Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (971)

Search Parameters:
Keywords = thermal comfort indices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 4148 KB  
Article
The Surface Is Not Superficial: Utilizing Hyper-Local Thermal Photogrammetry for Pedestrian Thermal Comfort Inquiry
by Logan Steinharter, Peter C. Ibsen, Priyanka deSouza and Melissa R. McHale
Remote Sens. 2026, 18(2), 348; https://doi.org/10.3390/rs18020348 - 20 Jan 2026
Abstract
The scale and magnitude of urban heating are often assessed using Satellite-Derived Land Surface Temperature (SD-LST). Yet, discrepancies in spatial resolution limit SD-LST’s ability to reflect pedestrian thermal experience, potentially leading to ineffective mitigation strategies. Hyper-local measurements of urban heat, defined as surface [...] Read more.
The scale and magnitude of urban heating are often assessed using Satellite-Derived Land Surface Temperature (SD-LST). Yet, discrepancies in spatial resolution limit SD-LST’s ability to reflect pedestrian thermal experience, potentially leading to ineffective mitigation strategies. Hyper-local measurements of urban heat, defined as surface temperatures (TS) at the scale of pedestrian activity (e.g., bus stops or street segments), may provide more accurate insights into thermal comfort. This study compares hyper-local ~0.01 m resolution TS collected via consumer-grade Forward-Looking Infrared (FLIR) thermography with resampled 30 m resolution SD-LST from Landsat 8 and 9 images to evaluate their utility in predicting thermal comfort indices across 60 bus stops in Denver, Colorado. During the summer of 2023, 270 FLIR measurements were collected over 19 dates, with a four-day subset (n = 33) coinciding with Landsat imagery. FLIR TS averaged 25.12 ± 5.39 °C, while SD-LST averaged 35.90 ± 12.56 °C, a significant 10.77 °C difference (95% CI: 6.81–14.73; p < 0.001). FLIR TS strongly correlated with biometeorological metrics such as air temperature and mean radiant temperature (r > 0.8; p < 0.001), while SD-LST correlations were weak (r < 0.3). Linear mixed-effects models using FLIR TS explained 50–66% of the variance in thermal comfort indices and met ISO 7726 standards. Each 1 °C increase in FLIR TS predicted a 0.75 °C rise in mean radiant temperature. These results highlight hyper-local thermography as a reliable, low-cost tool for urban heat resilience planning. Full article
22 pages, 3512 KB  
Article
Numerical Analysis of the Impact of Air Conditioning Operating Parameters on Thermal Comfort in a Classroom in Hot Climate Regions
by Guillermo Efren Ovando-Chacon, Enrique Cruz-Octaviano, Abelardo Rodriguez-Leon, Sandy Luz Ovando-Chacon and Ricardo Francisco Martinez-Gonzalez
Buildings 2026, 16(2), 400; https://doi.org/10.3390/buildings16020400 - 18 Jan 2026
Viewed by 36
Abstract
Achieving adequate thermal comfort in classrooms in hot cities in southern Mexico is challenging. A heterogeneous distribution of air conditioning flow leads to thermal discomfort, affecting occupants’ academic performance and increasing energy consumption. This study evaluates the thermal comfort of occupants in an [...] Read more.
Achieving adequate thermal comfort in classrooms in hot cities in southern Mexico is challenging. A heterogeneous distribution of air conditioning flow leads to thermal discomfort, affecting occupants’ academic performance and increasing energy consumption. This study evaluates the thermal comfort of occupants in an air conditioned classroom using computational fluid dynamics. We determined the effects of variations in air conditioning operating parameters (supply angle, velocity, and temperature) on PMV and modified PMV indices. An operating configuration of 60°, 3 m/s, and 22 °C ensures that thermal comfort remains within regulations while optimizing energy consumption, in contrast to the original PMV model. Using the modified PMV model, the values are 0.38 for students and 0.31 for the teacher, with percentages of dissatisfied individuals of 10% and 7.7%, respectively. This study demonstrates the importance of analyzing air conditioning operating parameters to enhance thermal comfort while reducing energy consumption. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

16 pages, 2496 KB  
Article
A Comparative Analysis of Thermal Discomfort Assessment Approaches in Residential Buildings Under Different Solar Orientations and Use Patterns
by Kácia Henderson Barbosa, Taylana Piccinini Scolaro and Enedir Ghisi
Sustainability 2026, 18(2), 892; https://doi.org/10.3390/su18020892 - 15 Jan 2026
Viewed by 116
Abstract
In horizontal condominiums, where standardised designs are often implemented without considering the surroundings, thermal discomfort can be significant. This study compares two thermal discomfort assessment approaches (mean degree-hour and bioclimatic chart) using computer simulations in the EnergyPlus programme, considering different building solar orientations [...] Read more.
In horizontal condominiums, where standardised designs are often implemented without considering the surroundings, thermal discomfort can be significant. This study compares two thermal discomfort assessment approaches (mean degree-hour and bioclimatic chart) using computer simulations in the EnergyPlus programme, considering different building solar orientations and use patterns. The comparison of approaches allowed the annual percentage of time outside the comfort zone to be quantified. According to the bioclimatic chart, in the most critical room, the proportion of discomfort hours was 16.2%, which could be reduced to 12.3% by changing the solar orientation. According to the mean degree-hour approach, the room with the highest discomfort registered 1.8 mean degree-hours, a value that could decrease to 0.91 by changing the solar orientation. However, it was observed that the use patterns of the rooms may limit the potential for reducing discomfort. Overall, both approaches indicated that north and south orientations tend to lead to less discomfort. However, in some cases, the bioclimatic chart identified east, northeast, and southeast orientations as more suitable alternatives. The differences between the methods were mainly attributed to the parameters adopted by each approach. By analysing different thermal comfort assessment approaches, the study highlights how methodological choices influence the interpretation of thermal discomfort while confirming that solar orientation remains a relevant passive strategy whose effectiveness depends on room use patterns, thereby supporting occupants’ well-being and contributing to environmental and energy sustainability in residential buildings. Full article
Show Figures

Figure 1

14 pages, 2804 KB  
Communication
Design and Thermal Evaluation of a Soft Textile System with a Removable Gel Cooling Panel
by Radostina A. Angelova, Lilia Belova, Daniela Sofronova and Elena Borisova
Appl. Sci. 2026, 16(2), 857; https://doi.org/10.3390/app16020857 - 14 Jan 2026
Viewed by 57
Abstract
The study presents the thermal evaluation of soft knitted textile systems with removable gel cooling panels. Two prototype configurations with different geometries and gel panel sizes were investigated using infrared thermography under controlled laboratory conditions. The results show a moderated and gradual cooling [...] Read more.
The study presents the thermal evaluation of soft knitted textile systems with removable gel cooling panels. Two prototype configurations with different geometries and gel panel sizes were investigated using infrared thermography under controlled laboratory conditions. The results show a moderated and gradual cooling response during contact. The strongest surface cooling occurred shortly after contact, followed by a gradual increase in the surface temperature of the textile system due to heat transfer from the skin-temperature simulator. While the temperature of the skin-temperature simulator stabilised rapidly, the textile surface maintained a perceptible cooling effect over a longer period. Surface temperatures remained within ranges associated with comfort and safety under the applied experimental conditions. The findings indicate that system geometry and gel panel size influence heat exchange, while the knitted textile structure contributes to the observed cooling behaviour of the complete system. The results support the potential of knitted textile systems with removable gel cooling panels for gentle, localised cooling applications in controlled, non-clinical settings. Full article
Show Figures

Figure 1

22 pages, 1848 KB  
Article
Thermophysiological and Subjective Thermal Responses to Soft and Rigid Spinal Exoskeletons in Young Male Workers: An Experimental Study
by Yang Liu, Zhuoya Zhang, Yanmin Xue, Mengcheng Wang, Hao Fan, Rui Li, Zhi Qiao and Xingbo Yao
Appl. Sci. 2026, 16(2), 820; https://doi.org/10.3390/app16020820 - 13 Jan 2026
Viewed by 122
Abstract
In industrial and logistics settings, the use of soft and rigid spinal exoskeletons has been increasing. However, under a unified assistance level and comparable work scenarios, systematic comparisons of their effects on users’ thermophysiological responses and subjective thermal perceptions remain limited. Twenty male [...] Read more.
In industrial and logistics settings, the use of soft and rigid spinal exoskeletons has been increasing. However, under a unified assistance level and comparable work scenarios, systematic comparisons of their effects on users’ thermophysiological responses and subjective thermal perceptions remain limited. Twenty male participants performed manual handling tasks under three load conditions (5, 10, and 15 kg) in three experimental conditions: without the exoskeleton (WEXO), a rigid exoskeleton (REXO), and a soft exoskeleton (SEXO). Metabolic rate, mean skin temperature (MST), thermal comfort vote (TCV), and thermal sensation vote (TSV) were measured. The key findings are as follows: Compared with WEXO, both exoskeletons significantly reduced metabolic rate. Across all loads, SEXO yielded a lower metabolic rate than REXO and showed a more gradual linear increase as the load increased, whereas REXO exhibited a larger rise at 15 kg. Overall, MST was higher in REXO than in SEXO. Wearing an exoskeleton was often associated with increased skin temperature at 5–10 kg, yet MST decreased for both exoskeletons at 15 kg. Subjective ratings further indicated better TCV and TSV with SEXO than with REXO, with the difference more pronounced under higher loads. Taken together, under the conditions of this study, the soft exoskeleton appears to better balance assistive benefits and thermal comfort. Nevertheless, its heat transfer and heat dissipation performance should be further optimized in future designs. Full article
(This article belongs to the Special Issue Human-Centered Design in Wearable Technology)
Show Figures

Figure 1

47 pages, 2718 KB  
Review
A Systematic Review of the Scalability of Building-Integrated Photovoltaics from a Multidisciplinary Perspective
by Baitong Li, Dian Zhou, Mengyuan Zhou, Duo Xu, Qian Zhang, Yingtao Qi, Zongzhou Zhu and Yujun Yang
Buildings 2026, 16(2), 332; https://doi.org/10.3390/buildings16020332 - 13 Jan 2026
Viewed by 115
Abstract
Over the past two decades, Building-Integrated Photovoltaics (BIPV) has become a core technology in the green building sector, driven by global carbon-neutrality goals and the growing demand for sustainable design. This review adopts a scalability-oriented perspective and systematically examines 82 peer-reviewed articles published [...] Read more.
Over the past two decades, Building-Integrated Photovoltaics (BIPV) has become a core technology in the green building sector, driven by global carbon-neutrality goals and the growing demand for sustainable design. This review adopts a scalability-oriented perspective and systematically examines 82 peer-reviewed articles published between 2001 and 2025. The results indicate that existing research is dominated by studies on electrical and thermal performance, with East Asia and Europe—particularly China, Japan, and Germany—emerging as the most active regions. This dominance matters for scalability because real projects must satisfy comfort, compliance, buildability, and operation/maintenance constraints alongside energy yield; limited evidence in these dimensions increases delivery risk when transferring solutions across regions and building types. Accordingly, we interpret the observed distribution as an evidence-maturity pattern: performance gains are increasingly well characterized, whereas deployment-relevant uncertainties (e.g., boundary-condition sensitivity and validation depth) remain less consistently reported. Multidimensional integration of thermal, optical, and electrical functions is gaining momentum; however, user-centered performance dimensions remain underexplored. Simulation-based approaches still prevail, whereas large-scale empirical studies are limited. The review also reveals extensive interdisciplinary collaboration but also identifies a notable lack of architectural perspectives. Using Biblioshiny, this study maps co-authorship networks and research structures. Based on the evidence, we propose future research directions to enhance the practical scalability of BIPV, including strengthening interdisciplinary integration, expanding empirical validation, and developing product-level design strategies. Full article
(This article belongs to the Special Issue Carbon-Neutral Pathways for Urban Building Design)
Show Figures

Figure 1

32 pages, 3689 KB  
Article
Impact of Urban Morphology on Microclimate and Thermal Comfort in Arid Cities: A Comparative Study and Modeling in Béchar
by Fatima Zohra Benlahbib, Djamel Alkama, Naima Hadj Mohamed, Zouaoui R. Harrat, Saïd Bennaceur, Ercan Işık, Fatih Avcil, Nahla Hilal, Sheelan Mahmoud Hama and Marijana Hadzima-Nyarko
Sustainability 2026, 18(2), 659; https://doi.org/10.3390/su18020659 - 8 Jan 2026
Viewed by 240
Abstract
Urban morphology plays a decisive role in regulating microclimate and outdoor thermal comfort in arid cities, where extreme heat and intense solar radiation amplify thermal stress. This study examines the influence of four contrasting urban fabrics in Béchar (Algerian Sahara): the vernacular Ksar, [...] Read more.
Urban morphology plays a decisive role in regulating microclimate and outdoor thermal comfort in arid cities, where extreme heat and intense solar radiation amplify thermal stress. This study examines the influence of four contrasting urban fabrics in Béchar (Algerian Sahara): the vernacular Ksar, the regular-grid colonial fabric, a modern large-scale residential estate, and low-density detached housing, on local microclimatic conditions. An integrated methodological framework is adopted, combining qualitative morphological analysis, quantitative indicators including density, porosity, height-to-width ratio, and sky view factor, in situ microclimatic measurements, and high-resolution ENVI-met simulations performed for the hottest summer day. Results show that compact urban forms, characterized by low sky view factor values, markedly reduce radiative exposure and improve thermal performance. The vernacular Ksar, exhibiting the lowest SVF, records the lowest mean radiant temperature (approximately 45 °C) and the most favorable average comfort conditions (PMV = 3.77; UTCI = 38.37 °C), representing a reduction of about 3 °C, while its high-thermal-inertia earthen materials ensure effective nocturnal thermal recovery (PMV ≈ 1.06; UTCI = 27.8 °C at 06:00). In contrast, more open modern fabrics, including the colonial grid, large-scale estates, and low-density housing, experience higher thermal stress, reflecting vulnerability to solar exposure and limited thermal inertia. Validation against field measurements confirms model reliability. These findings highlight the continued relevance of vernacular bioclimatic principles for sustainable urban design in arid climates. Full article
(This article belongs to the Section Green Building)
Show Figures

Figure 1

14 pages, 4201 KB  
Article
Under the Heat of Tradition: Thermal Comfort During Summer Correfocs in Catalonia (1950–2023)
by Jon Xavier Olano Pozo, Anna Boqué-Ciurana and Òscar Saladié
Climate 2026, 14(1), 15; https://doi.org/10.3390/cli14010015 - 8 Jan 2026
Viewed by 445
Abstract
Cultural practices such as Catalonia’s correfocs (fire parades) represent a vibrant expression of intangible heritage. Outdoor activities are conditioned by weather and threatened by climate change. This study analyses the long-term evolution of night-time thermal conditions during correfoc festivals performed in six Catalan [...] Read more.
Cultural practices such as Catalonia’s correfocs (fire parades) represent a vibrant expression of intangible heritage. Outdoor activities are conditioned by weather and threatened by climate change. This study analyses the long-term evolution of night-time thermal conditions during correfoc festivals performed in six Catalan towns located on the coast and in the pre-coastal region from 1950 to 2023, using reanalysis-based indicators of air temperature, humidity, and perceived heat as a first exploratory step prior to incorporating in situ meteorological records. Specifically, the Heat Index (HI) and the Universal Thermal Climate Index (UTCI) were computed for the typical event window (21:00–23:00 local time) to assess changes in human thermal comfort. Results reveal a clear and statistically significant warming trend in most pre-coastal locations—particularly Reus, El Vendrell, and Vilafranca—while coastal cities such as Barcelona exhibit weaker or non-significant changes, likely due to maritime moderation. The frequency and intensity of positive temperature anomalies have increased since the 1990s, with a growing proportion of events falling into “caution” or “moderate heat stress” categories under HI and UTCI classifications. These findings demonstrate that correfocs are now celebrated under markedly warmer night-time conditions than in the mid-twentieth century, implying a tangible rise in thermal discomfort and potential safety risks for participants. By integrating climatic and cultural perspectives, this research shows that rising night-time heat can constrain attendance, participation conditions, and event scheduling for correfocs, thereby directly exposing weather-sensitive form of intangible cultural heritage to climate risks. It therefore underscores the need for climate adaptation frameworks and to promote context-specific strategies to sustain these community-based traditions under ongoing Mediterranean warming. Full article
Show Figures

Figure 1

19 pages, 1499 KB  
Article
A Supervised Deep Learning Model Was Developed to Classify Nelore Cattle (Bos indicus) with Heat Stress in the Brazilian Amazon
by Welligton Conceição da Silva, Jamile Andréa Rodrigues da Silva, Lucietta Guerreiro Martorano, Éder Bruno Rebelo da Silva, Cláudio Vieira de Araújo, Raimundo Nonato Colares Camargo-Júnior, Kedson Alessandri Lobo Neves, Tatiane Silva Belo, Leonel António Joaquim, Thomaz Cyro Guimarães de Carvalho Rodrigues, André Guimarães Maciel e Silva and José de Brito Lourenço-Júnior
Animals 2026, 16(2), 161; https://doi.org/10.3390/ani16020161 - 6 Jan 2026
Viewed by 268
Abstract
Non-invasive and intelligent technologies have been utilized to monitor agricultural systems in real time, facilitating expedient decision-making and the reduction in animal stress in diverse climatic conditions. The objective of this study was to develop a deep learning supervised model to classify Nelore [...] Read more.
Non-invasive and intelligent technologies have been utilized to monitor agricultural systems in real time, facilitating expedient decision-making and the reduction in animal stress in diverse climatic conditions. The objective of this study was to develop a deep learning supervised model to classify Nelore cattle (Bos indicus) into two groups: those in comfort and those under thermal stress. Thirty cattle, aged between 18 and 20 months, were evaluated between June and December 2023, resulting in 676 samples collected across four daily periods (6:00, 12:00, 18:00, and 24:00). Biotic variables included rectal temperature (RT) and respiratory rate (RR), while abiotic variables included air temperature (AT) and relative humidity (RH). The neural network model exhibited an accuracy and recall of 72% but a low specificity of 42%. These metrics indicate that while the model is effective in detecting stress situations, it faces challenges in correctly identifying animals in thermal comfort, likely due to class imbalance and the need for additional input features to capture environmental adaptability. Consequently, it can be posited that supervised learning models are valuable tools for precision livestock farming, provided that discriminatory limitations are mitigated by refining input characteristics and data balancing. Full article
Show Figures

Figure 1

27 pages, 26077 KB  
Article
Sustaining Vernacular Heritage: Challenges and Strategies for Residential Conservation in Suzhou’s Pingjiang Historical Block
by Weixuan Chao, Hirotsugu Kanno, Iain McTaggart and Takayo Negishi
Heritage 2026, 9(1), 16; https://doi.org/10.3390/heritage9010016 - 6 Jan 2026
Viewed by 181
Abstract
Despite its status as a heritage model, Suzhou’s Pingjiang Historic Block suffers from a significant “conservation deficit”. The current study quantifies this decay and identifies its socio-economic drivers through a field survey of 517 traditional residences and a multivariate analysis of 188 resident [...] Read more.
Despite its status as a heritage model, Suzhou’s Pingjiang Historic Block suffers from a significant “conservation deficit”. The current study quantifies this decay and identifies its socio-economic drivers through a field survey of 517 traditional residences and a multivariate analysis of 188 resident households. The results reveal widespread degradation, including 32% roof damage and 55% unauthorized window replacements. Binary logistic regression identifies institutional status (hukou) as the decisive predictor of housing integrity (β = −0.544). Non-local migrants, trapped by tenure insecurity, exhibit significantly higher damage rates (53.5%). In contrast, local residents, driven by an “Aging Trap” and thermal comfort needs, are the primary drivers of adaptive window replacements (OR = 2.71). These findings indicate that current static policies are failing to address structural misalignments between preservation mandates and resident reality. The study advocates for a shift towards “Adaptive Integrity”, proposing tenure integration for migrants and technical retrofitting support for the aging local population to reconcile heritage protection with contemporary living needs. Full article
(This article belongs to the Section Architectural Heritage)
Show Figures

Figure 1

30 pages, 1305 KB  
Article
Industrial Energy Efficiency Versus Energy Poverty in the European Union: Macroeconomic and Social Relationships
by Bożena Gajdzik, Rafał Nagaj, Brigita Žuromskaitė-Nagaj and Radosław Wolniak
Energies 2026, 19(1), 267; https://doi.org/10.3390/en19010267 - 4 Jan 2026
Viewed by 359
Abstract
This paper examines the impact of industrial energy efficiency on household energy poverty in the twenty-seven Member States of the European Union for the period 2003–2023. Although the literature has widely discussed energy efficiency as an enabler of decarbonisation and economic performance, its [...] Read more.
This paper examines the impact of industrial energy efficiency on household energy poverty in the twenty-seven Member States of the European Union for the period 2003–2023. Although the literature has widely discussed energy efficiency as an enabler of decarbonisation and economic performance, its direct link to energy poverty at the macro level has rarely been analysed, let alone with respect to structural changes in industry. Filling this gap, this paper evaluates whether reductions in industrial energy intensity result in reduced energy poverty, understood as the share of households unable to maintain adequate indoor thermal comfort. Empirical analysis relies on a balanced panel dataset and uses fixed-effects regression models to take into account unobserved country-specific and time-specific heterogeneity. In addition, potential endogeneity between industrial energy intensity and labour productivity is addressed by the instrumental variable approach using two-stage least squares. The main models also include key macroeconomic and social control variables: real GDP per capita, social benefit expenditure, electricity prices for households, and unit labour costs. The results yield a robust and statistically significant positive link between industrial energy intensity and energy poverty, suggesting that efficiency improvements in industry make a quantifiable difference in household energy deprivation. This effect even increases in strength after the correction for endogeneity, thereby corroborating the causal relevance of productivity-driven efficiency gains. The findings also show substantial heterogeneity between EU Member States, indicating that national structural features will determine baseline levels of energy poverty. However, no strong evidence is found for an indirect price-mediated transmission mechanism or for moderation effects bound to income levels or social expenditure. This study provides sound empirical evidence that industrial energy efficiency is an important but structurally conditioned lever to alleviate energy poverty in the European Union. The results emphasise the integration of industrial efficiency policies with social and institutional frameworks while designing strategies for a just and inclusive energy transition. Full article
Show Figures

Figure 1

28 pages, 3100 KB  
Article
Linking Health, Comfort and Indoor Environmental Quality in Classrooms with Mechanical Ventilation or Window Airing: A Controlled Observational Study
by Susanna Bordin, Renate Weisböck-Erdheim, Sebastian Hummel, Barbara Fixl, Jonathan Griener, Arno Dentel and Arnulf Josef Hartl
Buildings 2026, 16(1), 217; https://doi.org/10.3390/buildings16010217 - 3 Jan 2026
Viewed by 393
Abstract
Effective classroom ventilation is essential for indoor environmental quality (IEQ), comfort and health of schoolchildren, who spend substantial time indoors. This controlled observational study compared manual window airing (WA) with decentralized mechanical ventilation (DV) in six classrooms of two elementary schools during the [...] Read more.
Effective classroom ventilation is essential for indoor environmental quality (IEQ), comfort and health of schoolchildren, who spend substantial time indoors. This controlled observational study compared manual window airing (WA) with decentralized mechanical ventilation (DV) in six classrooms of two elementary schools during the winter infection period. Symptoms of upper respiratory tract infections, salivary biomarkers, well-being, perceived comfort, and classroom-level IEQ were assessed through questionnaires, saliva samples and long-term monitoring. Ninety-eight schoolchildren participated (64 WA, 34 DV). Symptom-based outcomes of the WURSS-K questionnaire showed consistently lower illness burden in group DV, with several parameters reaching statistical significance and an absolute risk reduction of 7.8%. Salivary immunoglobulin A (sIgA) concentrations were also significantly lower in group DV (approximately 39–59%, p ≤ 0.01). Sensitivity analyses showed positive associations of CO2 and PM2.5 with sIgA and indicated that PM2.5 exposure accounted for group differences. Comfort perceptions mirrored measured IEQ: DV classrooms exhibited warmer, more stable thermal conditions, lower CO2 and PM2.5, and slightly better thermal and draught-related impressions. Overall, decentralized mechanical ventilation supported favorable IEQ and comfort and may influence mucosal immune activity through reduced particulate exposure, complementing the observed reduction in symptom burden. A multidimensional approach integrating medical outcomes with continuous IEQ monitoring proved valuable and should be expanded in larger, balanced cohort studies. Full article
Show Figures

Figure 1

23 pages, 3015 KB  
Article
Comparative Study on Surface Heating Systems with and Without External Shading: Effects on Indoor Thermal Environment
by Małgorzata Fedorczak-Cisak, Elżbieta Radziszewska-Zielina, Mirosław Dechnik, Aleksandra Buda-Chowaniec, Anna Romańska and Anna Dudzińska
Energies 2026, 19(1), 223; https://doi.org/10.3390/en19010223 - 31 Dec 2025
Viewed by 313
Abstract
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, [...] Read more.
The three key design criteria for nearly zero-energy buildings (nZEBs) and climate-neutral buildings are minimizing energy use, ensuring high occupant comfort, and reducing environmental impact. Thermal comfort is one of the main components of indoor environmental quality (IEQ), strongly affecting occupants’ health, well-being, and productivity. As energy-efficiency requirements become more demanding, the appropriate selection of heating systems, their automated control, and the management of solar heat gains are becoming increasingly important. This study investigates the influence of two low-temperature radiant heating systems—underfloor and wall-mounted—and the use of Venetian blinds on perceived thermal comfort in a highly glazed public nZEB building located in a densely built urban area within a temperate climate zone. The assessment was based on the PMV (Predicted Mean Vote) index, commonly used in IEQ research. The results show that both heating systems maintained indoor conditions corresponding to comfort or slight thermal stress under steady state operation. However, during periods of strong solar exposure in the room without blinds, PMV values exceeded 2.0, indicating substantial heat stress. In contrast, external Venetian blinds significantly stabilized the indoor microclimate—reducing PMV peaks by an average of 50.2% and lowering the number of discomfort hours by 94.9%—demonstrating the crucial role of solar protection in highly glazed spaces. No significant whole-body PMV differences were found between underfloor and wall heating. Overall, the findings provide practical insights into the control of thermal conditions in radiant-heated spaces and highlight the importance of solar shading in mitigating heat stress. These results may support the optimization of HVAC design, control, and operation in both residential and non-residential nZEB buildings, contributing to improved occupant comfort and enhanced energy efficiency. Full article
Show Figures

Figure 1

23 pages, 7753 KB  
Article
Urban Area Sustainability Analysis by Means of Integrated Microclimatic Measurement Techniques Combined with Thermal Comfort Modelling—A Pilot Project Application
by Giacomo Pierucci, Michele Baia and Carla Balocco
Energies 2026, 19(1), 217; https://doi.org/10.3390/en19010217 - 31 Dec 2025
Viewed by 229
Abstract
Although the literature is rich in studies of indoor thermal comfort, there is a lack of research on outdoor thermal comfort, despite its importance in response to global warming and the rise of urban heat islands. Physics models addressing spatial (urban energy form, [...] Read more.
Although the literature is rich in studies of indoor thermal comfort, there is a lack of research on outdoor thermal comfort, despite its importance in response to global warming and the rise of urban heat islands. Physics models addressing spatial (urban energy form, green areas) and temporal (climate variability) factors are urgently needed. This study proposes a useful method for outdoor comfort evaluation at a district scale, based on the energy form of built-up areas and hyperlocal climatic conditions. It enables the determination of distributed Physiological Environmental Temperature values at a district scale, assessing the greenery effect and mutual radiative exchanges. Applied to a case study in Florence, Italy, it integrates multiple measurement techniques. The main results highlight the model’s ability to evaluate outdoor thermal perception through the new identified indicator of Virtual Physiological Environmental Temperature (PET*) spread, ranging from 23.5 to 101.0 °C, specifically referring to the worst climatic conditions inside an urban canyon in relation to different real scenarios. The results confirm the method’s effectiveness as a tool for thermodynamics and planning for the well-being of an urban built-up environment. It offers useful support for sustainability and human-centric design, oriented to UHI mitigation and climate change adaptation strategies. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

29 pages, 8788 KB  
Article
A Data Prediction and Physical Simulation Coupled Method for Quantifying Building Adjustable Margin
by Bangpeng Xie, Liting Zhang, Wenkai Zhao, Yiming Yuan, Xiaoyi Chen, Xiao Luo, Chaoran Fu, Jiayu Wang, Fanyue Qian, Yongwen Yang and Sen Lin
Buildings 2026, 16(1), 170; https://doi.org/10.3390/buildings16010170 - 30 Dec 2025
Viewed by 256
Abstract
Buildings account for nearly 32% of global energy consumption and serve as key demand-side flexibility resources in power systems with high renewable penetration. However, their utilization is constrained by the lack of an integrated framework that can jointly quantify energy-adjustable margin (BAM) and [...] Read more.
Buildings account for nearly 32% of global energy consumption and serve as key demand-side flexibility resources in power systems with high renewable penetration. However, their utilization is constrained by the lack of an integrated framework that can jointly quantify energy-adjustable margin (BAM) and response duration (RD) under realistic operational and thermal comfort constraints. This study presents a coupled data–physical simulation framework integrating a Particle Swarm Optimization–Long Short-Term Memory–Random Forest (PSO-LSTM-RF) hybrid load forecasting model with EnergyPlus(24.1.0)-based building simulation. The PSO-LSTM-RF model achieves high-accuracy short-term load prediction, with an average R2 of 0.985 and mean absolute percentage errors of 1.92–5.75%. Predicted load profiles are mapped to physically consistent baseline and demand-response scenarios using a similar-day matching mechanism, enabling joint quantification of BAM and RD under explicit thermal comfort constraints. Case studies on offices, shopping malls, and hotels reveal significant heterogeneity: hotels exhibit the largest BAM (up to 579.27 kWh) and longest RD (up to 135 min), shopping malls maintain stable high flexibility, and offices show moderate BAM with minimal operational disruption. The framework establishes a closed-loop link between data-driven prediction and physics-based simulation, providing interpretable flexibility indicators to support demand-response planning, virtual power plant aggregation, and coordinated optimization of source–grid–load interactions. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

Back to TopTop