Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (34)

Search Parameters:
Keywords = thermal load character

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4414 KiB  
Article
Mechanical Characteristics of 26H2MF and St12T Steels Under Torsion at Elevated Temperatures
by Waldemar Dudda
Materials 2025, 18(13), 3204; https://doi.org/10.3390/ma18133204 - 7 Jul 2025
Viewed by 260
Abstract
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical [...] Read more.
The concept of “material effort” appears in continuum mechanics wherever the response of a material to the currently existing state of loads and boundary conditions loses its previous, predictable character. However, within the material, which still descriptively remains a continuous medium, new physical structures appear and new previously unused physical features of the continuum are activated. The literature is dominated by a simplified way of thinking, which assumes that all these states can be characterized and described by one and the same measure of effort—for metals it is the Huber–Mises–Hencky equivalent stress. Quantitatively, perhaps 90% of the literature is dedicated to this equivalent stress. The remaining authors, as well as the author of this paper, assume that there is no single universal measure of effort that would “fit” all operating conditions of materials. Each state of the structure’s operation may have its own autonomous measure of effort, which expresses the degree of threat from a specific destruction mechanism. In the current energy sector, we are increasingly dealing with “low-cycle thermal fatigue states”. This is related to the fact that large, difficult-to-predict renewable energy sources have been added. Professional energy based on coal and gas units must perform many (even about 100 per year) starts and stops, and this applies not only to the hot state, but often also to the cold state. The question arises as to the allowable shortening of start and stop times that would not to lead to dangerous material effort, and whether there are necessary data and strength characteristics for heat-resistant steels that allow their effort to be determined not only in simple states, but also in complex stress states. Do these data allow for the description of the material’s yield surface? In a previous publication, the author presented the results of tension and compression tests at elevated temperatures for two heat-resistant steels: St12T and 26H2MF. The aim of the current work is to determine the properties and strength characteristics of these steels in a pure torsion test at elevated temperatures. This allows for the analysis of the strength of power turbine components operating primarily on torsion and for determining which of the two tested steels is more resistant to high temperatures. In addition, the properties determined in all three tests (tension, compression, torsion) will allow the determination of the yield surface of these steels at elevated temperatures. They are necessary for the strength analysis of turbine elements in start-up and shutdown cycles, in states changing from cold to hot and vice versa. A modified testing machine was used for pure torsion tests. It allowed for the determination of the sample’s torsion moment as a function of its torsion angle. The experiments were carried out at temperatures of 20 °C, 200 °C, 400 °C, 600 °C, and 800 °C for St12T steel and at temperatures of 20 °C, 200 °C, 400 °C, 550 °C, and 800 °C for 26H2MF steel. Characteristics were drawn up for each sample and compared on a common graph corresponding to the given steel. Based on the methods and relationships from the theory of strength, the yield stress and torsional strength were determined. The yield stress of St12T steel at 600 °C was 319.3 MPa and the torsional strength was 394.4 MPa. For 26H2MH steel at 550 °C, the yield stress was 311.4 and the torsional strength was 382.8 MPa. St12T steel was therefore more resistant to high temperatures than 26H2MF. The combined data from the tension, compression, and torsion tests allowed us to determine the asymmetry and plasticity coefficients, which allowed us to model the yield surface according to the Burzyński criterion as a function of temperature. The obtained results also allowed us to determine the parameters of the Drucker-Prager model and two of the three parameters of the Willam-Warnke and Menetrey-Willam models. The research results are a valuable contribution to the design and diagnostics of power turbine components. Full article
Show Figures

Figure 1

21 pages, 6841 KiB  
Article
Effect of Centrifugal Load on Residual Stresses in Nickel-Based Single-Crystal Substrate and Thermal Barrier Coating System
by Liming Yu, Yifei Zhang, Rujuan Zhao, Yi Wang and Qingmin Yu
Processes 2025, 13(1), 269; https://doi.org/10.3390/pr13010269 - 18 Jan 2025
Viewed by 914
Abstract
Thermal barrier coatings (TBCs) and air film-cooling technology have been extensively utilized in nickel-based, single-crystal turbine blades to enhance their heat resistance. However, structural complexity and material property mismatches between layers can affect residual stresses and potentially lead to coating failure. In this [...] Read more.
Thermal barrier coatings (TBCs) and air film-cooling technology have been extensively utilized in nickel-based, single-crystal turbine blades to enhance their heat resistance. However, structural complexity and material property mismatches between layers can affect residual stresses and potentially lead to coating failure. In this study, a three-dimensional finite element model with atmospheric plasma-spraying thermal barrier coatings (APS-TBCs) deposited on air-cooled, nickel-based, single-crystal blades was established to investigate residual stress character under centrifugal load, considering the effect of temperature, crystal orientation deviation angle, oxide layer thickness, and the number of cycles. The results show that when the centrifugal load is increased from 300 MPa to 700 MPa, the absolute value of the residual stress at the crest of the interface between Top Coat (TC) and Thermally Grown Oxide (TGO) increases by only 8.5%, whereas in the region of compressive to tensile stress conversion, residual stress decreases by 100.9%. As the crystal orientation deviation angle increases, the absolute value of the residual compressive stress increases and the absolute value of the residual tensile stress decreases, but the performance is more special in the valley region, where the absolute value of the residual stress increases with the increase in the deviation angle. Special attention is required, as the increase in temperature leads to a rise in the absolute value of residual stress. For example, at the trough of the TC–TGO interface, when the temperature increases from 910 °C to 1100 °C, the residual stress increases by 9.8%. The effect of the number of cycles on residual stress is relatively weak. For instance, at the wave crest of the TC–TGO interface, the residual stress differs by only 0.6 MPa between one cycle and three cycles. The effect of oxide layer thickness on residual stress in the TBCs after a single cycle is nonlinear. When the oxide layer thickness is 0, 4, and 7 μm, the residual stress undergoes a transition between tensile and compressive directions at different locations. The exploration of these results has yielded some valuable laws that can provide a reference for the study of the damage mechanism of TBCs, as well as a guide for the optimization of nickel-based turbine blades in the manufacturing and use processes. Full article
(This article belongs to the Section Materials Processes)
Show Figures

Figure 1

17 pages, 2226 KiB  
Article
Evaluation of PLA-Based Composite Films Filled with Cu2(OH)3NO3 Nanoparticles as an Active Material for the Food Industry: Biocidal Properties and Environmental Sustainability
by Xiomara Santos, Gabriela Domínguez, Juana Rodríguez, Javier Pozuelo, Manuel Hernández, Olga Martín and Carmen Fajardo
Polymers 2024, 16(13), 1772; https://doi.org/10.3390/polym16131772 - 23 Jun 2024
Viewed by 1603
Abstract
The globalization of markets has diversified the food supply, but it has also made the distribution chain more difficult, increasing the risk of microbial contamination. One strategy to obtain safer food and extend its shelf life is to develop active packaging with antimicrobial [...] Read more.
The globalization of markets has diversified the food supply, but it has also made the distribution chain more difficult, increasing the risk of microbial contamination. One strategy to obtain safer food and extend its shelf life is to develop active packaging with antimicrobial properties that prevent the growth of pathogenic microorganisms or spoilage in food products. In this context, and in line with the growing social awareness about the environmental impact generated by plastic waste, this work evaluated the effectiveness of polylactic acid (PLA) films loaded with different concentrations of copper (II) hydroxynitrate nanoparticles (CuHS) against the microbiota of fresh foods (chicken, fish and cheese). The results showed that the developed films containing 1, 3 and 5% w/w of CuHS in the polymeric matrix caused a decrease in the microbial abundance equal to or higher than 3 logarithmic units in all foods tested. Moreover, the mechanical and thermal properties of the formulated composites showed that the added CuHS concentrations did not substantially modify these properties compared to the PLA films. Taking into account the results obtained for antimicrobial activity, Cu (II) migration levels and the cytotoxicity of the films formulated, the PLA composite loaded with 1% CuHS (w/w) was the most suitable for its potential use as food packaging material. In addition, the biodegradation of this composite film was studied under conditions simulating intensive aerobic composting, demonstrating that almost 100% disintegration after 14 days of testing was achieved. Therefore, the innovative PLA-based films developed represent a promising strategy for the fabrication of packaging and active surfaces to increase food shelf life while maintaining food safety. Moreover, their biodegradable character will contribute to efficient waste management, turning plastic residues into a valuable resource. Full article
(This article belongs to the Special Issue Synthesis and Processing of Functional Polymer Materials)
Show Figures

Figure 1

16 pages, 6648 KiB  
Article
Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates
by Rana Hore, Haroon Rashid, Frank Syrowatka and Jörg Kressler
Polysaccharides 2024, 5(2), 142-157; https://doi.org/10.3390/polysaccharides5020011 - 5 Jun 2024
Cited by 1 | Viewed by 1818
Abstract
Polysaccharide-based nanoformulations with tailored hydrophobic properties have become a frontier in nanomedicine applications. Herein, highly hydrophobicized hydroxyethyl starch (HES) conjugates were synthesized by grafting stearic acid (SA) with HES via a carbodiimide-mediated reaction. A detailed NMR characterization of HES and the conjugates was [...] Read more.
Polysaccharide-based nanoformulations with tailored hydrophobic properties have become a frontier in nanomedicine applications. Herein, highly hydrophobicized hydroxyethyl starch (HES) conjugates were synthesized by grafting stearic acid (SA) with HES via a carbodiimide-mediated reaction. A detailed NMR characterization of HES and the conjugates was studied to obtain structural information. The grafting ratio of the stearate-HES (St-HES) conjugates was determined from 1H NMR spectra as 29.4% (St-HES29.4) and 60.3% (St-HES60.3). Thermal analyses and X-ray diffractograms suggested an entire transition from amorphous HES to a semicrystalline (St-HES60.3) character upon increasing the degree of grafting. Both conjugates, St-HES29.4 and St-HES60.3, were able to form self-assembled particles with a diameter of 130.7 nm and 152.5 nm, respectively. SEM images showed that the self-aggregates were mostly spherical in shape. These conjugates can be employed to entrap highly hydrophobic drugs with an increased encapsulation efficiency and loading capacity. Full article
Show Figures

Graphical abstract

22 pages, 36291 KiB  
Article
Influence of Various Processing Routes in Additive Manufacturing on Microstructure and Monotonic Properties of Pure Iron—A Review-like Study
by Christof J. J. Torrent, Seyed Vahid Sajadifar, Gregory Gerstein, Julia Richter and Thomas Niendorf
Metals 2024, 14(5), 557; https://doi.org/10.3390/met14050557 - 8 May 2024
Cited by 1 | Viewed by 2056
Abstract
Additive manufacturing processes have attracted broad attention in the last decades since the related freedom of design allows the manufacturing of parts with unique microstructures and unprecedented complexity in shape. Focusing on the properties of additively manufactured parts, major efforts are made to [...] Read more.
Additive manufacturing processes have attracted broad attention in the last decades since the related freedom of design allows the manufacturing of parts with unique microstructures and unprecedented complexity in shape. Focusing on the properties of additively manufactured parts, major efforts are made to elaborate process-microstructure relationships. For instance, the inevitable thermal cycling within the process plays a significant role in microstructural evolution. Various driving forces contribute to the final grain size, boundary character, residual stress state, etc. In the present study, the properties of commercially pure iron processed on three different routes, i.e., hot rolling as a reference, electron powder bed fusion, and laser powder bed fusion, using different raw materials as well as process conditions, are compared. The manufacturing of the specimens led to five distinct microstructures, which differ significantly in terms of microstructural features and mechanical responses. Using optical and electron microscopy as well as transmission electron microscopy, the built specimens were explored in various states of a tensile test in order to reveal the microstructural evolution in the course of quasistatic loading. The grain size is found to be most influential in enhancing the material’s strength. Furthermore, substructures, i.e., low-angle grain boundaries, within the grains play an important role in terms of the homogeneity of strain distribution. On the contrary, high-angle grain boundaries are found to be regions of strain localization. In summary, a holistic macro-meso-micro-nano investigation is performed to evaluate the behavior of these specific microstructures. Full article
(This article belongs to the Section Additive Manufacturing)
Show Figures

Figure 1

18 pages, 7065 KiB  
Article
The Efficacy of Hybrid Vaginal Ovules for Co-Delivery of Curcumin and Miconazole against Candida albicans
by Brenda Maria Silva Bezerra, Sara Efigênia Dantas de Mendonça y Araújo, José de Oliveira Alves-Júnior, Bolívar Ponciano Goulart de Lima Damasceno and João Augusto Oshiro-Junior
Pharmaceutics 2024, 16(3), 312; https://doi.org/10.3390/pharmaceutics16030312 - 23 Feb 2024
Cited by 6 | Viewed by 2911
Abstract
Curcumin (CUR) is a natural compound that can be combined with miconazole (MCZ) to improve vulvovaginal candidiasis (VVC) caused by Candida albicans treatment’s efficacy. This study aimed to develop ureasil–polyether (U-PEO) vaginal ovules loaded with CUR and MCZ for the treatment of VVC. [...] Read more.
Curcumin (CUR) is a natural compound that can be combined with miconazole (MCZ) to improve vulvovaginal candidiasis (VVC) caused by Candida albicans treatment’s efficacy. This study aimed to develop ureasil–polyether (U-PEO) vaginal ovules loaded with CUR and MCZ for the treatment of VVC. Physicochemical characterization was performed by thermogravimetry (TGA), differential thermal analysis (DTA), Fourier transform infrared spectroscopy (FTIR), and in vitro release. Antifungal assays were used to determine minimum inhibitory concentrations (MICs) and synergism between CUR and MCZ, and the activity of U-PEO ovules were performed by microdilution and agar diffusion. TGA results showed high thermal stability of the hybrid ovules. In DTA, the amorphous character of U-PEO and a possible interaction between CUR and MCZ were observed. FTIR showed no chemical incompatibility between the drugs. In vitro release resulted in 80% of CUR and 95% of MCZ released within 144 h. The MICs of CUR and MCZ were 256 and 2.5 µg/mL, respectively. After combining the drugs, the MIC of MCZ decreased four-fold to 0.625 µg/mL, while that of CUR decreased eight-fold to 32 µg/mL. Synergism was confirmed by the fractional inhibitory concentration index (FICI) equal to 0.375. U-PEO alone showed no antifungal activity. U-PEO/MCZ and U-PEO/CUR/MCZ ovules showed the greatest zones of inhibition (≥18 mm). The results highlight the potential of the ovules to be administered at a lower frequency and at reduced doses compared to available formulations. Full article
Show Figures

Figure 1

17 pages, 4306 KiB  
Article
Surface Basicity and Hydrophilic Character of Coal Ash-Derived Zeolite NaP1 Modified by Fatty Acids
by Ana-Paola Beltrão-Nunes, Marçal Pires, René Roy and Abdelkrim Azzouz
Molecules 2024, 29(4), 768; https://doi.org/10.3390/molecules29040768 - 7 Feb 2024
Viewed by 1882
Abstract
Zeolite NaP1 was found to display the highest affinity for CO2 in preliminary modifications of coal fly ash-derived zeolites (4A, Y, NaP1 and X) by four amines (1,3-diaminopropane, N,N,N′,N′-tetramethylethylenediamine, Tris(2-aminoethyl)amine and ethylenediamine). In the second [...] Read more.
Zeolite NaP1 was found to display the highest affinity for CO2 in preliminary modifications of coal fly ash-derived zeolites (4A, Y, NaP1 and X) by four amines (1,3-diaminopropane, N,N,N′,N′-tetramethylethylenediamine, Tris(2-aminoethyl)amine and ethylenediamine). In the second step, different fatty acid loaded NaP1 samples were prepared using palmitic, oleic and lauric acids. CO2 and H2O thermal programmed desorption (TPD) revealed changes in intrinsic basicity and hydrophilic character, expressed in terms of CO2 and H2O retention capacity (CRC and WRC, respectively). Infrared spectroscopy (IR), N2 adsorption-desorption isotherms and scanning electron microscopy allowed for correlating these changes with the type of interactions between the incorporated species and the zeolite surface. The highest CRC values and the lowest CO2 desorption temperatures were registered for NaP1 with the optimum content in palmitic acid (PA) and were explained in terms of the shading effect of surface acidity by the rise of basic Na+-palmitate salt upon cation exchange. The amine/fatty acid combination was found to paradoxically mitigate this beneficial effect of PA incorporation. These results are of great interest because they demonstrate that fatty acid incorporation is an interesting strategy for reversible CO2 capture. Full article
Show Figures

Graphical abstract

22 pages, 14791 KiB  
Article
Polyurethane Degradable Hydrogels Based on Cyclodextrin-Oligocaprolactone Derivatives
by Alexandra-Diana Diaconu, Corina-Lenuta Logigan, Catalina Anisoara Peptu, Constanta Ibanescu, Valeria Harabagiu and Cristian Peptu
Gels 2023, 9(9), 755; https://doi.org/10.3390/gels9090755 - 16 Sep 2023
Cited by 3 | Viewed by 1701
Abstract
Polymer networks based on cyclodextrin and polyethylene glycol were prepared through polyaddition crosslinking using isophorone diisocyanate. The envisaged material properties are the hydrophilic character, specific to PEG and cyclodextrins, and the capacity to encapsulate guest molecules in the cyclodextrin cavity through physical interactions. [...] Read more.
Polymer networks based on cyclodextrin and polyethylene glycol were prepared through polyaddition crosslinking using isophorone diisocyanate. The envisaged material properties are the hydrophilic character, specific to PEG and cyclodextrins, and the capacity to encapsulate guest molecules in the cyclodextrin cavity through physical interactions. The cyclodextrin was custom-modified with oligocaprolactone to endow the crosslinked material with a hydrolytically degradable character. SEM, DTG, and FTIR characterization methods have confirmed the morphology and structure of the prepared hydrogels. The influence of the crosslinking reaction feed was investigated through dynamic rheology. Further, thermal water swelling and hydrolytic degradation in basic conditions revealed the connectivity of the polymer network and the particular influence of the cyclodextrin amount in the crosslinking reaction feed on the material properties. Also, levofloxacin was employed as a model drug to investigate the drug loading and release capacity of the prepared hydrogels. Full article
(This article belongs to the Special Issue Advanced Hydrogels for Tissue Engineering and Drug Delivery)
Show Figures

Figure 1

27 pages, 1255 KiB  
Article
Adapting PINN Models of Physical Entities to Dynamical Data
by Dmitriy Tarkhov, Tatiana Lazovskaya and Valery Antonov
Computation 2023, 11(9), 168; https://doi.org/10.3390/computation11090168 - 1 Sep 2023
Cited by 3 | Viewed by 2533
Abstract
This article examines the possibilities of adapting approximate solutions of boundary value problems for differential equations using physics-informed neural networks (PINNs) to changes in data about the physical entity being modelled. Two types of models are considered: PINN and parametric PINN (PPINN). The [...] Read more.
This article examines the possibilities of adapting approximate solutions of boundary value problems for differential equations using physics-informed neural networks (PINNs) to changes in data about the physical entity being modelled. Two types of models are considered: PINN and parametric PINN (PPINN). The former is constructed for a fixed parameter of the problem, while the latter includes the parameter for the number of input variables. The models are tested on three problems. The first problem involves modelling the bending of a cantilever rod under varying loads. The second task is a non-stationary problem of a thermal explosion in the plane-parallel case. The initial model is constructed based on an ordinary differential equation, while the modelling object satisfies a partial differential equation. The third task is to solve a partial differential equation of mixed type depending on time. In all cases, the initial models are adapted to the corresponding pseudo-measurements generated based on changing equations. A series of experiments are carried out for each problem with different functions of a parameter that reflects the character of changes in the object. A comparative analysis of the quality of the PINN and PPINN models and their resistance to data changes has been conducted for the first time in this study. Full article
(This article belongs to the Special Issue 10th Anniversary of Computation—Computational Engineering)
Show Figures

Figure 1

16 pages, 6782 KiB  
Article
Increasing the Efficiency of Turbine Inlet Air Cooling in Climatic Conditions of China through Rational Designing—Part 1: A Case Study for Subtropical Climate: General Approaches and Criteria
by Mykola Radchenko, Zongming Yang, Anatoliy Pavlenko, Andrii Radchenko, Roman Radchenko, Hanna Koshlak and Guozhi Bao
Energies 2023, 16(17), 6105; https://doi.org/10.3390/en16176105 - 22 Aug 2023
Cited by 6 | Viewed by 1432
Abstract
The enhancement of gas turbine (GT) efficiency through inlet air cooling, known as TIAC, in chillers using the heat of exhaust gas is one of the most attractive tendencies in energetics, particularly in thermal engineering. In reality, any combustion engine with cyclic air [...] Read more.
The enhancement of gas turbine (GT) efficiency through inlet air cooling, known as TIAC, in chillers using the heat of exhaust gas is one of the most attractive tendencies in energetics, particularly in thermal engineering. In reality, any combustion engine with cyclic air cooling using waste heat recovery chillers might be considered as a power plant with in-cycle trigeneration focused on enhancing a basic engine efficiency, which results in additional power output or fuel savings, reducing carbon emissions in all cases. The higher the fuel efficiency of the engine, the more efficient its functioning as a source of emissions. The sustainable operation of a GT at stabilized low intake air temperature is impossible without using rational design to determine the cooling capacity of the chiller and TIAC system as a whole to match current duties without overestimation. The most widespread absorption lithium-bromide chillers (ACh) are unable to reduce the GT intake air temperature below 15 °C in a simple cycle because the temperature of their chilled water is approximately 7 °C. Deeper cooling air would be possible by applying a boiling refrigerant as a coolant in ejector chiller (ECh) as the cheapest and simplest in design. However, the coefficients of performance (COP) of EChs are considerably lower than those of AChs: about 0.3 compared to 0.7 of AChs. Therefore, EChs are applied for subsequent cooling of air to less than 15 °C, whereas the efficient ACh is used for ambient air precooling to 15 °C. The application of an absorption–ejector chiller (AECh) enables deeper inlet air cooling and greater effects accordingly. However, the peculiarities of the subtropical climate, characterized by high temperature and humidity and thermal loads, require extended analyses to reveal the character of thermal load and to modify the methodology of designing TIAC systems. The advanced design methodology that can reveal and thereby forecast the peculiarities of the TIAC system’s thermal loading was developed to match those peculiarities and gain maximum effect without oversizing. Full article
(This article belongs to the Special Issue Heat Transfer and Multiphase Flow)
Show Figures

Figure 1

21 pages, 9381 KiB  
Article
Evaluation of Eco-Friendly Hemp-Fiber-Reinforced Recycled HDPE Composites
by Eleftheria Xanthopoulou, Iouliana Chrysafi, Prodromos Polychronidis, Alexandra Zamboulis and Dimitrios N. Bikiaris
J. Compos. Sci. 2023, 7(4), 138; https://doi.org/10.3390/jcs7040138 - 4 Apr 2023
Cited by 34 | Viewed by 5397
Abstract
The exploitation of natural fibers to reinforce polymers is a promising practice. Thus, biocomposites have gained increased attention in automotive, construction, and agricultural sectors, among others. The present work reports the reinforcement of recycled high-density polyethylene (r-HDPE) with hemp fibers to afford composite [...] Read more.
The exploitation of natural fibers to reinforce polymers is a promising practice. Thus, biocomposites have gained increased attention in automotive, construction, and agricultural sectors, among others. The present work reports the reinforcement of recycled high-density polyethylene (r-HDPE) with hemp fibers to afford composite materials as sustainable analogues to conventional wood/plastic composite (WPC) products. HDPE bottles (postconsumer waste) were used as r-HDPE and further reinforced by the addition of hemp fibers. For the synthetic part, thirteen composite materials with different filler concentrations (10–75% wt. in hemp fibers) using either Joncryl or polyethylene-grafted maleic anhydride (PE-g-MA) as compatibilizers were prepared via melt mixing. Materials with good integrity were obtained with a fiber load as high as 75% wt. The structural, thermal, mechanical, and antioxidant properties of the r-HDPE/hemp composites were evaluated using multiple complementary characterization techniques. Stereoscopic microscope images demonstrated the satisfactory dispersion of the hemp fibers into the polymeric matrix, while scanning electron microscopy microphotographs revealed an improved adhesion between the filler and the polymeric matrix in the presence of compatibilizers. The incorporation of hemp fibers contributed to the improvement of the elastic modulus of the composites (almost up to threefold increase). The results showed that as the hemp fiber content increased, the antioxidant properties as well as the degradability of the composites increased. It is noteworthy that composites containing 75% wt. hemp fibers neutralized 80% of 2,2-diphenyil-1-picrylhydrazyl radicals within 45 min (DPPH assay). In conclusion, the present research work demonstrates that thermally recycled HDPE reinforced with biomass fibers received from agricultural waste is a valid alternative for the preparation of commodity products with an eco-friendly character compared to conventional wood/plastic composites. Full article
(This article belongs to the Special Issue Advanced Fiber Reinforced Polymer Composites)
Show Figures

Figure 1

14 pages, 3305 KiB  
Article
Effect of Hemp Hurd Biochar and Humic Acid on the Flame Retardant and Mechanical Properties of Ethylene Vinyl Acetate
by Mattia Di Maro, Maria Giulia Faga, Riccardo Pedraza, Giulio Malucelli, Mattia Bartoli, Giovanna Gomez d’Ayala and Donatella Duraccio
Polymers 2023, 15(6), 1411; https://doi.org/10.3390/polym15061411 - 12 Mar 2023
Cited by 4 | Viewed by 2625
Abstract
In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar [...] Read more.
In this work, the combination of biochar produced through a pyrolytic process of hemp hurd with commercial humic acid as a potential biomass-based flame-retardant system for ethylene vinyl acetate copolymer is thoroughly investigated. To this aim, ethylene vinyl acetate composites containing hemp-derived biochar at two different concentrations (i.e., 20 and 40 wt.%) and 10 wt.% of humic acid were prepared. The presence of increasing biochar loadings in ethylene vinyl acetate accounted for an increasing thermal and thermo-oxidative stability of the copolymer; conversely, the acidic character of humic acid anticipated the degradation of the copolymer matrix, even in the presence of the biochar. Further, as assessed by forced-combustion tests, the incorporation of humic acid only in ethylene vinyl acetate slightly decreased both peaks of heat release rate (pkHRR) and total heat release (THR, by 16% and 5%, respectively), with no effect on the burning time. At variance, for the composites containing biochar, a strong decrease in pkHRR and THR values was observed, approaching −69 and −29%, respectively, in the presence of the highest filler loading, notwithstanding, for this latter, a significant increase in the burning time (by about 50 s). Finally, the presence of humic acid significantly lowered the Young’s modulus, unlike biochar, for which the stiffness remarkably increased from 57 MPa (unfilled ethylene vinyl acetate) to 155 Mpa (for the composite containing 40 wt.% of the filler). Full article
(This article belongs to the Special Issue Feature Papers in Polymer Analysis)
Show Figures

Figure 1

26 pages, 8029 KiB  
Article
Engineering Polypropylene–Calcium Sulfate (Anhydrite II) Composites: The Key Role of Zinc Ionomers via Reactive Extrusion
by Marius Murariu, Yoann Paint, Oltea Murariu, Fouad Laoutid and Philippe Dubois
Polymers 2023, 15(4), 799; https://doi.org/10.3390/polym15040799 - 5 Feb 2023
Cited by 3 | Viewed by 3348
Abstract
Polypropylene (PP) is one of the most versatile polymers widely used in packaging, textiles, automotive, and electrical applications. Melt blending of PP with micro- and/or nano-fillers is a common approach for obtaining specific end-use characteristics and major enhancements of properties. The study aims [...] Read more.
Polypropylene (PP) is one of the most versatile polymers widely used in packaging, textiles, automotive, and electrical applications. Melt blending of PP with micro- and/or nano-fillers is a common approach for obtaining specific end-use characteristics and major enhancements of properties. The study aims to develop high-performance composites by filling PP with CaSO4 β-anhydrite II (AII) issued from natural gypsum. The effects of the addition of up to 40 wt.% AII into PP matrix have been deeply evaluated in terms of morphology, mechanical and thermal properties. The PP–AII composites (without any modifier) as produced with internal mixers showed enhanced thermal stability and stiffness. At high filler loadings (40% AII), there was a significant decrease in tensile strength and impact resistance; therefore, custom formulations with special reactive modifiers/compatibilizers (PP functionalized/grafted with maleic anhydride (PP-g-MA) and zinc diacrylate (ZnDA)) were developed. The study revealed that the addition of only 2% ZnDA (able to induce ionomeric character) leads to PP–AII composites characterized by improved kinetics of crystallization, remarkable thermal stability, and enhanced mechanical properties, i.e., high tensile strength, rigidity, and even rise in impact resistance. The formation of Zn ionomers and dynamic ionic crosslinks, finer dispersion of AII microparticles, and better compatibility within the polyolefinic matrix allow us to explain the recorded increase in properties. Interestingly, the PP–AII composites also exhibited significant improvements in the elastic behavior under dynamic mechanical stress and of the heat deflection temperature (HDT), thus paving the way for engineering applications. Larger experimental trials have been conducted to produce the most promising composite materials by reactive extrusion (REx) on twin-screw extruders, while evaluating their performances through various methods of analysis and processing. Full article
(This article belongs to the Special Issue Progress in Polymer Composites for Different Applications)
Show Figures

Graphical abstract

7 pages, 1637 KiB  
Communication
First Theoretical Realization of a Stable Two-Dimensional Boron Fullerene Network
by Bohayra Mortazavi
Appl. Sci. 2023, 13(3), 1672; https://doi.org/10.3390/app13031672 - 28 Jan 2023
Cited by 4 | Viewed by 2477
Abstract
Successful experimental realizations of two-dimensional (2D) C60 fullerene networks have been among the most exciting latest advances in the rapidly growing field of 2D materials. In this short communication, on the basis of the experimentally synthesized full boron B40 fullerene lattice, [...] Read more.
Successful experimental realizations of two-dimensional (2D) C60 fullerene networks have been among the most exciting latest advances in the rapidly growing field of 2D materials. In this short communication, on the basis of the experimentally synthesized full boron B40 fullerene lattice, and by structural minimizations of extensive atomic configurations via density functional theory calculations, we could, for the first time, predict a stable B40 fullerene 2D network, which shows an isotropic structure. Acquired results confirm that the herein predicted B40 fullerene network is energetically and dynamically stable and also exhibits an appealing thermal stability. The elastic modulus and tensile strength are estimated to be 125 and 7.8 N/m, respectively, revealing strong bonding interactions in the predicted nanoporous nanosheet. Electronic structure calculations reveal metallic character and the possibility of a narrow and direct band gap opening by applying the uniaxial loading. This study introduces the first boron fullerene 2D nanoporous network with an isotropic lattice, remarkable stability, and a bright prospect for the experimental realization. Full article
(This article belongs to the Special Issue Novel Nanomaterials and Nanostructures)
Show Figures

Figure 1

19 pages, 10481 KiB  
Review
Twin-Related Grain Boundary Engineering and Its Influence on Mechanical Properties of Face-Centered Cubic Metals: A Review
by Xiaowu Li, Xianjun Guan, Zipeng Jia, Peng Chen, Chengxue Fan and Feng Shi
Metals 2023, 13(1), 155; https://doi.org/10.3390/met13010155 - 12 Jan 2023
Cited by 16 | Viewed by 4246
Abstract
On the basis of reiterating the concept of grain boundary engineering (GBE), the recent progress in the theoretical models and mechanisms of twin-related GBE optimization and its effect on the mechanical properties is systematically summarized in this review. First, several important GBE-quantifying parameters [...] Read more.
On the basis of reiterating the concept of grain boundary engineering (GBE), the recent progress in the theoretical models and mechanisms of twin-related GBE optimization and its effect on the mechanical properties is systematically summarized in this review. First, several important GBE-quantifying parameters are introduced, e.g., the fraction of special grain boundaries (GBs), the distribution of triple-junctions, and the ratio of twin-related domain size to grain size. Subsequently, some theoretical models for the GBE optimization in face-centered cubic (FCC) metals are sketched, with a focus on the model of “twin cluster growth” by summarizing the in-situ and quasi-in-situ observations on the evolution of grain boundary character distribution during the thermal-mechanical process. Finally, some case studies are presented on the applications of twin-related GBE in improving the various mechanical properties of FCC metals, involving room-temperature tensile ductility, high-temperature strength-ductility match, creep resistance, and fatigue properties. It has been well recognized that the mechanical properties of FCC materials could be obviously improved by a GBE treatment, especially at high temperatures or under high cyclic loads; under these circumstances, the materials are prone to intergranular cracking. In short, GBE has tremendous potential for improving the mechanical properties of FCC metallic materials, and it is a feasible method for designing high-performance metallic materials. Full article
(This article belongs to the Special Issue Deformation, Fracture and Microstructure of Metallic Materials)
Show Figures

Figure 1

Back to TopTop