Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (618)

Search Parameters:
Keywords = thermal–mechanical coupling model

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4335 KiB  
Article
Multi-Scale Transient Thermo-Mechanical Coupling Analysis Method for the SiCf/SiC Composite Guide Vane
by Min Li, Xue Chen, Yu Deng, Wenjun Wang, Jian Li, Evance Obara, Zhilin Han and Chuyang Luo
Materials 2025, 18(14), 3348; https://doi.org/10.3390/ma18143348 - 17 Jul 2025
Abstract
In composites, fiber–matrix thermal mismatch induces stress heterogeneity that is beyond the resolution of macroscopic approaches. The asymptotic expansion homogenization method is used to create a multi-scale thermo-mechanical coupling model that predicts the elastic modulus, thermal expansion coefficients, and thermal conductivity of ceramic [...] Read more.
In composites, fiber–matrix thermal mismatch induces stress heterogeneity that is beyond the resolution of macroscopic approaches. The asymptotic expansion homogenization method is used to create a multi-scale thermo-mechanical coupling model that predicts the elastic modulus, thermal expansion coefficients, and thermal conductivity of ceramic matrix composites at both the macro- and micro-scales. These predictions are verified to be accurate with a maximum relative error of 9.7% between the measured and predicted values. The multi-scale analysis method is then used to guide the vane’s thermal stress analysis, and a macro–meso–micro multi-scale model is created. The thermal stress distribution and stress magnitudes of the guide vane under a transient high-temperature load are investigated. The results indicate that the temperature and thermal stress distributions of the guide vane under the homogenization and lamination theory models are rather comparable, and the locations of the maximum thermal stress are predicted to be reasonably close to one another. The homogenization model allows for the rapid and accurate prediction of the guide vane’s thermal stress distribution. When compared to the macro-scale stress values, the meso-scale predicted stress levels exhibit excellent accuracy, with an inaccuracy of 11.7%. Micro-scale studies reveal significant stress concentrations at the fiber–matrix interface, which is essential for the macro-scale fatigue and fracture behavior of the guide vane. Full article
(This article belongs to the Section Advanced Composites)
Show Figures

Figure 1

19 pages, 3316 KiB  
Article
Optimization Design of Dynamic Cable Configuration Considering Thermo-Mechanical Coupling Effects
by Ying Li, Guanggen Zou, Suchun Yang, Dongsheng Qiao and Bin Wang
J. Mar. Sci. Eng. 2025, 13(7), 1336; https://doi.org/10.3390/jmse13071336 - 13 Jul 2025
Viewed by 213
Abstract
During operation, dynamic cables endure coupled thermo-mechanical loads (mechanical: tension/bending; thermal: power transmission) that degrade stiffness, amplifying extreme responses and impairing configuration optimization. To address this, this study pioneers a multi-objective optimization framework integrating stiffness characteristics from mechanical/thermo-mechanical analyses, with objectives to minimize [...] Read more.
During operation, dynamic cables endure coupled thermo-mechanical loads (mechanical: tension/bending; thermal: power transmission) that degrade stiffness, amplifying extreme responses and impairing configuration optimization. To address this, this study pioneers a multi-objective optimization framework integrating stiffness characteristics from mechanical/thermo-mechanical analyses, with objectives to minimize dynamic extreme tension and curvature under constraints of global configuration variables and safety thresholds. The framework employs a Radial Basis Function (RBF) surrogate model coupled with NSGA-II algorithm, yielding validated Pareto solutions (≤6.15% max error vs. simulations). Results demonstrate universal reduction in extreme responses across optimized configurations, with the thermo-mechanically optimized solution achieving 20.24% fatigue life enhancement. This work establishes the first methodology quantifying thermo-mechanical coupling effects on offshore cable safety and fatigue performance. This configuration design scheme exhibits better safety during actual service conditions. Full article
(This article belongs to the Special Issue Advanced Studies in Marine Structures)
Show Figures

Figure 1

19 pages, 2695 KiB  
Article
Experimental Study of an Evaporative Cooling System in a Rotating Vertical Channel with a Circular Cross-Section for Large Hydro-Generators
by Ruiwei Li and Lin Ruan
Energies 2025, 18(14), 3681; https://doi.org/10.3390/en18143681 - 12 Jul 2025
Viewed by 208
Abstract
With the evolution of hydroelectric generators toward larger capacity and higher rotational speeds, the significa++nt increase in power density has rendered rotor cooling technology a critical bottleneck restricting performance enhancement. Addressing the need for feasibility verification and thermodynamic characteristic analysis of evaporative cooling [...] Read more.
With the evolution of hydroelectric generators toward larger capacity and higher rotational speeds, the significa++nt increase in power density has rendered rotor cooling technology a critical bottleneck restricting performance enhancement. Addressing the need for feasibility verification and thermodynamic characteristic analysis of evaporative cooling applied to rotors, this study innovatively proposes an internal-cooling-based evaporative cooling architecture for rotor windings. By establishing a single-channel experimental platform for a rotor evaporative cooling system, the key parameters of the system circulation flow under varying centrifugal accelerations and thermal loads are obtained, revealing the flow mechanism of the cooling system. The experimental results demonstrate that the novel architecture has outstanding heat dissipation performance. Furthermore, the experimental findings reveal that the flow characteristics of the medium are governed by the coupled effect of centrifugal acceleration and thermal load; the flow rate decreases with increasing centrifugal acceleration and increases with rising thermal load. Centrifugal acceleration reduces frictional losses in the heating pipe, leading to a decrease in the inlet–outlet pressure difference. Through the integration of experimental data with classic formulas, this study refines the friction factor model, with the modified formula showing a discrepancy of −10% to +5% compared with the experimental results. Finally, the experiment was rerun to verify the universality of the modified friction factor. Full article
Show Figures

Figure 1

31 pages, 18606 KiB  
Article
Research on Thermal Environment Influencing Mechanism and Cooling Model Based on Local Climate Zones: A Case Study of the Changsha–Zhuzhou–Xiangtan Urban Agglomeration
by Mengyu Ge, Zhongzhao Xiong, Yuanjin Li, Li Li, Fei Xie, Yuanfu Gong and Yufeng Sun
Remote Sens. 2025, 17(14), 2391; https://doi.org/10.3390/rs17142391 - 11 Jul 2025
Viewed by 214
Abstract
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan [...] Read more.
Urbanization has profoundly transformed land surface morphology and amplified thermal environmental modifications, culminating in intensified urban heat island (UHI) phenomena. Local climate zones (LCZs) provide a robust methodological framework for quantifying thermal heterogeneity and dynamics at local scales. Our study investigated the Changsha–Zhuzhou–Xiangtan urban agglomeration (CZXA) as a case study and systematically examined spatiotemporal patterns of LCZs and land surface temperature (LST) from 2002 to 2019, while elucidating mechanisms influencing urban thermal environments and proposing optimized cooling strategies. Key findings demonstrated that through multi-source remote sensing data integration, long-term LCZ classification was achieved with 1,592 training samples, maintaining an overall accuracy exceeding 70%. Landscape pattern analysis revealed that increased fragmentation, configurational complexity, and diversity indices coupled with diminished spatial connectivity significantly elevate LST. Rapid development of the city in the vertical direction also led to an increase in LST. Among seven urban morphological parameters, impervious surface fraction (ISF) and pervious surface fraction (PSF) demonstrated the strongest correlations with LST, showing Pearson coefficients of 0.82 and −0.82, respectively. Pearson coefficients of mean building height (BH), building surface fraction (BSF), and mean street width (SW) also reached 0.50, 0.55, and 0.66. Redundancy analysis (RDA) results revealed that the connectivity and fragmentation degree of LCZ_8 (COHESION8) was the most critical parameter affecting urban thermal environment, explaining 58.5% of LST. Based on these findings and materiality assessment, the regional cooling model of “cooling resistance surface–cooling source–cooling corridor–cooling node” of CZXA was constructed. In the future, particular attention should be paid to the shape and distribution of buildings, especially large, openly arranged buildings with one to three stories, as well as to controlling building height and density. Moreover, tailored protection strategies should be formulated and implemented for cooling sources, corridors, and nodes based on their hierarchical significance within urban thermal regulation systems. These research outcomes offer a robust scientific foundation for evidence-based decision-making in mitigating UHI effects and promoting sustainable urban ecosystem development across urban agglomerations. Full article
Show Figures

Figure 1

14 pages, 3914 KiB  
Article
Thermal Error Analysis of Hydrostatic Turntable System
by Jianlei Wang, Changhui Ke, Kaiyu Hu and Jun Zha
Machines 2025, 13(7), 598; https://doi.org/10.3390/machines13070598 - 10 Jul 2025
Viewed by 143
Abstract
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the [...] Read more.
The thermal error caused by the temperature rise in the service condition of the hydrostatic turntable system has a significant impact on the accuracy of the machine tool. The temperature rise is mainly caused by the friction heat of the bearing and the heat of the oil pump. The amount of heat mainly depends on the working parameters, such as the oil supply pressure and the oil film gap. The unreasonable parameter setting will cause the reduction in the internal flow of the hydrostatic bearing and the increase in the oil pump power, which makes the heat of the lubricating oil increase and the heat dissipation capacity decrease during the movement. Based on the established hydrostatic turntable system, in order to explore the main influencing factors of its thermal error, the temperature field model of the component is established by calculating the thermal balance of the key components of the system. The thermal coupling analysis of the component is carried out by using the model, and the temperature rise, deformation and strain curves of the hydrostatic turntable system under different service conditions are obtained. The results show that with the increase in the temperature, the deformation and strain of the bearing increase monotonously. For every 1 °C increase, the total deformation of the bearing increases by about 0.285 μm. The higher the oil supply pressure, the higher the temperature rise in the system. The larger the oil film gap, the lower the temperature rise in the system. The oil supply pressure has a greater influence on the temperature rise and thermal deformation than the oil film gap. This study provides a valuable reference for reducing the thermal error generated by the hydraulic turntable of the ultra-precision lathe. Full article
Show Figures

Figure 1

31 pages, 10887 KiB  
Article
Impact of Reservoir Properties on Micro-Fracturing Stimulation Efficiency and Operational Design Optimization
by Shaohao Wang, Yuxiang Wang, Wenkai Li, Junlong Cheng, Jianqi Zhao, Chang Zheng, Yuxiang Zhang, Ruowei Wang, Dengke Li and Yanfang Gao
Processes 2025, 13(7), 2137; https://doi.org/10.3390/pr13072137 - 4 Jul 2025
Viewed by 250
Abstract
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay [...] Read more.
Micro-fracturing technology is a key approach to enhancing the flow capacity of oil sands reservoirs and improving Steam-Assisted Gravity Drainage (SAGD) performance, whereas heterogeneity in reservoir physical properties significantly impacts stimulation effectiveness. This study systematically investigates the coupling mechanisms of asphaltene content, clay content, and heavy oil viscosity on micro-fracturing stimulation effectiveness, based on the oil sands reservoir in Block Zhong-18 of the Fengcheng Oilfield. By establishing an extended Drucker–Prager constitutive model, Kozeny–Poiseuille permeability model, and hydro-mechanical coupling numerical simulation, this study quantitatively reveals the controlling effects of reservoir properties on key rock parameters (e.g., elastic modulus, Poisson’s ratio, and permeability), integrating experimental data with literature review. The results demonstrate that increasing clay content significantly reduces reservoir permeability and stimulated volume, whereas elevated asphaltene content inhibits stimulation efficiency by weakening rock strength. Additionally, the thermal sensitivity of heavy oil viscosity indirectly affects geomechanical responses, with low-viscosity fluids under high-temperature conditions being more conducive to effective stimulation. Based on the quantitative relationship between cumulative injection volume and stimulation parameters, a classification-based optimization model for oil sands reservoir operations was developed, predicting over 70% reduction in preheating duration. This study provides both theoretical foundations and practical guidelines for micro-fracturing parameter design in complex oil sands reservoirs. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

20 pages, 2705 KiB  
Article
Joule Heating in Grounding Electrodes Under Fault Conditions: Effects on System Potentials and Electrode Efficiency
by Gabriel Asensio, Eduardo Faleiro, Jorge Moreno, Daniel García and Gregorio Denche
Appl. Sci. 2025, 15(13), 7504; https://doi.org/10.3390/app15137504 - 3 Jul 2025
Viewed by 247
Abstract
This paper presents a numerical study of the thermal behavior of grounding electrodes subjected to fault currents, focusing on Joule heating within both the electrode and the surrounding soil. A one-dimensional transient model is developed, accounting for heat generation due to both internal [...] Read more.
This paper presents a numerical study of the thermal behavior of grounding electrodes subjected to fault currents, focusing on Joule heating within both the electrode and the surrounding soil. A one-dimensional transient model is developed, accounting for heat generation due to both internal resistance in the electrode and current leakage into the soil. The model incorporates the temperature dependence of electrical resistivity, particularly emphasizing the nonlinear and material-specific behavior observed in soils, as captured by three different resistivity models. The temperature–resistivity coupling induces a feedback mechanism that dynamically alters the current distribution and the resulting temperature profiles. A numerical procedure was implemented to simulate this process, following a computational flowchart that captures the interaction between thermal and electrical fields over time. The model was applied to synthetic test cases involving different soil types, segmentation strategies, and resistivity behaviors. The results reveal significant differences between resistivity models, affecting both the magnitude and distribution of grounding potential and temperature fields. In particular, elevated temperatures were observed in regions where current density concentrates—such as corners and exposed ends of the electrode—highlighting the need for targeted reinforcement to prevent thermal degradation. The proposed model provides a practical tool for evaluating the thermal performance of grounding systems under extreme conditions, offering insight into design optimization and material selection. Full article
Show Figures

Figure 1

27 pages, 7525 KiB  
Article
Coupled Thermo-Mechanical Modeling of Crack-Induced Stress Fields in Thermal Barrier Coatings with Varying Crack Geometries
by Linxi Zhang, Ruifeng Dou, Ningning Liu, Jian Sun, Xunliang Liu and Zhi Wen
Coatings 2025, 15(7), 785; https://doi.org/10.3390/coatings15070785 - 3 Jul 2025
Viewed by 305
Abstract
Under service conditions, randomly distributed cracks in the top coat (TC) layer of thermal barrier coatings (TBCs) lead to local stress concentrations, which serve as the primary drivers of crack propagation and coating delamination. This study systematically analyzes the influence of crack defects [...] Read more.
Under service conditions, randomly distributed cracks in the top coat (TC) layer of thermal barrier coatings (TBCs) lead to local stress concentrations, which serve as the primary drivers of crack propagation and coating delamination. This study systematically analyzes the influence of crack defects on the thermal stress distribution in TBCs, based on their microstructural characteristics, using a multi-physics-coupled finite element model. Numerical analysis of crack characteristics reveals that crack length significantly influences the stress distribution in the coatings, with the maximum tensile stress at the crack tip increasing from 104.02 to 238.51 MPa as the crack half-length extends from 400 to 1000 μm. Shorter cracks induce lower tensile stresses, thereby retarding crack propagation and delaying coating delamination. Crack depth also influences the stress distribution, with the maximum tensile stress decreasing from 205.88 to 101.65 MPa as the crack is buried deeper, from 50 to 200 μm, indicating a more stable stress state less prone to propagation in deeper cracks. For inclined cracks, increasing the inclination angle induces a shift in stress from tensile to compressive, with larger inclination angles exhibiting greater stability. Accordingly, this study proposes a laser scribing strategy to mitigate crack-tip stress concentration, which is validated through comparison with two-dimensional crack models. Laser scribing shortens crack length by interrupting crack continuity, relieves localized thermal expansion strain, effectively suppresses crack growth, and significantly enhances the crack resistance and thermal shock stability of the coating. Full article
(This article belongs to the Special Issue Ceramic and Glass Material Coatings)
Show Figures

Figure 1

24 pages, 3267 KiB  
Article
Evaluation of Strength Model Under Deep Formations with High Temperature and High Pressure
by Fei Gao, Yan Zhang, Yuelong Liu and Hui Zhang
Buildings 2025, 15(13), 2335; https://doi.org/10.3390/buildings15132335 - 3 Jul 2025
Viewed by 261
Abstract
Elevated thermal conditions, rock formations exhibit distinct mechanical behaviors that significantly deviate from their characteristics under ambient temperature environments. This phenomenon raises critical questions regarding the applicability of conventional failure criteria in accurately assessing wellbore stability and maintaining the structural integrity of subsurface [...] Read more.
Elevated thermal conditions, rock formations exhibit distinct mechanical behaviors that significantly deviate from their characteristics under ambient temperature environments. This phenomenon raises critical questions regarding the applicability of conventional failure criteria in accurately assessing wellbore stability and maintaining the structural integrity of subsurface infrastructure within geothermal environments. Based on the least absolute deviation method, this paper studies the response characteristics of rock strength at different temperatures and evaluates the prediction performance of six commonly used strength criteria under various temperature and stress environments. The experimental findings reveal a pronounced nonlinear dependence of rock strength on confining pressure elevation. A comparative analysis of failure criteria demonstrates hierarchical predictive performance: the Hoek–Brown (HB) criterion achieves superior temperature-dependent strength prediction fidelity, outperforming the modified Griffith (MGC), Mohr–Lade (ML), and modified Wiebols–Cook (MWC) criteria by 12–18% in accuracy metrics. Notably, the Zhao–Zheng (ZZ) and conventional Mohr–Coulomb (MC) criteria exhibit statistically significant deviations across the tested thermal range. The HB criterion’s exceptional performance in high-temperature regimes is attributed to its dual incorporation of nonlinear confinement effects and thermally activated microcrack propagation mechanisms. The implementation of this optimized model in Well X’s borehole stability analysis yielded 89% alignment between predictions and field observations, with principal stress variations remaining within 7% of critical failure thresholds. These mechanistic insights offer critical theoretical and practical references for thermo-hydro-mechanical coupling analysis in enhanced geothermal systems and deep subsurface containment structures. Full article
Show Figures

Figure 1

16 pages, 4663 KiB  
Article
Geological Conditions and Reservoir Formation Models of Low- to Middle-Rank Coalbed Methane in the Northern Part of the Ningxia Autonomous Region
by Dongsheng Wang, Qiang Xu, Shuai Wang, Quanyun Miao, Zhengguang Zhang, Xiaotao Xu and Hongyu Guo
Processes 2025, 13(7), 2079; https://doi.org/10.3390/pr13072079 - 1 Jul 2025
Viewed by 236
Abstract
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of [...] Read more.
The mechanism of low- to middle-rank coal seam gas accumulation in the Baode block on the eastern edge of the Ordos Basin is well understood. However, exploration efforts in the Shizuishan area on the western edge started later, and the current understanding of enrichment and accumulation rules is unclear. It is important to systematically study enrichment and accumulation, which guide the precise exploration and development of coal seam gas resources in the western wing of the basin. The coal seam collected from the Shizuishan area of Ningxia was taken as the target. Based on drilling, logging, seismic, and CBM (coalbed methane) test data, geological conditions were studied, and factors and reservoir formation modes of CBM enrichment were summarized. The results are as follows. The principal coal-bearing seams in the study area are coal seams No. 2 and No. 3 of the Shanxi Formation and No. 5 and No. 6 of the Taiyuan Formation, with thicknesses exceeding 10 m in the southwest and generally stable thickness across the region, providing favorable conditions for CBM enrichment. Spatial variations in burial depth show stability in the east and south, but notable fluctuations are observed near fault F1 in the west and north. These burial depth patterns are closely linked to coal rank, which increases with depth. Although the southeastern region exhibits a lower coal rank than the northwest, its variation is minimal, reflecting a more uniform thermal evolution. Lithologically, the roof of coal seam No. 6 is mainly composed of dense sandstone in the central and southern areas, indicating a strong sealing capacity conducive to gas preservation. This study employs a system that fuses multi-source geological data for analysis, integrating multi-dimensional data such as drilling, logging, seismic, and CBM testing data. It systematically reveals the gas control mechanism of “tectonic–sedimentary–fluid” trinity coupling in low-gentle slope structural belts, providing a new research paradigm for coalbed methane exploration in complex structural areas. It creatively proposes a three-type CBM accumulation model that includes the following: ① a steep flank tectonic fault escape type (tectonics-dominated); ② an axial tectonic hydrodynamic sealing type (water–tectonics composite); and ③ a gentle flank lithology–hydrodynamic sealing type (lithology–water synergy). This classification system breaks through the traditional binary framework, systematically explaining the spatiotemporal matching relationships of the accumulated elements in different structural positions and establishing quantitative criteria for target area selection. It systematically reveals the key controlling roles of low-gentle slope structural belts and slope belts in coalbed methane enrichment, innovatively proposing a new gentle slope accumulation model defined as “slope control storage, low-structure gas reservoir”. These integrated results highlight the mutual control of structural, thermal, and lithological factors on CBM enrichment and provide critical guidance for future exploration in the Ningxia Autonomous Region. Full article
Show Figures

Figure 1

20 pages, 4995 KiB  
Article
Constant Strain Aging Model of HTPB Propellant Involving Thermal–Mechanical Coupled Effects
by Pengju Qin, Xiangyu Zhang, Kai Jiang and Jiming Cheng
Aerospace 2025, 12(7), 589; https://doi.org/10.3390/aerospace12070589 - 29 Jun 2025
Viewed by 206
Abstract
To investigate the aging behavior of HTPB composite solid propellant under constant strain conditions, this study analyzed the aging patterns of the propellant’s maximum elongation at four temperatures (323.15 K–343.15 K) and five strain levels (0–18%) using thermal–mechanical coupled accelerated aging tests. The [...] Read more.
To investigate the aging behavior of HTPB composite solid propellant under constant strain conditions, this study analyzed the aging patterns of the propellant’s maximum elongation at four temperatures (323.15 K–343.15 K) and five strain levels (0–18%) using thermal–mechanical coupled accelerated aging tests. The results show that the maximum elongation initially increases, then decreases under constant strain conditions. To measure the mechanical work-induced decrease in the activation motor, we created a modified Arrhenius model with a strain correction factor based on empirical observations. The acceleration coefficient of a solid motor grain at the accelerated aging temperature (323.15 K) in comparison to the long-term storage temperature (293.15 K) was found to be 20.08 through finite element analysis. This means 206.80 days at the accelerated aging temperature is equivalent to 10 years at the long-term storage temperature. Full article
(This article belongs to the Special Issue Combustion of Solid Propellants)
Show Figures

Figure 1

32 pages, 6094 KiB  
Article
A Study of the Soil–Wall–Indoor Air Thermal Environment in a Solar Greenhouse
by Zhi Zhang, Yu Li, Liqiang Wang, Weiwei Cheng and Zhonghua Liu
Sensors 2025, 25(13), 4041; https://doi.org/10.3390/s25134041 - 28 Jun 2025
Viewed by 271
Abstract
Greenhouses offer optimal environments for crop cultivation during the winter months. The rationale for this study was identified as the synergistic exchange of air between the soil, the wall, and the indoor environment within the greenhouse (referring to the coupling law of the [...] Read more.
Greenhouses offer optimal environments for crop cultivation during the winter months. The rationale for this study was identified as the synergistic exchange of air between the soil, the wall, and the indoor environment within the greenhouse (referring to the coupling law of the temperature fields of the three elements in space and time, including the direction of heat transfer and the consistency of the temperature zoning), thereby maintaining a more optimal temperature. However, there is a paucity of research on the impact of different spans on the thermal environment in solar greenhouses and even fewer studies on the synergistic law of changes in soil-wall indoor air in solar greenhouses with different spans. In this study, two solar greenhouses with different spans were analyzed through a combination of experiments as follows: K-means classification optimized using the grey wolf optimizer (GWO), computational fluid dynamics (CFD) simulations, and long short-term memory (LSTM) prediction models. The two solar greenhouses, designated as S1 and S2, had spans of 11 m and 10 m, respectively. The results are as follows: In two greenhouses when the span and temperature were the same, the indoor air temperature and soil temperature of the S1 greenhouse were lower than those of the S2 greenhouse; there was an isothermal layer in the north wall of greenhouses S1 and S2 (a stable area where the temperature change over time is less than 0.5 °C), the horizontal distance between the isothermal layer on the inside of the greenhouse wall and the inside of the wall was more than 400 mm, and that of the outside of the greenhouse wall was more than 200 mm; within the solar greenhouse, this study identified that heat was emitted from the inner surface of the wall (at 0 mm from the inner surface) toward the outer surface of the wall (at 0 mm from the outer surface), as well as at a horizontal distance of 200 mm from the inner surface of the wall. The temperature data from 0:00 to 8:00 at night were selected for the purpose of analyzing the temperature synergistic change in soil-wall indoor air in the S1 greenhouse. The temperature change can be classified into four categories according to K-means classification, which was optimized based on the grey wolf algorithm. The categories were as follows: high-temperature region, medium-high temperature region, medium-low temperature region, and low-temperature region. The low-temperature region spanned the range of X = (800, 3000) mm, and its height range was Y = (−150, 1200) mm. The CFD model and LSTM prediction model have been shown to be superior, and the findings of this study offer a theoretical basis for the optimization of thermal environment control in solar greenhouses. Full article
(This article belongs to the Section Smart Agriculture)
Show Figures

Figure 1

19 pages, 3878 KiB  
Article
An Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Controller for Supercritical Power Plants
by Gang Chen, Shan Hua, Changhao Fan, Chun Wang, Shuchong Wang and Li Sun
Algorithms 2025, 18(7), 387; https://doi.org/10.3390/a18070387 - 26 Jun 2025
Viewed by 273
Abstract
This study introduces an Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Control (EEA-ESKF-MPC) method to tackle strong coupling and inertia in supercritical power plants. By enhancing the ESKF-MPC framework with a mechanism that dynamically adjusts error weights based on real-time deviations and employs [...] Read more.
This study introduces an Enhanced Error-Adaptive Extended-State Kalman Filter Model Predictive Control (EEA-ESKF-MPC) method to tackle strong coupling and inertia in supercritical power plants. By enhancing the ESKF-MPC framework with a mechanism that dynamically adjusts error weights based on real-time deviations and employs exponential smoothing, alongside a BP neural network for thermal unit simulation, the approach achieves superior performance. Simulations show reductions in the Integrated Absolute Error (IAE) for load and temperature by 3.05% and 2.46%, respectively, with a modest 0.43% pressure IAE increase compared to ESKF-MPC. Command disturbance tests and real condition tracking experiments, utilizing data from a 350 MW supercritical unit, reinforce the method’s effectiveness, highlighting its exceptional dynamic performance and precise tracking of operational parameter changes under multivariable coupling conditions, offering a scalable solution for modern power systems. Full article
(This article belongs to the Section Algorithms for Multidisciplinary Applications)
Show Figures

Figure 1

18 pages, 5735 KiB  
Article
Fractional Calculus as a Tool for Modeling Electrical Relaxation Phenomena in Polymers
by Flor Y. Rentería-Baltiérrez, Jesús G. Puente-Córdova, Nasser Mohamed-Noriega and Juan Luna-Martínez
Polymers 2025, 17(13), 1726; https://doi.org/10.3390/polym17131726 - 20 Jun 2025
Viewed by 410
Abstract
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus ( [...] Read more.
The dielectric relaxation behavior of polymeric materials is critical to their performance in electronic, insulating, and energy storage applications. This study presents an electrical fractional model (EFM) based on fractional calculus and the complex electric modulus (M*=M+iM) formalism to simultaneously describe two key relaxation phenomena: α-relaxation and interfacial polarization (Maxwell–Wagner–Sillars effect). The model incorporates fractional elements (cap-resistors) into a modified Debye equivalent circuit to capture polymer dynamics and energy dissipation. Fractional differential equations are derived, with fractional orders taking values between 0 and 1; the frequency and temperature responses are analyzed using Fourier transform. Two temperature-dependent behaviors are considered: the Matsuoka model, applied to α-relaxation near the glass transition, and an Arrhenius-type equation, used to describe interfacial polarization associated with thermally activated charge transport. The proposed model is validated using literature data for amorphous polymers, polyetherimide (PEI), polyvinyl chloride (PVC), and polyvinyl butyral (PVB), successfully fitting dielectric spectra and extracting meaningful physical parameters. The results demonstrate that the EFM is a robust and versatile tool for modeling complex dielectric relaxation in polymeric systems, offering improved interpretability over classical integer-order models. This approach enhances understanding of coupled relaxation mechanisms and may support the design of advanced polymer-based materials with tailored dielectric properties. Full article
(This article belongs to the Special Issue Relaxation Phenomena in Polymers)
Show Figures

Figure 1

28 pages, 11218 KiB  
Article
Transient Temperature Evaluation and Thermal Management Optimization Strategy for Aero-Engine Across the Entire Flight Envelope
by Weilong Gou, Shiyu Yang, Kehan Liu, Yuanfang Lin, Xingang Liang and Bo Shi
Aerospace 2025, 12(6), 562; https://doi.org/10.3390/aerospace12060562 - 19 Jun 2025
Viewed by 486
Abstract
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering [...] Read more.
With the enhancement of thermodynamic cycle parameters and heat dissipation constraints in aero-engines, effective thermal management has become a critical challenge to ensure safe and stable engine operation. This study developed a transient temperature evaluation model applicable to the entire flight envelope, considering fluid–solid coupling heat transfer on both the main flow path and fuel systems. Firstly, the impact of heat transfer on the acceleration and deceleration performance of a low-bypass-ratio turbofan engine was analyzed. The results indicate that, compared to the conventional adiabatic model, the improved model predicts metal components absorb 4.5% of the total combustor energy during cold-state acceleration, leading to a maximum reduction of 1.42 kN in net thrust and an increase in specific fuel consumption by 1.18 g/(kN·s). Subsequently, a systematic evaluation of engine thermal management performance throughout the complete flight mission was conducted, revealing the limitations of the existing thermal management design and proposing targeted optimization strategies, including employing Cooled Cooling Air technology to improve high-pressure turbine blade cooling efficiency, dynamically adjusting low-pressure turbine bleed air to minimize unnecessary losses, optimizing fuel heat sink utilization for enhanced cooling performance, and replacing mechanical pumps with motor pumps for precise fuel supply control. Full article
(This article belongs to the Special Issue Aircraft Thermal Management Technologies)
Show Figures

Figure 1

Back to TopTop