Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (29)

Search Parameters:
Keywords = thermal friction irreversibility

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 3073 KiB  
Article
Thermodynamic Irreversibility of the Flow and Transfer Phenomena Within Streamlined Structures of the Catalytic Reactors
by Mateusz Korpyś, Adam Rotkegel, Anna Gancarczyk, Marzena Iwaniszyn, Katarzyna Sindera, Mikołaj Suwak and Andrzej Kołodziej
Entropy 2025, 27(7), 675; https://doi.org/10.3390/e27070675 - 25 Jun 2025
Viewed by 455
Abstract
An analysis is presented of the irreversibility of flow and thermal phenomena in innovative streamlined structured packing of catalytic chemical reactors. The fundamental equations of irreversible thermodynamics defining entropy production as a result of flow friction and heat transport are formulated. The parameters [...] Read more.
An analysis is presented of the irreversibility of flow and thermal phenomena in innovative streamlined structured packing of catalytic chemical reactors. The fundamental equations of irreversible thermodynamics defining entropy production as a result of flow friction and heat transport are formulated. The parameters describing the flow and heat transport in these equations are determined using the Computational Fluid Dynamics (CFD) methodology. Local entropy production due to flow friction and heat transport in the channel structure is plotted and compared with flow-temperature maps and relations for flow resistance, pressure gradient, and Nusselt number derived from CFD. The calculations were performed for three gas velocities: 0.3; 2.0, and 6.0 ms−1. It was found that the entropy due to flow friction increases strongly with increasing gas velocity, while the entropy due to heat transport decreases with gas velocity, but to a limited extent. These opposing tendencies mean that there is always a minimum of the total entropy production (including these due to flow friction and heat transport), usually for moderate gas velocity. This minimum constitutes the optimum operating point of the reactor from the thermodynamic point of view. Full article
(This article belongs to the Section Thermodynamics)
Show Figures

Figure 1

11 pages, 7256 KiB  
Article
Shock Thermal Resistance of Parachute Fabrics
by Jiří Militký, Jakub Wiener, Dana Křemenáková and Mohanapriya Venkataraman
Eng 2025, 6(4), 80; https://doi.org/10.3390/eng6040080 - 18 Apr 2025
Viewed by 483
Abstract
The use of polyester and polyamide fabrics for parachute constructions has a great advantage because, in comparison with classical silk-based parachutes, they are more durable and suitable for absorbing higher mechanical shocks. Because polyester and polyamides are thermoplastics, they are sensitive to sudden [...] Read more.
The use of polyester and polyamide fabrics for parachute constructions has a great advantage because, in comparison with classical silk-based parachutes, they are more durable and suitable for absorbing higher mechanical shocks. Because polyester and polyamides are thermoplastics, they are sensitive to sudden increases in temperature due to mechanical shocks and high-speed friction. It is known that the local surface temperature of these parachute fabrics may exceed the melting point of the canopy for a short time period during parachute opening, which would have irreversible effects on parachute functionality and could lead to catastrophic parachute rupture. The main aim of this article is to enhance the surface heat resistance of the parachute fabrics from polyamide and polyester filaments through surface coating combined with super-fine TiO2 particles and silanization. This coating is also selected to increase the frictional heat loss and enhance the mechanical stability of parachute fabrics constructed from polyamide and polyester filaments. The changes in air permeability, bending rigidity, and friction of surface-coated parachute fabrics are evaluated as well. The new method based on laser irradiation by a pulsed laser is used for the prediction of these fabrics’ short-time surface thermal resistance. Full article
Show Figures

Figure 1

14 pages, 3383 KiB  
Article
Friction Behaviors and Wear Mechanisms of Carbon Fiber Reinforced Composites for Bridge Cable
by Guijun Xian, Xiao Qi, Rui Guo, Jingwei Tian, Huigang Xiao and Chenggao Li
Polymers 2024, 16(23), 3446; https://doi.org/10.3390/polym16233446 - 9 Dec 2024
Cited by 3 | Viewed by 1803
Abstract
Carbon fiber reinforced epoxy resin composites (CFRP) demonstrate superior wear resistance and fatigue durability, which are anticipated to markedly enhance the service life of structures under complex conditions. In the present paper, the friction behaviors and wear mechanisms of CFRP under different applied [...] Read more.
Carbon fiber reinforced epoxy resin composites (CFRP) demonstrate superior wear resistance and fatigue durability, which are anticipated to markedly enhance the service life of structures under complex conditions. In the present paper, the friction behaviors and wear mechanisms of CFRP under different applied loads, sliding speeds, service temperatures, and water lubrication were studied and analyzed in detail. The results indicated that the tribological properties of CFRP were predominantly influenced by the applied loads, as the tangential displacement generated significant shear stress at the interface of the friction pair. Serviced temperature was the next most impactful factor, while the influence of water lubrication remained minimal. Moreover, when subjected to a load of 2000 g, the wear rate and scratch width of the samples exhibited increases of 158% and 113%, respectively, compared to those loaded with 500 g. This observed escalation in wear characteristics can be attributed to irreversible debonding damage at the fiber/resin interface, leading to severe delamination wear. At elevated temperatures of 100 °C and 120 °C, the wear rate of CFRP increased by 75% and 112% compared to that at room temperature. This augmentation in wear was attributed to the transition of the epoxy resin from a glassy to an elastic state, which facilitated enhanced fatigue wear. Furthermore, both sliding speed and water lubrication displayed a negligible influence on the friction coefficient of CFRP, particularly under water lubrication conditions at 60 °C, where the friction coefficient was only 15%. This was because the lubricant properties and thermal management provided by the water molecules, which mitigated the frictional interactions, led to only minor abrasive wear. In contrast, the wear rate of CFRP at a sliding speed of 120 mm/s was found to be 74% greater than that observed at 60 mm/s. This significant increase can be attributed to the disparity in sliding rates, which induced uncoordinated deformation in the surface and subsurface of the CFRP, resulting in adhesive wear. Full article
(This article belongs to the Section Polymer Processing and Engineering)
Show Figures

Figure 1

20 pages, 5507 KiB  
Article
Analysis of Entropy Generation for Mass and Thermal Mixing Behaviors in Non-Newtonian Nano-Fluids of a Crossing Micromixer
by Ayache Lakhdar, Jribi Skander, Naas Toufik Tayeb, Telha Mostefa, Shakhawat Hossain and Sun Min Kim
Micromachines 2024, 15(11), 1392; https://doi.org/10.3390/mi15111392 - 17 Nov 2024
Viewed by 1473
Abstract
This work’s objective is to investigate the laminar steady flow characteristics of non-Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species transport equations have been solved numerically [...] Read more.
This work’s objective is to investigate the laminar steady flow characteristics of non-Newtonian nano-fluids in a developed chaotic microdevice known as a two-layer crossing channels micromixer (TLCCM). The continuity equation, the 3D momentum equations, and the species transport equations have been solved numerically at low Reynolds numbers with the commercial CFD software Fluent. A procedure has been verified for non-Newtonian flow in studied geometry that is continuously heated. Secondary flows and thermal mixing performance with two distinct intake temperatures of nano-shear thinning fluids is involved. For an extensive range of Reynolds numbers (0.1 to 25), the impact of fluid characteristics and various concentrations of Al2O3 nanoparticles on thermal mixing capabilities and pressure drop were investigated. The simulation for performance enhancement was run using a power-law index (n) at intervals of different nanoparticle concentrations (0.5 to 5%). At high nano-fluid concentrations, our research findings indicate that hydrodynamic and thermal performances are considerably improved for all Reynolds numbers because of the strong chaotic flow. The mass fraction visualization shows that the suggested design has a fast thermal mixing rate that approaches 0.99%. As a consequence of the thermal and hydrodynamic processes, under the effect of chaotic advection, the creation of entropy governs the second law of thermodynamics. Thus, with the least amount of friction and thermal irreversibilities compared to other studied geometries, the TLCCM arrangement confirmed a significant enhancement in the mixing performance. Full article
(This article belongs to the Collection Micromixers: Analysis, Design and Fabrication)
Show Figures

Figure 1

18 pages, 10016 KiB  
Article
Thermal–Hydraulic Performance Analysis of Combined Heat Sink with Open Microchannels and Embedded Pin Fins
by Yifan Li, Tianyu Wang, Zhipeng Wang, Congzhe Zhu, Junlan Yang and Bin Yang
Energies 2024, 17(21), 5301; https://doi.org/10.3390/en17215301 - 25 Oct 2024
Cited by 4 | Viewed by 1402
Abstract
An open type of microchannel with diamond pin fins (OM-DPFs) is introduced for the cooling of high-performance electronic chips. For a Reynolds number (Re) of 247~1173, a three-dimensional model is established to explore the hydrothermal properties of the OM-DPF and compare [...] Read more.
An open type of microchannel with diamond pin fins (OM-DPFs) is introduced for the cooling of high-performance electronic chips. For a Reynolds number (Re) of 247~1173, a three-dimensional model is established to explore the hydrothermal properties of the OM-DPF and compare it to traditional heat sinks with closed rectangular microchannels (RMs), heat sinks with open microchannels (OMs), and the results in the existing research. Firstly, the synergy between tip clearance and pin fins on the hydrothermal properties is discussed. Secondly, the entropy production principle is adopted to analyze the irreversible losses for different heat sinks. Lastly, the total efficiencies of different heat sinks are assessed. The RMs present the worst heat transfer with the lowest friction loss. For the OMs, the temperature and pressure drop are decreased slightly compared to those of the RMs, and the irreversible loss is reduced by 4% at Re = 1173 because of the small tip clearance. But the total efficiency is lower than that of the RMs because the pressure drop advantage is offset by the weak heat transfer. For the OM-DPF, the combined structure has a noticeable impact on the multiple physical fields and hydrothermal characteristics, which present the best thermal performance at the cost of the highest friction loss. The irreversible loss of heat transfer in the OM-DPF is reduced obviously, but the friction irreversible loss significantly increases at high Re values. At Re = 429, the total entropy production of the OM-DPF is reduced by 47.57% compared with the RM. Compared to the OM and the single-pin fin structure in the literature, the total efficiency of the OM-DPF is increased by 14.56% and 40.32% at Re = 614. For a pump power of 0.1 W, the total thermal resistance (Rth) of the OM-DPF is dropped by 23.77% and 21.19% compared to the RM and OM. For a similar Rth, the pump power of the combined structure is 63.64% and 42.86% lower than that of the RM and OM. Thus, the novel combined heat sink can achieve efficient heat removal while controlling the energy consumption of liquid cooling systems, which has bright application prospects. Full article
(This article belongs to the Section J: Thermal Management)
Show Figures

Figure 1

22 pages, 13068 KiB  
Article
Systems and Methods for Transformation and Degradation Analysis
by Jude A. Osara and Michael D. Bryant
Entropy 2024, 26(6), 454; https://doi.org/10.3390/e26060454 - 27 May 2024
Viewed by 2270
Abstract
Modern concepts in irreversible thermodynamics are applied to system transformation and degradation analyses. Phenomenological entropy generation (PEG) theorem is combined with the Degradation-Entropy Generation (DEG) theorem for instantaneous multi-disciplinary, multi-scale, multi-component system characterization. A transformation-PEG theorem and space materialize with system and process [...] Read more.
Modern concepts in irreversible thermodynamics are applied to system transformation and degradation analyses. Phenomenological entropy generation (PEG) theorem is combined with the Degradation-Entropy Generation (DEG) theorem for instantaneous multi-disciplinary, multi-scale, multi-component system characterization. A transformation-PEG theorem and space materialize with system and process defining elements and dimensions. The near-100% accurate, consistent results and features in recent publications demonstrating and applying the new TPEG methods to frictional wear, grease aging, electrochemical power system cycling—including lithium-ion battery thermal runaway—metal fatigue loading and pump flow are collated herein, demonstrating the practicality of the new and universal PEG theorem and the predictive power of models that combine and utilize both theorems. The methodology is useful for design, analysis, prognostics, diagnostics, maintenance and optimization. Full article
(This article belongs to the Special Issue Trends in the Second Law of Thermodynamics)
Show Figures

Figure 1

27 pages, 3988 KiB  
Article
Methods to Calculate Entropy Generation
by Jude A. Osara and Michael D. Bryant
Entropy 2024, 26(3), 237; https://doi.org/10.3390/e26030237 - 7 Mar 2024
Cited by 4 | Viewed by 5147
Abstract
Entropy generation, formulated by combining the first and second laws of thermodynamics with an appropriate thermodynamic potential, emerges as the difference between a phenomenological entropy function and a reversible entropy function. The phenomenological entropy function is evaluated over an irreversible path through thermodynamic [...] Read more.
Entropy generation, formulated by combining the first and second laws of thermodynamics with an appropriate thermodynamic potential, emerges as the difference between a phenomenological entropy function and a reversible entropy function. The phenomenological entropy function is evaluated over an irreversible path through thermodynamic state space via real-time measurements of thermodynamic states. The reversible entropy function is calculated along an ideal reversible path through the same state space. Entropy generation models for various classes of systems—thermal, externally loaded, internally reactive, open and closed—are developed via selection of suitable thermodynamic potentials. Here we simplify thermodynamic principles to specify convenient and consistently accurate system governing equations and characterization models. The formulations introduce a new and universal Phenomenological Entropy Generation (PEG) theorem. The systems and methods presented—and demonstrated on frictional wear, grease degradation, battery charging and discharging, metal fatigue and pump flow—can be used for design, analysis, and support of diagnostic monitoring and optimization. Full article
(This article belongs to the Special Issue Trends in the Second Law of Thermodynamics)
Show Figures

Graphical abstract

39 pages, 5033 KiB  
Article
Reasoning and Logical Proofs of the Fundamental Laws: “No Hope” for the Challengers of the Second Law of Thermodynamics
by Milivoje Kostic
Entropy 2023, 25(7), 1106; https://doi.org/10.3390/e25071106 - 24 Jul 2023
Cited by 2 | Viewed by 4656
Abstract
This comprehensive treatise is written for the special occasion of the author’s 70th birthday. It presents his lifelong endeavors and reflections with original reasoning and re-interpretations of the most critical and sometimes misleading issues in thermodynamics—since now, we have the advantage to look [...] Read more.
This comprehensive treatise is written for the special occasion of the author’s 70th birthday. It presents his lifelong endeavors and reflections with original reasoning and re-interpretations of the most critical and sometimes misleading issues in thermodynamics—since now, we have the advantage to look at the historical developments more comprehensively and objectively than the pioneers. Starting from Carnot (grand-father of thermodynamics to become) to Kelvin and Clausius (fathers of thermodynamics), and other followers, the most relevant issues are critically examined and put in historical and contemporary perspective. From the original reasoning of generalized “energy forcing and displacement” to the logical proofs of several fundamental laws, to the ubiquity of thermal motion and heat, and the indestructibility of entropy, including the new concept of “thermal roughness” and “inevitability of dissipative irreversibility,” to dissecting “Carnot true reversible-equivalency” and the critical concept of “thermal-transformer,” limited by the newly generalized “Carnot-Clausius heat-work reversible-equivalency (CCHWRE),” regarding the inter-complementarity of heat and work, and to demonstrating “No Hope” for the “Challengers” of the Second Law of thermodynamics, among others, are offered. It is hoped that the novel contributions presented here will enlighten better comprehension and resolve some of the fundamental issues, as well as promote collaboration and future progress. Full article
Show Figures

Figure 1

19 pages, 8948 KiB  
Article
Dual Synthetic Jet Actuator and Its Applications—Part IV: Analysis of Heat Dissipation and Entropy Generation of Liquid Cooling with Dual Synthetic Jet Actuator
by Ying Kang, Zhenbing Luo, Xiong Deng, Yinxin Zhu and Zhixun Xia
Actuators 2022, 11(12), 382; https://doi.org/10.3390/act11120382 - 19 Dec 2022
Cited by 2 | Viewed by 2404
Abstract
Increasing heat flux restricts the development of the miniaturization of electronic devices. There is an urgent need for a heat dissipation method that will efficiently cool the chip. This paper presents a novel liquid cooling device based on dual synthetic jets actuator (DSJA) [...] Read more.
Increasing heat flux restricts the development of the miniaturization of electronic devices. There is an urgent need for a heat dissipation method that will efficiently cool the chip. This paper presents a novel liquid cooling device based on dual synthetic jets actuator (DSJA) technology. The characteristics of the temperature and velocity field of the device are numerically studied by a three-dimensional coupled heat transfer model. The entropy generation rate caused by heat transfer and fluid friction was studied to analyze the effective work loss and irreversibility of the heat transfer process. When the DSJA is turned on, the temperature of the heat source with a heat flux of 200 W/cm2 is 73.07 C, and the maximum velocity is 24.32 m/s. Compared with the condition when the the DSJA is closed, the temperature decreases by 25.15 C, and the velocity increases by nearly 20 m/s. At this time, the total inlet flow is 1.26 L/min. The larger frictional entropy generation is mainly distributed near the inlet and outlet of the channel and the jet orifice. The higher the velocity is, the more obvious the frictional entropy generation is. Due to the large temperature gradient, there is a large thermal entropy generation rate at the fluid–solid interface. Full article
(This article belongs to the Special Issue Active Flow Control: Recent Advances in Fundamentals and Applications)
Show Figures

Figure 1

21 pages, 9452 KiB  
Article
Entropy Analysis of Magnetized Carbon Nanofluid over Axially Rotating Stretching Disk
by Hossam A. Nabwey, Uzma Sultana, Muhammad Mushtaq, Muhammad Ashraf, Ahmed M. Rashad, Sumayyah I. Alshber and Miad Abu Hawsah
Materials 2022, 15(23), 8550; https://doi.org/10.3390/ma15238550 - 30 Nov 2022
Cited by 7 | Viewed by 1215
Abstract
Nanofluids receive recognition from researchers and scientists because of their high thermal transfer rates. They have impactful industrial and technological modules in daily activities. In recent times, the heat transfer rate has been strengthened even more by a certain type of nanofluid known [...] Read more.
Nanofluids receive recognition from researchers and scientists because of their high thermal transfer rates. They have impactful industrial and technological modules in daily activities. In recent times, the heat transfer rate has been strengthened even more by a certain type of nanofluid known as “carbon nanotubes”. The water-based magnetohydrodynamic flow with the nanoparticles MWCNT and SWCNT over an axially rotating stretching disk is highlighted in this article. In addition, the perspectives of viscous dissipation and MHD were taken into consideration. In order to formulate the physical problem, Xue’s model is considered with the thermophysical properties and characteristics of carbon nanofluid. The current modeled system of partial differential equations is transformed into an ordinary differential equation system by the suggesting of the best similarity technique. Later, the transformed system of ordinary differential equations is solved numerically by using the Keller box method and the shooting method. Figures and charts are used to study and elaborate the physical behavior of the key subjective flow field parameters. The saturation in the base fluid is considered in both kinds of carbon nanotubes, the single-wall (SWCNTs) and the multiwall (MWCNTs). It is noted that the heat transfer mechanism shows some delaying behavior due to the increase in the Eckert number and the volume fraction elevation values. For the larger volume fraction values and the magnetic parameter, the skin friction increases. In addition, while the temperature profile increases with the Biot numbers, it falls for the increasing values of the Prandtl number. Furthermore, it is noted that the irreversibility of the thermal energy is influenced by the Biot number, temperature difference, Brinkmann number, and magnetic field, which all have dynamic effects on the entropy and the Bejan number. Full article
Show Figures

Figure 1

19 pages, 4005 KiB  
Article
Entropy Minimization for Generalized Newtonian Fluid Flow between Converging and Diverging Channels
by Sohail Rehman, Hashim, Abdelaziz Nasr, Sayed M. Eldin and Muhammad Y. Malik
Micromachines 2022, 13(10), 1755; https://doi.org/10.3390/mi13101755 - 17 Oct 2022
Cited by 6 | Viewed by 2054
Abstract
The foremost focus of this article was to investigate the entropy generation in hydromagnetic flow of generalized Newtonian Carreau nanofluid through a converging and diverging channel. In addition, a heat transport analysis was performed for Carreau nanofluid using the Buongiorno model in the [...] Read more.
The foremost focus of this article was to investigate the entropy generation in hydromagnetic flow of generalized Newtonian Carreau nanofluid through a converging and diverging channel. In addition, a heat transport analysis was performed for Carreau nanofluid using the Buongiorno model in the presence of viscous dissipation and Joule heating. The second law of thermodynamics was employed to model the governing flow transport along with entropy generation arising within the system. Entropy optimization analysis is accentuated as its minimization is the best measure to enhance the efficiency of thermal systems. This irreversibility computation and optimization were carried out in the dimensional form to obtain a better picture of the system’s entropy generation. With the help of proper dimensionless transformations, the modeled flow equations were converted into a system of non-linear ordinary differential equations. The numerical solutions were derived using an efficient numerical method, the Runge–Kutta Fehlberg method in conjunction with the shooting technique. The computed results were presented graphically through different profiles of velocity, temperature, concentration, entropy production, and Bejan number. From the acquired results, we perceive that entropy generation is augmented with higher Brinkman and Reynolds numbers. It is significant to mention that the system’s entropy production grew near its two walls, where the irreversibility of heat transfer predominates, in contrast to the channel’s center, where the irreversibility of frictional force predominates. These results serve as a valuable guide for designing and optimizing channels with diverging–converging profiles required in several heat-transfer applications. Full article
(This article belongs to the Special Issue Heat and Mass Transfer in Micro/Nanoscale)
Show Figures

Figure 1

19 pages, 5222 KiB  
Article
Sustainability and Cost Effectiveness Analysis of Staggered Jet Impingement on Solar Thermal Collector
by Rajesh Maithani, Anil Kumar, Manoj Kumar and Sachin Sharma
Energies 2022, 15(19), 7345; https://doi.org/10.3390/en15197345 - 6 Oct 2022
Cited by 8 | Viewed by 1653
Abstract
The sustainability index, waste energy ratio and improvement potential of a staggered air jet impingement on the staggered spherical protrusions of a roughened absorber plate were derived for the present study to evaluate exergy losses and irreversibility in the system. The experimental analysis [...] Read more.
The sustainability index, waste energy ratio and improvement potential of a staggered air jet impingement on the staggered spherical protrusions of a roughened absorber plate were derived for the present study to evaluate exergy losses and irreversibility in the system. The experimental analysis was carried out for selected parameters: relative streamwise pitch, relative spanwise pitch and relative jet diameter to hydraulic diameter ratio. The flow Reynolds number ranged from 4000–18,000. The augmentation in Nusselt number and friction factor compared to a smooth surface was 4.9 and 12.4 times, respectively. The statistical correlation developed determined the maximum thermohydraulic performance parameter and exergetic efficiency be 3.02 and 3.87%, respectively. The magnitude of the sustainability index, waste energy ratio and improvement potential was found to be 1.0347, 0.962 and 10.84, respectively, for the entire range of tested parameters. A cost analysis was also performed to evaluate the cost-effectiveness of the solar thermal system with and without turbulent promoters. Full article
(This article belongs to the Special Issue Latest Research in Renewable Energy for Sustainable Development)
Show Figures

Figure 1

15 pages, 5930 KiB  
Article
2D MHD Mixed Convection in a Zigzag Trapezoidal Thermal Energy Storage System Using NEPCM
by Aissa Abderrahmane, Obai Younis, Mohammad Al-Khaleel, Houssem Laidoudi, Nevzat Akkurt, Kamel Guedri and Riadh Marzouki
Nanomaterials 2022, 12(19), 3270; https://doi.org/10.3390/nano12193270 - 20 Sep 2022
Cited by 23 | Viewed by 2492
Abstract
In a magnetic field, two-dimensional (2D) mixed convection is investigated within a zigzagged trapezoidal chamber. The lower side of the trapezoidal chamber is irregular, in particular, a zigzagged wall with different zigzag numbers N. The fluid particles move in the room due to [...] Read more.
In a magnetic field, two-dimensional (2D) mixed convection is investigated within a zigzagged trapezoidal chamber. The lower side of the trapezoidal chamber is irregular, in particular, a zigzagged wall with different zigzag numbers N. The fluid particles move in the room due to the motion of the upper wall, while the porosity-enthalpy approach represents the melting process. The thermal parameters of the fluid are enhanced by what is called a nano-encapsulated phase change material (NEPCM) consisting of polyurethane as the shell and a nonadecane as the core, while water is used as the base fluid. In order to treat the governing equations, the well-known Galerkin finite element method (GFEM) is applied. In addition, the heat transfer (HT) irreversibility and the fluid friction (FF) irreversibility are compared in terms of the average Bejan number. The main results show that the melt band curve behaves parabolically at smaller values of Reynolds number (Re) and larger values of Hartmann number (Ha). Moreover, minimizing the wave number is better in order to obtain a higher heat transfer rate. Full article
(This article belongs to the Special Issue Nanostructured Materials for Energy Applications)
Show Figures

Figure 1

28 pages, 4801 KiB  
Article
Four-Objective Optimization for an Irreversible Porous Medium Cycle with Linear Variation in Working Fluid’s Specific Heat
by Pengchao Zang, Lingen Chen, Yanlin Ge, Shuangshuang Shi and Huijun Feng
Entropy 2022, 24(8), 1074; https://doi.org/10.3390/e24081074 - 3 Aug 2022
Cited by 13 | Viewed by 1677
Abstract
Considering that the specific heat of the working fluid varies linearly with its temperature, this paper applies finite time thermodynamic theory and NSGA-II to conduct thermodynamic analysis and multi-objective optimization for irreversible porous medium cycle. The effects of working fluid’s variable-specific heat characteristics, [...] Read more.
Considering that the specific heat of the working fluid varies linearly with its temperature, this paper applies finite time thermodynamic theory and NSGA-II to conduct thermodynamic analysis and multi-objective optimization for irreversible porous medium cycle. The effects of working fluid’s variable-specific heat characteristics, heat transfer, friction and internal irreversibility losses on cycle power density and ecological function characteristics are analyzed. The relationship between power density and ecological function versus compression ratio or thermal efficiency are obtained. When operating in the circumstances of maximum power density, the thermal efficiency of the porous medium cycle engine is higher and its size is less than when operating in the circumstances of maximum power output, and it is also more efficient when operating in the circumstances of maximum ecological function. The four objectives of dimensionless power density, dimensionless power output, thermal efficiency and dimensionless ecological function are optimized simultaneously, and the Pareto front with a set of solutions is obtained. The best results are obtained in two-objective optimization, targeting power output and thermal efficiency, which indicates that the optimal results of the multi-objective are better than that of one-objective. Full article
(This article belongs to the Special Issue Heat-Powered Systems)
Show Figures

Figure 1

18 pages, 7556 KiB  
Article
Thermal Case Study of Cilia Actuated Transport of Radiated Blood-Based Ternary Nanofluid under the Action of Tilted Magnetic Field
by Najma Saleem, Tahreem Ashraf, Ibtisam Daqqa, Sufian Munawar, Nazeran Idrees, Farkhanda Afzal and Deeba Afzal
Coatings 2022, 12(6), 873; https://doi.org/10.3390/coatings12060873 - 20 Jun 2022
Cited by 23 | Viewed by 2798
Abstract
Micro/nanoscale fabricated devices have widely been used in modern technology and bioengineering as they offer excellent heat transfer. Removal of excess heat, coolant selection, rapid mixing, and handling proportion of colloidal metallic nanogranules in the base fluid are the main challenges in micro/nanofluidic [...] Read more.
Micro/nanoscale fabricated devices have widely been used in modern technology and bioengineering as they offer excellent heat transfer. Removal of excess heat, coolant selection, rapid mixing, and handling proportion of colloidal metallic nanogranules in the base fluid are the main challenges in micro/nanofluidic systems. To address these problems, the primary motivation of the intended mathematical flow problem is to investigate the thermal and flow aspects of blood-based ternary nanofluid in the presence of inclined magnetic field and thermal radiations through a microfluidic pump with elastic walls. Further, the pump inner surface is smeared with fabricated cilia. The embedded cilia blow in coordination to start metachronal travelling waves along the pump wall that assist homogenous mixing and manipulation. The entire analysis is conducted in moving frame and simplified under lubrication and Rosseland approximations. Numerical solution of various flow and thermal entities are computed via the shooting method and plotted for different values of the parameters of interest. A comparative glimpse allows us to conclude that the trimetallic blood-based nanofluid exhibits elevated heat transfer rate by 12–18%, bi-metallic by about 11–12%, and mono nanofluid by about 6% compared to the conventional blood model. The study also determines that the prolonged cilia commence augmentation in flowrate and pressure-gradient around the pump deep portion. Furthermore, the radiated ternary liquid under fragile magnetic field effects may contribute to the cooling process by eliminating unnecessary heat from the system. It is also noticed that around the ciliated wall, the heat transfer irreversibility effects are appreciable over the fluid frictional irreversibility. Full article
(This article belongs to the Special Issue New Advances in Interfacial Mass Transfer)
Show Figures

Figure 1

Back to TopTop