heat energy storage. Renew. Sustain. Energy Rev. 2014, 32, 591–610. [Google Scholar] [CrossRef]
- Salgado-Pizarro, R.; Calderón, A.; Svobodova-Sedlackova, A.; Fernández, A.I.; Barreneche, C. The relevance of thermochemical energy storage in the last two decades: The analysis of research evolution. J. Energy Storage 2022, 51, 104377. [Google Scholar] [CrossRef]
- Sarbu, I.; Sebarchievici, C. A comprehensive review of thermal energy storage. Sustainability 2018, 10, 191. [Google Scholar] [CrossRef]
- Ding, Y.; Riffat, S.B. Thermochemical energy storage technologies for building applications: A state-of-the-art review. Int. J. Low-Carbon Technol. 2013, 8, 106–116. [Google Scholar] [CrossRef]
- Yu, N.; Wang, R.Z.; Wang, L.W. Sorption thermal storage for solar energy. Prog. Energy Combust. Sci. 2013, 39, 489–514. [Google Scholar] [CrossRef]
- LDES Council M. & C. Net-Zero Heat Long Duration Energy Storage to Accelerate Energy System Decarbonization Contents. 2022. Available online: https://www.ldescouncil.com/assets/pdf/221108_NZH_LDES%20brochure.pdf (accessed on 7 July 2025).
- Jastrzębski, P.; Saługa, P.W. Innowacyjne metody magazynowania ciepła. Zesz. Nauk. Inst. Gospod. Surowcami Miner. I Energią Pol. Akad. Nauk. 2018, 105, 225–232. [Google Scholar] [CrossRef]
- IES Green Transformation (GX) Policy. Available online: https://www.iea.org/policies/17443-green-transformation-gx-policy (accessed on 7 July 2025).
- Wang, F.; Xue, Y. A Review of the Development of the Energy Storage Industry in China: Challenges and Opportunities. Energies 2025, 18, 1512. [Google Scholar] [CrossRef]
- Altvater, J. Marc Oeffner Ways of Recovering Waste Heat through the Means of the Altvater Mobile Heat Transport-System (AMHT-System). In Proceedings of the International EcoEnergy Cluster Meeting May 10th, Gdańsk, Poland, 10–12 May 2010. [Google Scholar]
- Kraftblock GmbH. Available online: https://www.kraftblock.com/ (accessed on 2 February 2024).
- Narwal, K.; Farsad, S.; Kempers, R.; O’Brien, P.G. Adsorption-Based Thermal Energy Storage Using Zeolites for Mobile Heat Transfer. Energy Storage 2024, 6, e70041. [Google Scholar] [CrossRef]
- Krönauer, A.; Lävemann, E.; Brückner, S.; Hauer, A. Mobile Sorption Heat Storage in Industrial Waste Heat Recovery. Energy Procedia 2015, 73, 272–280. [Google Scholar] [CrossRef]
- Wang, S.; Hoes, P.-J.; Hensen, J.L.M.; Adan, O.C.G. Quantifying the decarbonization potential of mobile heat battery in low-temperature district heating. Sustain. Cities Soc. 2024, 113, 105657. [Google Scholar] [CrossRef]
- Kang, Z.; Wang, C.; Tan, R.; Liu, S.; Wang, F. Numerical study of an energy storage unit based on zeolite-water adsorption for mobilized thermal energy storage. J. Energy Storage 2024, 98, 113092. [Google Scholar] [CrossRef]
- Nagamani, G.; Naik, B.K.; Agarwal, S. Energetic and exergetic performance analyses of mobile thermochemical energy storage system employing industrial waste heat. Energy 2024, 288, 129730. [Google Scholar] [CrossRef]
- Fujii, S.; Nakagaki, T.; Kanematsu, Y.; Kikuchi, Y. Prospective life cycle assessment for designing mobile thermal energy storage system utilizing zeolite. J. Clean. Prod. 2022, 365, 132592. [Google Scholar] [CrossRef]
- Pavangat, A.; Bindhani, O.S.; Naik, B.K. Year-round and techno-economic feasibility analyses on integration of absorption based mobile thermochemical energy storage with building cooling system in tropical climate. Energy 2023, 263, 126042. [Google Scholar] [CrossRef]
- Nomura, T.; Okinaka, N.; Akiyama, T. Waste heat transportation system, using phase change material (PCM) from steelworks to chemical plant. Resour. Conserv. Recycl. 2010, 54, 1000–1006. [Google Scholar] [CrossRef]
- Yang, S.; Bai, M.; Grégoire, B.; Ma, H.; Zhang, T.; Ding, Y. Design and modelling of mobile thermal energy storage (M−TES) using structured composite phase change material modules. Appl. Therm. Eng. 2024, 254, 123896. [Google Scholar] [CrossRef]
- Kuta, M. Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources. Appl. Energy 2023, 332, 120567. [Google Scholar] [CrossRef]
- Ingelaere, G.; Massimo, C.; Bernier, M. Recharging ground heat exchangers with mobile thermal energy storage tanks. In Proceedings of the eSim 2024: 13th Conference of IBPSA-Canada, Edmonton, AB, Canada, 5–7 June 2024. [Google Scholar]
- Li, H.; Wang, W.; Yan, J.; Dahlquist, E. Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply. Appl. Energy 2013, 104, 178–186. [Google Scholar] [CrossRef]
- Wang, W.; Guo, S.; Li, H.; Yan, J.; Zhao, J.; Li, X.; Ding, J. Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES). Appl. Energy 2014, 119, 181–189. [Google Scholar] [CrossRef]
- Guo, S.; Li, H.; Zhao, J.; Li, X.; Yan, J. Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage. Appl. Energy 2013, 112, 1416–1423. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, J.; Wang, W.; Jin, G.; Wang, X.; An, Q.; Gao, W. Experimental study on solving the blocking for the direct contact mobilized thermal energy storage container. Appl. Therm. Eng. 2015, 78, 556–564. [Google Scholar] [CrossRef]
- He, S.; Chen, Z.; Wang, W.; Chen, Q.; Tang, L.; Huang, Y. Experimental study on an improved direct-contact thermal energy storage container. J. Energy Storage 2024, 102, 114201. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, J.; Wang, W.; Yan, J.; Jin, G.; Zhang, Z.; Gu, J.; Niu, Y. Numerical study of the improvement of an indirect contact mobilized thermal energy storage container. Appl. Energy 2016, 161, 476–486. [Google Scholar] [CrossRef]
- Demirkıran, İ.G.; Rocha, L.A.O.; Cetkin, E. Emergence of asymmetric straight and branched fins in horizontally oriented latent heat thermal energy storage units. Int. J. Heat Mass Transf. 2022, 189, 122726. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, Z.; Guo, J.; Wang, F.; Yang, X.; Yan, J. Innovative ladder-shaped fin design on a latent heat storage device for waste heat recovery. Appl. Energy 2022, 321, 119300. [Google Scholar] [CrossRef]
- Guo, Z.; Liu, S.; Wang, J.; Xu, Y.; Kang, Z.; Zhang, J. Numerical Study of an Energy Storage Container with a Flat Plate Phase Change Unit Characterized by an S-Shaped Flow Channel. Sustainability 2024, 16, 7441. [Google Scholar] [CrossRef]
- Kang, Z.; Liu, S.; Tan, R.; Yao, Q.; Liu, H. Numerical simulation of encapsulated mobilized-thermal energy storage vessels with multiple tubular sub-containers under varied geometrical configurations. J. Energy Storage 2024, 96, 112764. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, J.; Yan, J.; Jin, G.; Wang, X. Economic Assessment of Mobilized Thermal Energy Storage for Distributed Users: A Case Study in China. Energy Procedia 2016, 88, 656–661. [Google Scholar] [CrossRef]
- Guo, S.; Zhao, J.; Wang, W.; Yan, J.; Jin, G.; Wang, X. Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China. Appl. Energy 2017, 194, 481–486. [Google Scholar] [CrossRef]
- Matuszewska, D.; Kuta, M.; Olczak, P. Techno-Economic Assessment of Mobilized Thermal Energy Storage System Using Geothermal Source in Polish Conditions. Energies 2020, 13, 3404. [Google Scholar] [CrossRef]
- Deckert, M.; Scholz, R.; Binder, S.; Hornung, A. Economic efficiency of mobile latent heat storages. Energy Procedia 2014, 46, 171–177. [Google Scholar] [CrossRef]
- Chiu, J.N.; Castro Flores, J.; Martin, V.; Lacarrière, B. Industrial surplus heat transportation for use in district heating. Energy 2016, 110, 139–147. [Google Scholar] [CrossRef]
- Shehadeh, M.; Kwok, E.; Owen, J.; Bahrami, M. Integrating Mobile Thermal Energy Storage (M-TES) in the City of Surrey’s District Energy Network: A Techno-Economic Analysis. Appl. Sci. 2021, 11, 1279. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, X.; Han, Z.; Xu, W. Study on phase change interface for erythritol with nano-copper in spherical container during heat transport. Int. J. Heat Mass Transf. 2016, 92, 490–496. [Google Scholar] [CrossRef]
- Wang, Y.; Yu, K.; Ling, X. Experimental study on thermal performance of a mobilized thermal energy storage system: A case study of hydrated salt latent heat storage. Energy Build. 2020, 210, 109744. [Google Scholar] [CrossRef]
- Lahoud, C.; Harake, R.; Fatfat, M.; Bazi, S. Enhancing Energy Efficiency in Mediterranean Large-Scale Buildings: A Study on Mobilized Thermal-Energy-Storage Systems. Buildings 2025, 15, 464. [Google Scholar] [CrossRef]
- Rishmany, J.; Lahoud, C.; Imad, R.; Daaboul, M. Simulation and Economic Analysis of a Mobilized Thermal Energy Storage System for Mediterranean Climate Buildings: Case Study. Eng. Innov. 2025, 13, 3–12. [Google Scholar] [CrossRef]
- Kesserwani, J.; Lahoud, C.; Al Asmar, J.; Lahoud, C. On the Technical, Economic, and Environmental Impact of Mobilized Thermal Energy Storage: A Case Study. Sustainability 2025, 17, 2542. [Google Scholar] [CrossRef]
- Hunt, J.D.; Issa, R.; Sanjivy, K.; Lucas, F.; Wada, Y. Integrating seawater air conditioning and mobilized thermal energy storage. J. Energy Storage 2025, 113, 115638. [Google Scholar] [CrossRef]
Technology | Temperatures Range [°C] | TES Capacity [kWh/t] | Storage Time [h/d/w/m] | Technology Readiness [-] |
---|---|---|---|---|
Sensible heat | 0–2400 | 10–50 | h–m | Commercially available |
Latent heat | 0–1600 | 50–150 | h–d | Early commercial deployment |
Thermochemical | 0–900 | 120–250 | h–m | Under development |
Authors/ Company | Technology | Type of Research/ Work | Heat Capacity [MWh] and Temperature [°C] | Heat Source (S); Intended Application (A) | Transportation Distance [km] | Year; Country |
---|---|---|---|---|---|---|
Altvater [39] | Sensible heat | PP | 5.3; 320 | S: IWH, A: Glassworks; clinic (heat supply) | 38 | 1980s and 2007; Germany |
Kraftblock GmbH [40] | C | up to 4; up to 1300 | IWH or RE | - | Available 2025; Germany | |
Krönauer et al. [42] | Thermochemical reactions | PP | 2.3; 130 | S: IWH; A: Industrial drying process | 7 | 2015; Germany |
Wang et al. [43] | S | - | S: Waste heat from different sources; A: District heating | - | 2024; Netherlands | |
Kang [44] | S | - | - | - | 2024; China | |
Narwal et al. [41] | L | 110 kWhth/m3; 200 | - | - | 2024; Canada, Iran | |
Nagamani et al. [45] | AM | - | S:WH; A:- | - | 2024; India, Germany | |
Fujii et al. [46] | En | -; 120 | S: IWH; A:- | 3 | 2022; Japan | |
Pavangat et al. [47] | Tech and Ec | up to 1;- | S: IWH; A: University campus | 7.5 | 2023; India | |
Kuta [50] | Latent heat | PP | 0.044; Up to 80.7 | S: Geothermal sources; A: Distributed heat supply | 13.2 | 2023; Poland |
Yang et al. [49] | S | 0.11; 195 | - | - | 2024; UK | |
Ingelaere et al. [51] | S | -; 60 | S: IWH; A: Ground heat exchanger | - | 2024; Canada | |
Guo et al. [57] | S | - | S: IWH; A: Distributed heat supply | - | 2016; Sweden, China | |
Demirkıran et al. [58] | S | - | S: IWH; A: Distributed heat supply | - | 2022; Turkey, Brazil | |
Liu et al. [59] | S | - | S: IWH; A: Distributed heat supply | - | 2022; Sweden, China | |
Guo et al. [54] | S | -; 118 | S: IWH; A: Distributed heat supply | - | 2013; Sweden, China | |
Guo et al. [60] | S | - | S: IWH; A: Distributed heat supply | - | 2024; China | |
Kang et al. [61] | S | -; 58 | - | - | 2024; China | |
Wang et al. [53] | L | (lab scale); 118 | S: IWH; A: Distributed heat supply | - | 2014; Sweden, China | |
Guo et al. [55] | L | -; 118 | S: IWH; A: Distributed heat supply | - | 2015; China | |
He et al. [56] | L | - | S: IWH; A: Distributed heat supply | - | 2024; China | |
Deckert et al. [65] | Ec and L | Up to 2.0; 58 | S: Waste heat; A: Distributed heat supply | 5.6 | 2013; Germany | |
Lahoud et al. [70] | Ec and S | -; 118 | S: IWH; A: Large-scale Mediterranean buildings | 23 | 2025; Lebanon | |
Rishmany et al. [71] | Ec and S | -; 118 | S: Waste heat from power plant; A: Heating, cooling, hot water at the university campus | 23 | 2025; Lebanon | |
Shehadeh et al. [67] | Ec and Tech | - | S: IWH; A: District heating | 15, 30, 45 | 2021; Canada | |
Chiu et al. [66] | Ec, Tech, and En | 0.0001 MWh/kg; 108 | S: IWH; A: District heating | 48 | 2016; Sweden, France | |
Kesserwani et al. [72] | Ec, Tech, and En | 0.34–1.37; 118 | S: Waste heat; A: Small- and medium-scale heat consumers | 23 | 2025; Lebanon | |
Guo et al. [62] | Ec | 5.4; 118 | S: IWH; A: Distributed heat supply | 13 | 2015; Sweden, China | |
Guo et al. [63] | Ec | 1.82–5.46; 118 | S: IWH; A: Distributed heat supply | 13 | 2017; Sweden, China | |
Matuszewska et al. [64] | Ec | 0.055; 70 | S: Geothermal sources; A: Distributed heat supply | 0.5–10 | 2020; Poland | |
Li et al. [52] | Ec | - | S: WH; A: Distributed heat supply | 10–50 | 2013; Sweden | |
Hunt [73] | Th | - | S: Seawater air-conditioning; A: District cooling network | At least 10 | 2025; Tahiti, French Polynesia and Male, Maldives | |
Zhang et al. [68] | Th and MM | 0.0001 MWh/kg; 118 | - | - | 2016; China | |
Nomura et al. [48] | Th and MM | Up to 226; 250 | S: IWH steelworks; A: BTX distillation tower | 10 | 2010; Japan |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kuta, M.; Mlonka-Mędrala, A.; Radomska, E.; Gołdasz, A. Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery. Energies 2025, 18, 4136. https://doi.org/10.3390/en18154136
Kuta M, Mlonka-Mędrala A, Radomska E, Gołdasz A. Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery. Energies. 2025; 18(15):4136. https://doi.org/10.3390/en18154136
Chicago/Turabian StyleKuta, Marta, Agata Mlonka-Mędrala, Ewelina Radomska, and Andrzej Gołdasz. 2025. "Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery" Energies 18, no. 15: 4136. https://doi.org/10.3390/en18154136
APA StyleKuta, M., Mlonka-Mędrala, A., Radomska, E., & Gołdasz, A. (2025). Mobile Thermal Energy Storage—A Review and Analysis in the Context of Waste Heat Recovery. Energies, 18(15), 4136. https://doi.org/10.3390/en18154136