Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (43,726)

Search Parameters:
Keywords = theoretical study

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 2305 KB  
Article
Improving Graduate Job Matching Through Higher Education–Industry Alignment for SDG-Consistent Development in China
by Qing Yang and Muhd Khaizer Omar
Sustainability 2026, 18(2), 868; https://doi.org/10.3390/su18020868 (registering DOI) - 14 Jan 2026
Abstract
Grounded in the United Nations Sustainable Development Goal 4 (SDG4), specifically addressing the urgent need to increase relevant skills for decent work (Target 4.4) while ensuring inclusive access and quality (Targets 4.3, 4.5, 4.c), this study develops a province-level indicator system for the [...] Read more.
Grounded in the United Nations Sustainable Development Goal 4 (SDG4), specifically addressing the urgent need to increase relevant skills for decent work (Target 4.4) while ensuring inclusive access and quality (Targets 4.3, 4.5, 4.c), this study develops a province-level indicator system for the “talent chain” and “industry chain” and integrates entropy-weighted composite evaluation, a coupling coordination model, correlation tests, and mismatch typology classification to systematically assess the alignment between higher education talent formation and industrial demand across 31 Chinese provinces during 2000–2022. The analysis aims to characterize China’s phase-specific progress in SDG4-consistent development at the education–industry interface and to provide a theoretical and empirical basis for improving graduate job matching. The results show that (1) overall talent–industry matching improved steadily from 2000 to 2022, yet pronounced regional disparities persist, with eastern provinces generally outperforming central and western regions; (2) educational quality and structural inputs—such as faculty capacity, per-student expenditure, and the composition of human capital—are the primary drivers of talent-chain performance, whereas expansion-oriented indicators exhibit limited marginal contributions, implying that sustainable graduate job matching hinges more on quality upgrading and supply-structure optimization than on quantitative expansion alone; (3) industry-chain advancement is jointly driven by industrial scale, structural upgrading, and employment absorptive capacity, with the tertiary sector playing a particularly prominent role in shaping demand for higher-skilled labor; and (4) a divergence in driving mechanisms—quality- and structure-oriented on the education side versus scale- and structure-oriented on the industry side—combined with regional heterogeneity produces stage-specific mismatch typologies, suggesting remaining scope for structural alignment between higher education systems and industrial upgrading. Overall, strengthening regional coordination, integration, quality, and upgrading drives synergistic development, advancing SDG 4 targets by validating that quality-driven education reform is the key lever for sustainable employment in China. Full article
(This article belongs to the Section Sustainable Education and Approaches)
Show Figures

Figure 1

19 pages, 3167 KB  
Article
A Novel Synergistic System for Geothermal Energy Extraction and Coal Seam Cooling in Deep Coal Mine Aquifers: A Numerical Simulation Study
by Yuliang Sun, Hongtao An and Xuehua Li
Appl. Sci. 2026, 16(2), 866; https://doi.org/10.3390/app16020866 - 14 Jan 2026
Abstract
As shallow coal resources become increasingly depleted, coal mining is extending to greater depths, making mine thermal hazards an increasingly prominent issue. This paper proposes a novel system for synergistic geothermal energy extraction from deep coal mine aquifers and coal seam cooling, aimed [...] Read more.
As shallow coal resources become increasingly depleted, coal mining is extending to greater depths, making mine thermal hazards an increasingly prominent issue. This paper proposes a novel system for synergistic geothermal energy extraction from deep coal mine aquifers and coal seam cooling, aimed at achieving integrated geothermal exploitation and mine thermal hazard control. Based on a high-temperature mine in the Yuanyanghu Mining Area of Ningxia, a dual-stage, single-branch three-dimensional numerical model was established to simulate the effects of water injection pressure, water injection temperature, and level spacing on the system’s cooling performance and geothermal energy extraction efficiency. The results indicate that increasing injection pressure enhances early-stage geothermal energy extraction capacity and coal seam cooling rate, but the heat extraction power declines over long-term operation as the produced water temperature approaches the injection temperature. Lowering injection temperature significantly improves water–rock heat exchange efficiency, accelerates coal seam cooling, and increases geothermal energy extraction. Increasing level spacing helps improve geothermal energy extraction power but weakens the direct cooling effect on the coal seam. Considering the influence patterns of each parameter, the optimal combination was determined as water injection pressure of 10 MPa, water injection temperature of 10 °C, and level spacing of 80 m, which delivers the best overall performance by enabling rapid coal seam cooling and sustained geothermal energy extraction, with a cumulative geothermal output reaching 129.45 MW after 10 years of operation. This study provides a theoretical basis and technical reference for the integrated management of thermal hazards and geothermal resource development in deep coal mines. Full article
Show Figures

Figure 1

28 pages, 2958 KB  
Article
Spatiotemporal Wind Speed Changes Along the Yangtze River Waterway (1979–2018)
by Lei Bai, Ming Shang, Chenxiao Shi, Yao Bian, Lilun Liu, Junbin Zhang and Qian Li
Atmosphere 2026, 17(1), 81; https://doi.org/10.3390/atmos17010081 - 14 Jan 2026
Abstract
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind [...] Read more.
Long-term wind speed changes over the Yangtze River waterway have critical implications for inland shipping efficiency, emission dispersion, and renewable energy potential. This study utilizes a high-resolution 5 km gridded reanalysis dataset spanning 1979–2018 to conduct a comprehensive spatiotemporal analysis of surface wind climatology, variability, and trends along China’s primary inland waterway. A pivotal regime shift was identified around 2000, marking a transition from terrestrial stilling to a recovery phase characterized by wind speed intensification. Multiple change-point detection algorithms consistently identify 2000 as a pivotal turning point, marking a transition from the late 20th century “terrestrial stilling” to a recovery phase characterized by wind speed intensification. Post-2000 trends reveal pronounced spatial heterogeneity: the upstream section exhibits sustained strengthening (+0.02 m/s per decade, p = 0.03), the midstream shows weak or non-significant trends with localized afternoon stilling in complex terrain (−0.08 m/s per decade), while the downstream coastal zone demonstrates robust intensification exceeding +0.10 m/s per decade during spring–autumn daytime hours. Three distinct wind regimes emerge along the 3000 km corridor: a high-energy maritime-influenced downstream sector (annual means > 3.9 m/s, diurnal peaks > 6.0 m/s) dominated by sea breeze circulation, a transitional midstream zone (2.3–2.7 m/s) exhibiting bimodal spatial structure and unique summer-afternoon thermal enhancement, and a topographically suppressed upstream region (<2.0 m/s) punctuated by pronounced channeling effects through the Three Gorges constriction. Critically, the observed recovery contradicts widespread basin greening (97.9% of points showing significant positive NDVI trends), which theoretically should enhance surface roughness and suppress wind speeds. Correlation analysis reveals that wind variability is systematically controlled by large-scale atmospheric circulation patterns, including the Northern Hemisphere Polar Vortex (r ≈ 0.35), Western Pacific Subtropical High (r ≈ 0.38), and East Asian monsoon systems (r > 0.60), with distinct seasonal phase-locking between baroclinic spring dynamics and monsoon-thermal summer forcing. These findings establish a comprehensive, fine-scale climatological baseline essential for optimizing pollutant dispersion modeling, and evaluating wind-assisted propulsion feasibility to support shipping decarbonization goals along the Yangtze Waterway. Full article
(This article belongs to the Section Meteorology)
21 pages, 37629 KB  
Article
FacadeGAN: Facade Texture Placement with GANs
by Elif Şanlıalp and Muhammed Abdullah Bulbul
Appl. Sci. 2026, 16(2), 860; https://doi.org/10.3390/app16020860 - 14 Jan 2026
Abstract
This study presents a texture-aware image synthesis framework designed to generate material-consistent façades using adversarial learning. The proposed architecture incorporates a mask-guided channel-wise attention mechanism that adaptively merges segmentation information with texture statistics to reconcile structural guiding with textural fidelity. A thorough comparative [...] Read more.
This study presents a texture-aware image synthesis framework designed to generate material-consistent façades using adversarial learning. The proposed architecture incorporates a mask-guided channel-wise attention mechanism that adaptively merges segmentation information with texture statistics to reconcile structural guiding with textural fidelity. A thorough comparative analysis was performed utilizing three internal variants—Vanilla GAN, Wasserstein GAN (WGAN), and WGAN-GP—against leading baselines, including TextureGAN and Pix2Pix. The assessment utilized a comprehensive multi-metric framework that included SSIM, FID, KID, LPIPS, and DISTS, in conjunction with a VGG-19 based perceptual loss. Experimental results indicate a notable divergence between pixel-wise accuracy and perceptual realism; although established baselines attained elevated PSNR values, the suggested Vanilla GAN and WGAN models exhibited enhanced perceptual fidelity, achieving the lowest LPIPS and DISTS scores. The WGAN-GP model, although theoretically stable, produced smoother but less complex textures due to the regularization enforced by the gradient penalty term. Ablation investigations further validated that the attention mechanism consistently enhanced structural alignment and texture sharpness across all topologies. Thus, the study suggests that Vanilla GAN and WGAN architectures, enhanced by attention-based fusion, offer an optimal balance between realism and structural fidelity for high-frequency texture creation applications. Full article
Show Figures

Figure 1

12 pages, 3284 KB  
Article
Genome-Wide Association Study of Body Mass Index in a Commercial Landrace × Yorkshire Crossbred Pig Population
by Long Jin, Chunyan Bai, Jinghan Chen, Chengyue Feng, Fengyi Dong, Xiaoran Zhang, Junwen Fei, Yu He, Wuyang Liu, Changyi Chen, Boxing Sun, Dali Wang and Hao Sun
Vet. Sci. 2026, 13(1), 84; https://doi.org/10.3390/vetsci13010084 - 14 Jan 2026
Abstract
The Body Mass Index (BMI), integrating body weight and length, is a widely used metric for obesity assessment in humans. As pigs serve as crucial biomedical models, the application of BMI in swine and its genetic basis remain poorly explored. This study aimed [...] Read more.
The Body Mass Index (BMI), integrating body weight and length, is a widely used metric for obesity assessment in humans. As pigs serve as crucial biomedical models, the application of BMI in swine and its genetic basis remain poorly explored. This study aimed to investigate the genetic architecture of pig BMI and compare two carcass-based BMI metrics (BMI-S and BMI-O) for breeding applicability. A total of 439 Landrace × Yorkshire crossbred pigs were genotyped with a 50 K SNP chip; heritability was estimated via a mixed linear model, and genome-wide association study (GWAS) was performed using the BLINK model. BMI-S and BMI-O exhibited moderate-to-high heritability of 0.55 and 0.47, respectively, with 17 genome-wide significant SNPs detected—including the top associated SNP rs81382440 on chromosome 4 and rs80898583 on chromosome 7. Key candidate genes (GPHN, ADAM33, KCNH8, PDCD4) and 5 SNP-trait associations validated in PigQTLdb were linked to lipid/energy metabolism and muscle development. Carcass-based BMI improved phenotypic accuracy, and our findings provide core genetic markers and a theoretical basis for molecular breeding of pig body conformation and lipid deposition traits. Full article
Show Figures

Figure 1

36 pages, 3738 KB  
Article
Signal Timing Optimization Method for Intersections Under Mixed Traffic Conditions
by Hongwu Li, Yangsheng Jiang and Bin Zhao
Algorithms 2026, 19(1), 71; https://doi.org/10.3390/a19010071 - 14 Jan 2026
Abstract
The increasing proliferation of new energy vehicles and autonomous vehicles has led to the formation of mixed traffic flows characterized by diverse driving behaviors, posing new challenges for intersection signal control. To address this issue, this study proposes a multi-class customer feedback queuing [...] Read more.
The increasing proliferation of new energy vehicles and autonomous vehicles has led to the formation of mixed traffic flows characterized by diverse driving behaviors, posing new challenges for intersection signal control. To address this issue, this study proposes a multi-class customer feedback queuing network (MCFFQN) model that incorporates state-dependent road capacity and congestion propagation mechanisms to accurately capture the stochastic and dynamic nature of mixed traffic flows. An evaluation framework for intersection performance is established based on key indicators such as vehicle delay, the energy consumption of new energy vehicles, and the fuel consumption and emissions of conventional vehicles. A recursive solution algorithm is developed and validated through simulations under various traffic demand scenarios. Building on this model, a signal timing optimization model aimed at minimizing total costs—including delay and environmental impacts—is formulated and solved using the Mesh Adaptive Direct Search (MADS) algorithm. A case study demonstrates that the optimized signal timing scheme significantly enhances intersection performance, reducing vehicle delay, energy consumption, fuel consumption, and emissions by over 20%. The proposed methodology provides a theoretical foundation for sustainable traffic management under mixed traffic conditions. Full article
19 pages, 349 KB  
Article
Implementing 3D Printing in Civil Protection and Crisis Management
by Jozef Kubás, Ivan Buday, Katarína Petrlová and Alexandra Trličíková
Sustainability 2026, 18(2), 857; https://doi.org/10.3390/su18020857 - 14 Jan 2026
Abstract
The article examines the implementation of 3D printing in civil protection and crisis management with a focus on the educational process, while 3D printing technology enables the creation of various teaching aids that streamline teaching and enrich theoretical knowledge. The empirical part of [...] Read more.
The article examines the implementation of 3D printing in civil protection and crisis management with a focus on the educational process, while 3D printing technology enables the creation of various teaching aids that streamline teaching and enrich theoretical knowledge. The empirical part of the study is based on a quantitative questionnaire survey among students of the Faculty of Safety Engineering of the University of Žilina in Žilina, with hypotheses set in advance and forming the basis for the construction of the questionnaire. The questionnaire collected data on the subjective evaluation of 3D printing through continuous, nominal, and ordinal responses and was completed by 277 students. Statistical methods of simple and group classification, as well as t-test, ANOVA, Kruskal–Wallis and Pearson’s correlation analysis were used to evaluate the data. Statistical significance was used to determine whether observed differences and relationships were unlikely to have arisen by chance. In addition, effect size measures were used in correlation and regression analyses to assess the strength and practical relevance of statistically significant relationships. The results of the study show that 3D printing significantly contributes to improving education and preparedness in civil protection, as it allows for more material-efficient and flexible production of educational aids compared to traditional custom production. Thus, it supports the development of more resilient communities and contributes to long-term sustainability. The findings confirmed that 3D printing is a suitable tool for improving public preparedness for emergencies. Full article
26 pages, 10014 KB  
Article
Dynamic Monitoring and Analysis of Mountain Excavation and Land Creation Projects in Lanzhou Using Multi-Source Remote Sensing and Machine Learning
by Quanfu Niu, Jiaojiao Lei, Qiong Fang and Lifeng Zhang
Remote Sens. 2026, 18(2), 273; https://doi.org/10.3390/rs18020273 - 14 Jan 2026
Abstract
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an [...] Read more.
Mountain Excavation and Land Creation Projects (MELCPs) have emerged as a critical strategy for expanding urban development space in mountainous regions facing land scarcity. Dynamic monitoring and risk management of these projects are essential for promoting sustainable urban development. This study develops an integrated monitoring framework for MELCPs by combining ascending and descending Sentinel-1 SAR data, Sentinel-2 optical imagery, SRTM digital elevation models (DEM), and field survey data. The framework incorporates multi-temporal change detection, random forest classification, and time-series InSAR analysis to systematically capture the spatiotemporal evolution and subsidence mechanisms associated with MELCPs. Key findings include: (1) The use of dual-orbit SAR data significantly improves the detection accuracy of excavation areas, achieving an overall accuracy of 87.1% (Kappa = 0.85) and effectively overcoming observation limitations imposed by complex terrain. (2) By optimizing the combination of spectral, texture, topographic, and polarimetric features using a random forest algorithm, the classification accuracy of MELCPs is enhanced to 91.2% (Kappa = 0.889). This enables precise annual identification of MELCP progression from 2017 to 2022, revealing a three-stage evolution pattern: concentrated expansion, peak activity, and restricted slowdown. Specifically, the reclaimed area increased from 2.66 km2 (pre-2018) to a peak of 12.61 km2 in 2021, accounting for 34.56% of the total area of the study region, before decreasing to 2.69 km2 in 2022. (3) InSAR monitoring from 2017 to 2023 indicates that areas with only filling experience minor shallow subsidence (<50 mm), whereas subsequent building loads and underground engineering activities lead to continuous deep soil consolidation, with maximum cumulative subsidence reaching 333.8 mm. This study demonstrates that subsidence in MELCPs follows distinct spatiotemporal patterns and is predictable, offering important theoretical insights and practical tools for engineering safety management and territorial spatial optimization in mountainous cities. Full article
Show Figures

Figure 1

15 pages, 780 KB  
Article
Comparative Study on the In Vitro Gastrointestinal Digestion of Oil Body Suspension from Different Parts of Idesia polycarpa Maxim
by Silu Cheng, Yongchen Liu, Mingzhang Zhao, Shanshan Qian, Hongxia Feng, Yunhe Chang, Juncai Hou and Cong Xu
Gels 2026, 12(1), 73; https://doi.org/10.3390/gels12010073 - 14 Jan 2026
Abstract
This study provides the first comparative analysis of the physicochemical and functional properties of oil body suspensions derived from different parts—entire fruit (EOB), peel (POB), and seed (SOB)—of Idesia polycarpa Maxim (IPM) during in vitro simulated gastrointestinal digestion. Results demonstrated that the properties [...] Read more.
This study provides the first comparative analysis of the physicochemical and functional properties of oil body suspensions derived from different parts—entire fruit (EOB), peel (POB), and seed (SOB)—of Idesia polycarpa Maxim (IPM) during in vitro simulated gastrointestinal digestion. Results demonstrated that the properties of the different suspensions exhibited significant difference during digestion stages. The average particle size of all suspensions decreased, with the most significant reduction observed in POB (91.50%), which was attributable to its lower interfacial protein content and inferior stability. The absolute ζ-potential decreased in the model of gastric digestion (MGD) due to interface disruption but increased in the model of intestinal digestion (MID) following the adsorption of bile salts. Throughout the simulated digestion process, the protein hydrolysis degree, free fatty acid (FFA) release rate, reducing power, and inhibition rates against α-amylase and α-glucosidase all increased, concurrently with a decrease in DPPH radical scavenging activity. Notably, the POB suspension exhibited the highest extent of lipid digestion, with the highest cumulative FFA release rate (27.83%). In contrast, the SOB suspension showed the most significant enhancement in total reducing power (increased by 199.32% after intestinal digestion) and the highest α-glucosidase inhibitory activity. These findings clarify that the part source is a critical factor influencing the digestive properties and functional activities of IPM oil bodies, providing a theoretical foundation for the targeted application in functional foods. Full article
(This article belongs to the Special Issue Properties and Structure of Plant-Based Emulsion Gels)
35 pages, 1220 KB  
Review
Terpenoids: Emerging Natural Modulators for Reversing ABC Transporter-Mediated Multidrug Resistance in Cancer Chemotherapy
by Lanfei Ma, Dina Mahemuti, Yuanhong Lan, Jianxiong Xu, Wenfang Li, Zhengding Su, Jinyao Li, Aytursun Abuduwaili and Ayitila Maimaitijiang
Pharmaceuticals 2026, 19(1), 146; https://doi.org/10.3390/ph19010146 - 14 Jan 2026
Abstract
Multidrug resistance (MDR) is a central cause of chemotherapy failure and tumor recurrence and metastasis, and its mechanism involves enhanced drug efflux, target mutation, upregulation of DNA repair and remodeling of the tumor microenvironment. ABC transporter protein (P-gp, MRP, and BCRP)-mediated efflux of [...] Read more.
Multidrug resistance (MDR) is a central cause of chemotherapy failure and tumor recurrence and metastasis, and its mechanism involves enhanced drug efflux, target mutation, upregulation of DNA repair and remodeling of the tumor microenvironment. ABC transporter protein (P-gp, MRP, and BCRP)-mediated efflux of drugs is the most intensively researched aspect of the study, but the first three generations of small-molecule reversal agents were stopped in the clinic because of toxicity or pharmacokinetic defects. Natural products are considered as the fourth generation of MDR reversal agents due to their structural diversity, multi-targeting and low toxicity. In this paper, we systematically summarize the inhibitory activities of monoterpenes, sesquiterpenes, diterpenes and triterpenes against ABC transporter proteins in in vitro and in vivo models and focus on the new mechanism of reversing drug resistance by blocking efflux pumps, modulating signaling pathways such as PI3K-AKT, Nrf2, NF-κB and remodeling the tumor microenvironment. For example, Terpenoids possess irreplaceable core advantages over traditional multidrug resistance (MDR) reversers: Compared with the first three generations of synthetic reversers, natural/semisynthetic terpenoids integrate low toxicity (mostly derived from edible medicinal plants, half-maximal inhibitory concentration IC50 > 50 μM), high target specificity (e.g., oleanolic acid specifically inhibits the ATP-binding cassette (ABC) transporter subtype ABCC1 without cross-reactivity with ABCB1), and multi-mechanistic synergistic effects (e.g., β-caryophyllene simultaneously mediates the dual effects of “ABCB1 efflux inhibition + apoptotic pathway activation”). These unique characteristics enable terpenoids to effectively circumvent key limitations of traditional synthetic reversers, such as high toxicity and severe drug–drug interactions. Among them, lupane-type derivative BBA and euphane-type sooneuphanone D (triterpenoids), as well as dihydro-β-agarofuran-type compounds and sesquiterpene lactone Conferone (sesquiterpenoids), have emerged as the core lead compounds with the greatest translational potential in current MDR reverser research, attributed to their potent in vitro and in vivo MDR reversal activity, low toxicity, and excellent druggable modifiability. At the same time, we point out bottlenecks, such as low bioavailability, insufficient in vivo evidence, and unclear structure–activity relationship and put forward a proposal to address these bottlenecks. At the same time, the bottlenecks of low bioavailability, insufficient vivo evidence and unclear structure–activity relationship have been pointed out, and future research directions such as nano-delivery, structural optimization and combination strategies have been proposed to provide theoretical foundations and potential practical pathways for the clinical translation research of terpenoid compounds, whose clinical application still requires further in vivo validation and translational research support. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

27 pages, 3024 KB  
Article
Influence of Filling Rate and Support Beam Optimization on Surface Subsidence in Sustainable Ultra-High-Water Backfill Mining: A Case Study
by Xuyang Chen, Xufeng Wang, Chenlong Qian, Dongdong Qin, Zechao Chang, Zhiwei Feng and Zhijun Niu
Sustainability 2026, 18(2), 854; https://doi.org/10.3390/su18020854 - 14 Jan 2026
Abstract
As a key sustainable green-mining technology, ultra-high-water backfill mining is widely used to control surface subsidence and sustain extraction of constrained coal seams. Focusing on the Hengjian coal mine in the Handan mining area, this study uses physical modeling and industrial tests to [...] Read more.
As a key sustainable green-mining technology, ultra-high-water backfill mining is widely used to control surface subsidence and sustain extraction of constrained coal seams. Focusing on the Hengjian coal mine in the Handan mining area, this study uses physical modeling and industrial tests to clarify surface subsidence under different filling rates and identify the rock layers that hydraulic supports must control at various equivalent mining heights. A method is proposed to improve the filling rate by optimizing the thickness of the hydraulic support canopy through topological analysis. Results show that, compared with a filling rate of 85%, a 90% filling rate reduces subsidence of the basic roof, key layer, and surface by 51%, 57%, and 63%, respectively, while the industrial practice results have verified that the filling rate can significantly control surface subsidence. The equivalent mining height thresholds for instability of the immediate roof and high basic roof at the 2515 working face are 0.44 m and 1.26 m. Reducing the trailing beam thickness by 10 cm can theoretically raise the filling rate of the 2515 working face by about 2%, offering guidance for similar mines. Full article
15 pages, 2796 KB  
Article
Research on Delamination Damage Factor of Hole-Making Process Optimization Based on Carbon Fiber Composite Materials
by Linsheng Liu, Yushu Lai, Yiwei Zhang, Lin Huang, Jiexiao Yang, Yuchi Jiang, Zhiwei Hu, Zhen Li and Bin Wang
Polymers 2026, 18(2), 219; https://doi.org/10.3390/polym18020219 - 14 Jan 2026
Abstract
Carbon fiber reinforced polymer (CFRP) is prone to delamination damage during drilling, which seriously affects the processing quality. This study focuses on the use of variable parameter drilling technology. Firstly, an anisotropic constitutive model and a Hashin failure model for CFRP were constructed. [...] Read more.
Carbon fiber reinforced polymer (CFRP) is prone to delamination damage during drilling, which seriously affects the processing quality. This study focuses on the use of variable parameter drilling technology. Firstly, an anisotropic constitutive model and a Hashin failure model for CFRP were constructed. Then, based on ABAQUS and VUMAT user subroutines, the influence laws of cutting parameters (spindle speed and feed rate) on delamination damage were explored. For the two methods of conventional fixed parameter drilling and variable parameter drilling (dynamic adjustment of feed rate when the drill reaches the exit plane), comparative simulation experiments were conducted. Subsequently, the genetic algorithm was introduced to optimize the spindle speed and feed rate under the variable parameter mode, and the results were verified through hole-making experiments. The results show that: under a constant spindle speed, the delamination damage factor increases monotonically with the increase in feed rate; under a constant feed rate, the delamination damage factor decreases first and then increases with the increase in spindle speed, presenting a nonlinear change characteristic. Among them, the variable parameter strategy of “first high feed, then low feed” can significantly reduce the delamination damage; the obtained optimal parameters can effectively balance the drilling quality and processing efficiency. This research provides theoretical and experimental support for optimizing CFRP hole-making parameters, addressing delamination control challenges in traditional drilling, and facilitating CFRP applications in aerospace and intelligent manufacturing. Full article
Show Figures

Figure 1

21 pages, 22225 KB  
Article
Overexpression of the PtrCLE1A Gene Enhances Drought Tolerance in Poplar
by Zheng Li, Feng-Xin Chen, Yu-Qi Liu, Xianli Tang, Meng-Bo Huang, Ming-Ming Li, Chao Liu, Hou-Ling Wang and Xinli Xia
Forests 2026, 17(1), 113; https://doi.org/10.3390/f17010113 - 14 Jan 2026
Abstract
Signaling mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is essential for plants to adapt to abiotic stress. To address the global issue of drought-induced growth inhibition and mortality in poplar (Populus spp.), this study investigated the function of the [...] Read more.
Signaling mediated by CLAVATA3/EMBRYO SURROUNDING REGION-RELATED (CLE) peptides and their receptors is essential for plants to adapt to abiotic stress. To address the global issue of drought-induced growth inhibition and mortality in poplar (Populus spp.), this study investigated the function of the PtrCLE1A gene from Populus trichocarpa Torr. et Gray in drought tolerance regulation. We employed gene cloning, expression vector construction, and genetic transformation of poplar, combined with bioinformatics analysis, subcellular localization, phenotypic observation, physiological index measurement, and gene expression analysis. The results demonstrated that both PtrCLE1A and PtrCLE1B encode pre-propeptides containing a signal peptide, with an identical mature peptide sequence (RLSPGGPDPRHH), and their putative receptors are PtrCLV1/2. Furthermore, the PtrCLE1A pre-propeptide was localized around the plasma membrane in tobacco (Nicotiana benthamiana Domin) mesophyll cells, consistent with its predicted function. PtrCLE1A and PtrCLE1B are primarily expressed in the roots and xylem of P. trichocarpa. Additionally, only the PtrCLE1A promoter contained drought-responsive cis-elements, and its expression was induced by drought stress in root, xylem, and leaf tissues of P. trichocarpa. Overexpression of the PtrCLE1A gene in Populus tomentosa Carrière (triploid) significantly increased adventitious root length under osmotic stress. Overexpression lines exhibited 22.00% to 22.92% longer adventitious roots than EV lines at 50/100 mM mannitol, and 65.12% to 73.17% longer at 150 mM mannitol. The OE lines also exhibited higher photosynthetic capacity and instantaneous water use efficiency (iWUE), along with reduced membrane damage under drought conditions, indicating enhanced drought resistance. This study provides new genetic resources and a theoretical foundation for molecular breeding of drought-tolerant poplar. Full article
(This article belongs to the Special Issue Abiotic and Biotic Stress Responses in Trees Species—2nd Edition)
20 pages, 1525 KB  
Article
Effects of Ethephon and Gibberellic Acid Treatments on Post-Harvest Flavor Quality of Green Lemon
by Birong Zhang, Suyun Yan, Wenbin Shi, Minxian Duan, Weijie Liu, Rangwei Xu, Jiandong Yang, Chunrui Long, Yunjiang Cheng and Xianyan Zhou
Agronomy 2026, 16(2), 203; https://doi.org/10.3390/agronomy16020203 - 14 Jan 2026
Abstract
This study investigated the effects of Ethephon (CEPA) and Gibberellic acid (GA3) treatments on the post-harvest flavor quality of ‘Yunning No. 1’ green lemon. A comprehensive analysis was conducted on the changes in primary metabolites (sugars, organic acids, amino acids, alcohols) [...] Read more.
This study investigated the effects of Ethephon (CEPA) and Gibberellic acid (GA3) treatments on the post-harvest flavor quality of ‘Yunning No. 1’ green lemon. A comprehensive analysis was conducted on the changes in primary metabolites (sugars, organic acids, amino acids, alcohols) in the pulp and peel, as well as those in major volatile compounds in the peel during fruit storage. The results showed that CEPA treatment initially increased volatile compounds like monoterpenes and sesquiterpenes in the fruit peel during early storage, but later decreased these compounds along with total sugar and amino acid content in the pulp. Conversely, GA3 treatment markedly delayed the decline in sugars and organic acids in the fruit peel, preserved the amino acid content in the pulp and the alcohol content in the peel, and delayed the decrease in volatile compound content in the peel. In conclusion, GA3 treatment effectively delayed the decline in primary metabolites and volatile compounds to maintain the storage quality of green lemon; therefore, GA3 represents a suitable strategy for the preservation of green lemons. CEPA temporarily improved aroma but accelerated quality deterioration, making it better suited for short-term degreening. This study offers a theoretical foundation for optimizing post-harvest degreening and preservation techniques of green lemons. Full article
(This article belongs to the Section Horticultural and Floricultural Crops)
34 pages, 47033 KB  
Article
From Deformation Monitoring to Mechanism Insight: Assessing Sudden Subsidence Risk via an Improved 2D SBAS-InSAR and Physical Modeling Approach
by Qiu Du, Guangli Guo, Huaizhan Li, Liangui Zhang, Fanzhen Meng, Zhenqi Hu and Jingchao Sun
Sensors 2026, 26(2), 562; https://doi.org/10.3390/s26020562 - 14 Jan 2026
Abstract
Safe and efficient coal mining faces a global challenge in predicting sudden surface subsidence whose mechanisms remain unclear. This study, centered on deep coal seams in China’s Ordos Basin, examines the risk of abrupt subsidence controlled by high-positioned, ultra-thick, and weakly cemented key [...] Read more.
Safe and efficient coal mining faces a global challenge in predicting sudden surface subsidence whose mechanisms remain unclear. This study, centered on deep coal seams in China’s Ordos Basin, examines the risk of abrupt subsidence controlled by high-positioned, ultra-thick, and weakly cemented key strata. We adopt an integrated “observation–experiment–model” paradigm. First, we construct a spatial decoupling model to analyze errors in 1D SBAS-InSAR monitoring, leading to a refined 2D method that reduces the three-dimensional monitoring error from 50 mm to under 20 mm. Based on this, the subsidence basin’s boundary angles are accurately determined as 52.3°–58.6° (strike) and 44.3°–48.2° (dip). Second, a large-scale physical simulation experiment visualizes the complete process of overburden failure up to the breaking of high-level key strata. Finally, by coupling remote sensing observations with experimental phenomena, a theoretical model is built to quantify the mechanical behavior of key strata, revealing the critical width-to-depth ratios for the rupture of the Yan’an Formation (0.21–0.27), Zhiluo Formation (0.53–0.82), and Zhidan Group (1.22–1.34). The research not only delineates surface subsidence morphology under special geological conditions but also answers the core questions of why subsidence occurs and when mutation may happen, thereby laying a theoretical foundation for a comprehensive early-warning model for mining areas worldwide. Full article
(This article belongs to the Topic Advanced Risk Assessment in Geotechnical Engineering)
Show Figures

Figure 1

Back to TopTop