Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Methods
2.2.1. Nuclear Magnetic Resonance (NMR) Spectroscopy
2.2.2. Differential Scanning Calorimetry (DSC)
2.2.3. Wide-Angle X-ray Scattering (WAXS)
2.2.4. Determination of Particle Size by Dynamic Light Scattering (DLS)
2.2.5. Scanning Electron Microscopy (SEM)
2.2.6. Synthesis of Stearate-Hydroxyethyl Starch (St-HES) Conjugates
2.2.7. Preparation of Self-Assembled Nanoparticles of St-HES Conjugates
3. Results and Discussion
3.1. Characterization of HES
3.2. Synthesis and NMR Characterization of St-HES Conjugates
3.3. DSC and WAXS Analysis
3.4. Characterization of Self-Aggregated St-HES Conjugates
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kashapov, R.; Gaynanova, G.; Gabdrakhmanov, D.; Kuznetsov, D.; Pavlov, R.; Petrov, K.; Zakharova, L.; Sinyashin, O. Self-Assembly of Amphiphilic Compounds as a Versatile Tool for Construction of Nanoscale Drug Carriers. Int. J. Mol. Sci. 2020, 21, 6961. [Google Scholar] [CrossRef]
- Yang, J.; Gao, C.; Lü, S.; Zhang, X.; Yu, C.; Liu, M. Physicochemical Characterization of Amphiphilic Nanoparticles Based on the Novel Starch-Deoxycholic Acid Conjugates and Self-Aggregates. Carbohydr. Polym. 2014, 102, 838–845. [Google Scholar] [CrossRef]
- Jones, M.C.; Leroux, J.C. Polymeric Micelles—A New Generation of Colloidal Drug Carriers. Eur. J. Pharm. Biopharm. 1999, 48, 101–111. [Google Scholar] [CrossRef]
- Kesharwani, R.; Tripathy, S.; Patel, D.K.; Yadav, P.K.; Das, M.K. Multifunctional Micellar Nanomedicine for Cancer Therapy. Multifunct. Theranostic Nanomed. Cancer 2021, 234, 57–65. [Google Scholar]
- Francis, M.F.; Cristea, M.; Winnik, F.M. Polymeric Micelles for Oral Drug Delivery: Why and How. Pure Appl. Chem. 2004, 76, 1321–1335. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, K.; Luo, J.; Xiao, W.; Lee, J.S.; Gonik, A.M.; Kato, J.; Dong, T.A.; Lam, K.S. Well-Defined, Reversible Disulfide Cross-Linked Micelles for on-Demand Paclitaxel Delivery. Biomaterials 2011, 32, 6633–6645. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhang, E.; Yang, J.; Cao, Z. Strategies to Improve Micelle Stability for Drug Delivery. Nano Res. 2018, 11, 4985–4998. [Google Scholar] [CrossRef]
- Zhou, H.; Yu, W.; Guo, X.; Liu, X.; Li, N.; Zhang, Y.; Ma, X. Synthesis and Characterization of Amphiphilic Glycidol-Chitosan-Deoxycholic Acid Nanoparticles as a Drug Carrier for Doxorubicin. Biomacromolecules 2010, 11, 3480–3486. [Google Scholar] [CrossRef]
- Yadav, S.; Sharma, A.K.; Kumar, P. Nanoscale Self-Assembly for Therapeutic Delivery. Front. Bioeng. Biotechnol. 2020, 8, 127. [Google Scholar] [CrossRef]
- Li, Y.; Gao, Q. Novel Self-Assembly Nano OSA Starch Micelles Controlled by Protonation in Aqueous Media. Carbohydr. Polym. 2023, 299, 120146. [Google Scholar] [CrossRef]
- Sun, Y.; Bai, Y.; Yang, W.; Bu, K.; Tanveer, S.K.; Hai, J. Global Trends in Natural Biopolymers in the 21st Century: A Scientometric Review. Front. Chem. 2022, 10, 915648. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Jiao, Y.; Wang, Y.; Zhou, C.; Zhang, Z. Polysaccharides-Based Nanoparticles as Drug Delivery Systems. Adv. Drug Deliv. Rev. 2008, 60, 1650–1662. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Li, J.; Ma, Y.; Chen, F.; Zhao, G. Synthesis, Characterization, and Aqueous Self-Assembly of Octenylsuccinate Oat β-Glucan. J. Agric. Food Chem. 2013, 61, 12683–12691. [Google Scholar] [CrossRef] [PubMed]
- Fan, Y.; Liu, Y.; Wu, Y.; Dai, F.; Yuan, M.; Wang, F.; Bai, Y.; Deng, H. Natural Polysaccharides Based Self-Assembled Nanoparticles for Biomedical Applications—A Review. Int. J. Biol. Macromol. 2021, 192, 1240–1255. [Google Scholar] [CrossRef] [PubMed]
- Hey, T.; Helmut, K.; Vorstheim, P. Half-life Extension through HESylation®. In Therapeutic Proteins: Strategies to Modulate Their Plasma Half-Lives; Kontermann, R., Ed.; Wiley-VCH Verlag Gmbh & Co. KGaA: Weinheim, Germany, 2012; pp. 117–140. ISBN 9780470411964. [Google Scholar]
- Besheer, A.; Liebner, R.; Meyer, M.; Winter, G. Challenges for PEGylated Proteins and Alternative Half-Life Extension Technologies Based on Biodegradable Polymers. ACS Symp. Ser. 2013, 1135, 215–233. [Google Scholar]
- Wang, H.; Hu, H.; Yang, H.; Li, Z. Hydroxyethyl Starch Based Smart Nanomedicine. RSC Adv. 2021, 11, 3226–3240. [Google Scholar] [CrossRef] [PubMed]
- Treib, J.; Baron, J.F.; Grauer, M.T.; Strauss, R.G. An International View of Hydroxyethyl Starches. Intensive Care Med. 1999, 25, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Dumitriu, S. Polysaccharides in Medicinal Applications; Marcel Dekker Inc.: New York, NY, USA, 1996. [Google Scholar]
- Liebner, R.; Mathaes, R.; Meyer, M.; Hey, T.; Winter, G.; Besheer, A. Protein HESylation for Half-Life Extension: Synthesis, Characterization and Pharmacokinetics of HESylated Anakinra. Eur. J. Pharm. Biopharm. 2014, 87, 378–385. [Google Scholar] [CrossRef]
- Besheer, A.; Hertel, T.C.; Kressler, J.; Mäder, K.; Pietzsch, M. Enzymatically Catalyzed HES Conjugation Using Microbial Transglutaminase: Proof of Feasibility. J. Pharm. Sci. 2009, 98, 4420–4428. [Google Scholar] [CrossRef]
- Xiao, C.; Hu, H.; Yang, H.; Li, S.; Zhou, H.; Ruan, J.; Zhu, Y.; Yang, X.; Li, Z. Colloidal Hydroxyethyl Starch for Tumor-Targeted Platinum Delivery. Nanoscale Adv. 2019, 1, 1002–1012. [Google Scholar] [CrossRef]
- Paleos, C.M.; Sideratou, Z.; Tsiourvas, D. Drug Delivery Systems Based on Hydroxyethyl Starch. Bioconjug. Chem. 2017, 28, 1611–1624. [Google Scholar] [CrossRef] [PubMed]
- Hore, R.; Alaneed, R.; Pietzsch, M.; Kressler, J. Enzymatic HES Conjugation with Recombinant Human Erythropoietin via Variant Microbial Transglutaminase TG16. Starch/Stärke 2022, 74, 2200034. [Google Scholar] [CrossRef]
- Tan, R.; Wan, Y.; Yang, X. Hydroxyethyl Starch and Its Derivatives as Nanocarriers for Delivery of Diagnostic and Therapeutic Agents towards Cancers. Biomater. Transl. 2020, 1, 46–57. [Google Scholar] [PubMed]
- Besheer, A.; Hause, G.; Kressler, J.; Mäder, K. Hydrophobically Modified Hydroxyethyl Starch: Synthesis, Characterization, and Aqueous Self-Assembly into Nano-Sized Polymeric Micelles and Vesicles. Biomacromolecules 2007, 8, 359–367. [Google Scholar] [CrossRef] [PubMed]
- Hu, F.Q.; Zhao, M.D.; Yuan, H.; You, J.; Du, Y.Z.; Zeng, S. A Novel Chitosan Oligosaccharide-Stearic Acid Micelles for Gene Delivery: Properties and in Vitro Transfection Studies. Int. J. Pharm. 2006, 315, 158–166. [Google Scholar] [CrossRef] [PubMed]
- Shaki, H.; Vasheghani-Farahani, E.; Ganji, F.; Jafarzadeh-Holagh, S.; Taebnia, N.; Dolatshahi-Pirouz, A. A Self Assembled Dextran-Stearic Acid-Spermine Nanocarrier for Delivery of Rapamycin as a Hydrophobic Drug. J. Drug Deliv. Sci. Technol. 2021, 66, 102768. [Google Scholar] [CrossRef]
- Neises, B.; Steglich, W. Simple Method for the Esterification of Carboxylic Acids. Angew. Chem. Int. Ed. Engl. 1978, 17, 522–524. [Google Scholar] [CrossRef]
- Weiss, V.M.; Naolou, T.; Amado, E.; Busse, K.; Mäder, K.; Kressler, J. Formation of Structured Polygonal Nanoparticles by Phase-Separated Comb-like Polymers. Macromol. Rapid Commun. 2012, 33, 35–40. [Google Scholar] [CrossRef] [PubMed]
- Labelle, M.A.; Ispas-Szabo, P.; Mateescu, M.A. Structure-Functions Relationship of Modified Starches for Pharmaceutical and Biomedical Applications. Starch/Stärke 2020, 72, 2000002. [Google Scholar] [CrossRef]
- Kulicke, W.-M.; Roessner, D.; Kull, W. Characterization of Hydroxyethyl Starch by Polymer Analysis for Use as a Plasma Volume Expander. Starch/Stärke 1993, 45, 445–450. [Google Scholar] [CrossRef]
- Sleightholm, R.; Yang, B.; Yu, F.; Xie, Y.; Oupický, D. Chloroquine-Modified Hydroxyethyl Starch as a Polymeric Drug for Cancer Therapy. Biomacromolecules 2017, 18, 2247–2257. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Hu, H.; Zhou, Q.; Ao, Y.; Xiao, C.; Wan, J.; Wan, Y.; Xu, H.; Li, Z.; Yang, X. α-Amylase- and Redox-Responsive Nanoparticles for Tumor-Targeted Drug Delivery. ACS Appl. Mater. Interfaces 2017, 9, 19215–19230. [Google Scholar] [CrossRef] [PubMed]
- Xu, Z.; Yang, D.; Long, T.; Yuan, L.; Qiu, S.; Li, D.; Mu, C.; Ge, L. PH-Sensitive Nanoparticles Based on Amphiphilic Imidazole/Cholesterol Modified Hydroxyethyl Starch for Tumor Chemotherapy. Carbohydr. Polym. 2022, 277, 118827. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Yang, Y.; Lu, L.; Ma, Q.; Zhang, J. Preparation, Characterization and Systemic Application of Self-Assembled Hydroxyethyl Starch Nanoparticles-Loaded Flavonoid Morin for Hyperuricemia Therapy. Int. J. Nanomed. 2018, 13, 2129–2141. [Google Scholar] [CrossRef] [PubMed]
- Nilsson, G.S.; Bergquist, K.E.; Nilsson, U.; Gorton, L. Determination of the Degree of Branching in Normal and Amylopectin Type Potato Starch with 1H-NMR Spectroscopy: Improved Resolution and Two-Dimensional Spectroscopy. Starch/Stärke 1996, 48, 352–357. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, L.Q.; Tu, K. In Situ Polymerization of Starch with Lactic Acid in Aqueous Solution and the Microstructure Characterization. Carbohydr. Polym. 2006, 64, 501–509. [Google Scholar] [CrossRef]
- Chi, H.; Xu, K.; Wu, X.; Chen, Q.; Xue, D.; Song, C.; Zhang, W.; Wang, P. Effect of Acetylation on the Properties of Corn Starch. Food Chem. 2008, 106, 923–928. [Google Scholar] [CrossRef]
- Richardson, S.; Nilsson, G.S.; Bergquist, K.E.; Gorton, L.; Mischnick, P. Characterisation of the Substituent Distribution in Hydroxypropylated Potato Amylopectin Starch. Carbohydr. Res. 2000, 328, 365–373. [Google Scholar] [CrossRef] [PubMed]
- Heins, D.; Kulicke, W.M.; Käuper, P.; Thielking, H. Characterization of Acetyl Starch by Means of NMR Spectroscopy and SEC/MALLS in Comparison with Hydroxyethyl Starch. Starch/Stärke 1998, 50, 431–437. [Google Scholar] [CrossRef]
- Gagnaire, D.; Mancier, D.; Vincendon, M. Spectres RMN Des Polysaccharides et de Leurs Dérivés: Influence Des Substituants Sur Le Déplacement Chimique 13C. Org. Magn. Reson. 1978, 11, 344–349. [Google Scholar] [CrossRef]
- Peng, Q.J.; Perlin, A.S. Observations on N.M.R. Spectra of Starches in Dimethyl Sulfoxide, Iodine-Complexing, and Solvation in Water-Di-Methyl Sulfoxide. Carbohydr. Res. 1987, 160, 57–72. [Google Scholar] [CrossRef]
- Liu, J.; Wang, X.; Bai, R.; Zhang, N.; Kan, J.; Jin, C. Synthesis, Characterization, and Antioxidant Activity of Caffeic-Acid-Grafted Corn Starch. Starch/Stärke 2018, 70, 1700141. [Google Scholar] [CrossRef]
- Luo, Q.; Wang, P.; Miao, Y.; He, H.; Tang, X. A Novel 5-Fluorouracil Prodrug Using Hydroxyethyl Starch as a Macromolecular Carrier for Sustained Release. Carbohydr. Polym. 2012, 87, 2642–2647. [Google Scholar] [CrossRef]
- Aburto, J.; Alric, I.; Thiebaud, S.; Borredon, E.; Bikiaris, D.; Prinos, J.; Panayiotou, C. Synthesis, Characterization, and Biodegradability of Fatty-Acid Esters of Amylose and Starch. J. Appl. Polym. Sci. 1999, 74, 1440–1451. [Google Scholar] [CrossRef]
- Huang, F.Y. Thermal Properties and Thermal Degradation of Cellulose Tri-Stearate (CTs). Polymers 2012, 4, 1012–1024. [Google Scholar] [CrossRef]
- Lide, D.R. CRC Handbook of Chemistry and Physics; CRC Press: Boca Raton, FL, USA, 2005. [Google Scholar]
- Feng, L.; Kama, M.R. Distributions of Crystal Size from DSC Melting Traces for Polyethylenes. Can. J. Chem. Eng. 2004, 82, 1239–1251. [Google Scholar] [CrossRef]
- Rim, P.B.; Runt, J.P. Melting Point Depression in Crystalline/Compatible Polymer Blends. Macromolecules 1984, 17, 1520–1526. [Google Scholar] [CrossRef]
- Nanaki, S.G.; Koutsidis, I.A.; Koutri, I.; Karavas, E.; Bikiaris, D. Miscibility Study of Chitosan/2-Hydroxyethyl Starch Blends and Evaluation of Their Effectiveness as Drug Sustained Release Hydrogels. Carbohydr. Polym. 2012, 87, 1286–1294. [Google Scholar] [CrossRef]
- Tuncel, D.; Demir, H.V. Conjugated Polymer Nanoparticles. Nanoscale 2010, 2, 484–494. [Google Scholar] [CrossRef]
- Lee, K.Y.; Jo, W.H.; Kwon, I.C.; Kim, Y.H.; Jeong, S.Y. Physicochemical Characteristics of Self-Aggregates of Hydrophobically Modified Chitosans. Langmuir 1998, 14, 2329–2332. [Google Scholar] [CrossRef]
- Gökçe Kocabay, Ö.; İsmail, O. Preparation and Optimization of Biodegradable Self-Assembled PCL-PEG-PCL Nano-Sized Micelles for Drug Delivery Systems. Int. J. Polym. Mater. Polym. Biomater. 2021, 70, 328–337. [Google Scholar] [CrossRef]
- Golding, C.G.; Lamboo, L.L.; Beniac, D.R.; Booth, T.F. The Scanning Electron Microscope in Microbiology and Diagnosis of Infectious Disease. Sci. Rep. 2016, 6, 26516. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hore, R.; Rashid, H.; Syrowatka, F.; Kressler, J. Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates. Polysaccharides 2024, 5, 142-157. https://doi.org/10.3390/polysaccharides5020011
Hore R, Rashid H, Syrowatka F, Kressler J. Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates. Polysaccharides. 2024; 5(2):142-157. https://doi.org/10.3390/polysaccharides5020011
Chicago/Turabian StyleHore, Rana, Haroon Rashid, Frank Syrowatka, and Jörg Kressler. 2024. "Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates" Polysaccharides 5, no. 2: 142-157. https://doi.org/10.3390/polysaccharides5020011
APA StyleHore, R., Rashid, H., Syrowatka, F., & Kressler, J. (2024). Synthesis and Characterization of Self-Assembled Highly Stearate-Grafted Hydroxyethyl Starch Conjugates. Polysaccharides, 5(2), 142-157. https://doi.org/10.3390/polysaccharides5020011