Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (550)

Search Parameters:
Keywords = the thrust characteristics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 3469 KiB  
Article
Performance Characteristics of a New Aerostatic Thrust Bearing with Poro-Elastic Restrictor
by Alin Mărgineanu, Alice Marinescu, Aurelian Fatu, Traian Cicone and Yann Henry
Lubricants 2025, 13(8), 346; https://doi.org/10.3390/lubricants13080346 - 3 Aug 2025
Abstract
Aerostatic bearings were proven to be an optimal choice in situations where low friction, cleanliness, and high motion accuracy are required. Their functionality relies heavily on flow restrictors, which are responsible for regulating and controlling the supply flow, and consequently, the thickness and [...] Read more.
Aerostatic bearings were proven to be an optimal choice in situations where low friction, cleanliness, and high motion accuracy are required. Their functionality relies heavily on flow restrictors, which are responsible for regulating and controlling the supply flow, and consequently, the thickness and stiffness of the fluid film. A diverse range of restrictors with varying characteristics is used, among which are the porous restrictors. The current work introduces a novel solution involving a porous, highly compressible restrictor, whose element of novelty compared to its predecessors consists of its variable thickness and corresponding permeability, regulated by the load on the bearing. The gas is supplied through an annular, elastic, deformable, porous disc, which is compressed by a metal plate, subjected to compression by the recess pressure on one side and by the supply pressure on the other side. One or more springs are used in parallel with the porous disc to obtain the optimum elastic response. The objective of this study is to evaluate the performance characteristics and compare them to a conventional restrictor. A parametric analysis is performed to define the size and properties of the porous restrictor. Full article
(This article belongs to the Special Issue Advances in Lubricated Bearings, 2nd Edition)
Show Figures

Figure 1

27 pages, 2829 KiB  
Article
A Study of Emergency Aircraft Control During Landing
by Mariusz Paweł Dojka and Marian Wysocki
Appl. Sci. 2025, 15(15), 8472; https://doi.org/10.3390/app15158472 - 30 Jul 2025
Viewed by 150
Abstract
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation [...] Read more.
This paper addresses the problem of loss of control during flight caused by failures of flight control surfaces. It presents a study of an emergency thrust control system based on linear-quadratic control with integral action. The research encompasses an analysis of thrust modulation control characteristics, a review of existing control systems, and a detailed description of the development process, including the research platform configuration, identification of the aircraft state-space model, control law design, integration of system components within the MATLAB and Simulink environment, and software-in-the-loop testing conducted in the X-Plane 11 flight simulator using a Boeing 757-200 model. The study also investigates the issue of control channel cross-coupling and its impact on simultaneous control of the aircraft’s longitudinal and lateral dynamics. The simulation results demonstrate that the proposed emergency system provides adequate controllability, with settling times of approximately 12 s for achieving a flight path angle setpoint of +5°, and 13 s for attaining a maximum (limited) roll angle of 20°, achieved in separate manoeuvres. Furthermore, simulated landing attempts suggest that the system could potentially enable successful landings at approach speeds significantly higher than standard recommendations. However, further investigation is required to address decoupling of control channels, ensure system stability, and evaluate control performance across a broader range of aircraft configurations. Full article
(This article belongs to the Section Aerospace Science and Engineering)
Show Figures

Figure 1

19 pages, 8681 KiB  
Article
Design and Implementation of a Biomimetic Underwater Robot Propulsion System Inspired by Bullfrog Hind Leg Movements
by Yichen Chu, Yahui Wang, Yanhui Fu, Mingxu Ma, Yunan Zhong and Tianbiao Yu
Biomimetics 2025, 10(8), 498; https://doi.org/10.3390/biomimetics10080498 - 30 Jul 2025
Viewed by 306
Abstract
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed [...] Read more.
Underwater propulsion systems are the fundamental functional modules of underwater robotics and are crucial in intricate underwater operational scenarios. This paper proposes a biomimetic underwater robot propulsion scheme that is motivated by the hindlimb movements of the bullfrog. A multi-linkage mechanism was developed to replicate the “kicking-and-retracting” motion of the bullfrog by employing motion capture systems to acquire biological data on their hindlimb movements. The FDM 3D printing and PC board engraving techniques were employed to construct the experimental prototype. The prototype’s biomimetic and motion characteristics were validated through motion capture experiments and comparisons with a real bullfrog. The biomimetic bullfrog hindlimb propulsion system was tested with six-degree-of-freedom force experiments to evaluate its propulsion capabilities. The system achieved an average thrust of 2.65 N. The effectiveness of motor drive parameter optimization was validated by voltage comparison experiments, which demonstrated a nonlinear increase in thrust as voltage increased. This design approach, which transforms biological kinematic characteristics into mechanical drive parameters, exhibits excellent feasibility and efficacy, offering a novel solution and quantitative reference for underwater robot design. Full article
Show Figures

Figure 1

24 pages, 4396 KiB  
Article
Study of the Characteristics of a Co-Seismic Displacement Field Based on High-Resolution Stereo Imagery: A Case Study of the 2024 MS7.1 Wushi Earthquake, Xinjiang
by Chenyu Ma, Zhanyu Wei, Li Qian, Tao Li, Chenglong Li, Xi Xi, Yating Deng and Shuang Geng
Remote Sens. 2025, 17(15), 2625; https://doi.org/10.3390/rs17152625 - 29 Jul 2025
Viewed by 228
Abstract
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that [...] Read more.
The precise characterization of surface rupture zones and associated co-seismic displacement fields from large earthquakes provides critical insights into seismic rupture mechanisms, earthquake dynamics, and hazard assessments. Stereo-photogrammetric digital elevation models (DEMs), produced from high-resolution satellite stereo imagery, offer reliable global datasets that are suitable for the detailed extraction and quantification of vertical co-seismic displacements. In this study, we utilized pre- and post-event WorldView-2 stereo images of the 2024 Ms7.1 Wushi earthquake in Xinjiang to generate DEMs with a spatial resolution of 0.5 m and corresponding terrain point clouds with an average density of approximately 4 points/m2. Subsequently, we applied the Iterative Closest Point (ICP) algorithm to perform differencing analysis on these datasets. Special care was taken to reduce influences from terrain changes such as vegetation growth and anthropogenic structures. Ultimately, by maintaining sufficient spatial detail, we obtained a three-dimensional co-seismic displacement field with a resolution of 15 m within grid cells measuring 30 m near the fault trace. The results indicate a clear vertical displacement distribution pattern along the causative sinistral–thrust fault, exhibiting alternating uplift and subsidence zones that follow a characteristic “high-in-center and low-at-ends” profile, along with localized peak displacement clusters. Vertical displacements range from approximately 0.2 to 1.4 m, with a maximum displacement of ~1.46 m located in the piedmont region north of the Qialemati River, near the transition between alluvial fan deposits and bedrock. Horizontal displacement components in the east-west and north-south directions are negligible, consistent with focal mechanism solutions and surface rupture observations from field investigations. The successful extraction of this high-resolution vertical displacement field validates the efficacy of satellite-based high-resolution stereo-imaging methods for overcoming the limitations of GNSS and InSAR techniques in characterizing near-field surface displacements associated with earthquake ruptures. Moreover, this dataset provides robust constraints for investigating fault-slip mechanisms within near-surface geological contexts. Full article
Show Figures

Figure 1

22 pages, 7901 KiB  
Article
Research on the Load Characteristics of Aerostatic Spindle Considering Straightness Errors
by Guoqing Zhang, Yu Guo, Guangzhou Wang, Wenbo Wang, Youhua Li, Hechun Yu and Suxiang Zhang
Lubricants 2025, 13(8), 326; https://doi.org/10.3390/lubricants13080326 - 26 Jul 2025
Viewed by 185
Abstract
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model [...] Read more.
As the core component of ultra-precision machine tools, the manufacturing errors of aerostatic spindles are inevitable due to the limitations of machining and assembly processes, and these errors significantly affect the spindle’s static and dynamic performance. To address this issue, a force model of the unbalanced air film, considering the straightness errors of the rotor’s radial and thrust surfaces, was constructed. Unlike conventional studies that rely solely on idealized error assumptions, this research integrates actual straightness measurement data into the simulation process, enabling a more realistic and precise prediction of bearing performance. Rotors with different tolerance specifications were fabricated, and static performance simulations were carried out based on the measured geometry data. An experimental setup was built to evaluate the performance of the aerostatic spindle assembled with these rotors. The experimental results were compared with the simulation outcomes, confirming the validity of the proposed model. To further quantify the influence of straightness errors on the static characteristics of aerostatic spindles, ideal functions were used to define representative manufacturing error profiles. The results show that a barrel-shaped error on the radial bearing surface can cause a load capacity variation of up to 46.6%, and its positive effect on air film load capacity is more significant than that of taper or drum shapes. For the thrust bearing surface, a concave-shaped error can lead to a load capacity variation of up to 13.4%, and its enhancement effect is superior to those of the two taper and convex-shaped errors. The results demonstrate that the straightness errors on the radial and thrust bearing surfaces are key factors affecting the radial and axial load capacities of the spindle. Full article
Show Figures

Figure 1

16 pages, 1491 KiB  
Article
A Hull–Engine–Propeller Matching Method for Shaftless Rim-Driven Thrusters
by Dajian Cheng, Huaqiang Zhang, Tong Yao, Mei Zhao and Pingpeng Tang
J. Mar. Sci. Eng. 2025, 13(8), 1414; https://doi.org/10.3390/jmse13081414 - 25 Jul 2025
Viewed by 256
Abstract
As an innovative underwater propulsion technology, the rim-driven thruster (RDT) has garnered increasing attention due to its advantages over conventional diesel or gas turbine propulsion systems, including reduced noise, higher efficiency, and a compact structure. However, traditional hull–engine–propeller matching theories are not directly [...] Read more.
As an innovative underwater propulsion technology, the rim-driven thruster (RDT) has garnered increasing attention due to its advantages over conventional diesel or gas turbine propulsion systems, including reduced noise, higher efficiency, and a compact structure. However, traditional hull–engine–propeller matching theories are not directly applicable to RDTs because of their unique shaftless and ducted characteristics. Based on conventional hull–engine–propeller matching theory and propeller design methodology, this study proposes a novel hull–engine–propeller matching approach tailored specifically to RDTs. The method enables rapid matching by using open-water characteristics for hull–engine–propeller matching. In the absence of open-water test data for shaftless propellers, key parameters derived from ducted propeller tests are used for matching based on open-water characteristics to design the shaftless propeller. The propeller is then optimized through computational fluid dynamics (CFD) simulations to achieve the required thrust performance, effectively enabling an equivalent replacement. The proposed method provides a practical framework for selecting and designing RDTs, improves overall propulsion efficiency, and offers specific guidelines for determining optimal motor design parameters. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

17 pages, 16582 KiB  
Article
Unsteady Hydrodynamic Calculation and Characteristic Analysis of Voith–Schneider Propeller with High Eccentricity
by Zhihua Liu, Weixin Xue, Wentao Liu and Qian Chen
J. Mar. Sci. Eng. 2025, 13(8), 1407; https://doi.org/10.3390/jmse13081407 - 24 Jul 2025
Viewed by 221
Abstract
To analyze the hydrodynamic performance of the Voith–Schneider Propeller (VSP) under high eccentricity (e = 0.9), open-water performance numerical calculations were conducted for the VSP at different eccentricities. The results were compared with experimental data, revealing significant discrepancies at high eccentricity. Analysis [...] Read more.
To analyze the hydrodynamic performance of the Voith–Schneider Propeller (VSP) under high eccentricity (e = 0.9), open-water performance numerical calculations were conducted for the VSP at different eccentricities. The results were compared with experimental data, revealing significant discrepancies at high eccentricity. Analysis identified that during the experiment, the VSP blades did not strictly move according to the prescribed “normal intersection principle” when passing near the eccentric point, which was the primary cause of the errors between the calculation and experiment. Further research demonstrated that when the blades pass near the eccentric point, both the individual blade and the overall propeller exhibit strong unsteady pulsation phenomena. The characteristics of these unsteady forces become more pronounced with increasing eccentricity. For the VSP under high eccentricity (e = 0.9), different Blade Steering Curves near the eccentric point were designed using a parametric method. The hydrodynamic performance of the VSP under these different curves was compared. The study demonstrates that rationally optimizing the motion of blades is a key approach to improving their hydrodynamic performance. At J = 2.4, the adoption of Opt-5 enables a 4.67% increase in thrust, a 25.19% reduction in thrust pulsation, a 12.74% reduction in torque, an 81.94% reduction in torque pulsation, and a 19.95% improvement in efficiency for the VSP. Full article
(This article belongs to the Section Ocean Engineering)
Show Figures

Figure 1

21 pages, 4336 KiB  
Article
A Hybrid Flying Robot Utilizing Water Thrust and Aerial Propellers: Modeling and Motion Control System Design
by Thien-Dinh Nguyen, Cao-Tri Dinh, Tan-Ngoc Nguyen, Jung-Suk Park, Thinh Huynh and Young-Bok Kim
Actuators 2025, 14(7), 350; https://doi.org/10.3390/act14070350 - 17 Jul 2025
Viewed by 294
Abstract
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such [...] Read more.
In this paper, a hybrid flying robot that utilizes water thrust and aerial propeller actuation is proposed and analyzed, with the aim of applications in hazardous tasks in the marine field, such as firefighting, ship inspections, and search and rescue missions. For such tasks, existing solutions like drones and water-powered robots inherited fundamental limitations, making their use ineffective. For instance, drones are constrained by limited flight endurance, while water-powered robots struggle with horizontal motion due to the couplings between translational motions. The proposed hydro-aerodynamic hybrid actuation in this study addresses these significant drawbacks by utilizing water thrust for sustainable vertical propulsion and propeller-based actuation for more controllable horizontal motion. The characteristics and mathematical models of the proposed flying robots are presented in detail. A state feedback controller and a proportional–integral–derivative (PID) controller are designed and implemented in order to govern the proposed robot’s motion. In particular, a linear matrix inequality approach is also proposed for the former design so that a robust performance is ensured. Simulation studies are conducted where a purely water-powered flying robot using a nozzle rotation mechanism is deployed for comparison, to evaluate and validate the feasibility of the flying robot. Results demonstrate that the proposed system exhibits superior performance in terms of stability and tracking, even in the presence of external disturbances. Full article
(This article belongs to the Special Issue Actuator-Based Control Strategies for Marine Vehicles)
Show Figures

Figure 1

16 pages, 57657 KiB  
Article
InSAR Inversion of the Source Mechanism of the 23 January 2024 Xinjiang Wushi Mw7.0 Earthquake
by Mingyang Jin, Yongsheng Li and Yujiang Li
Remote Sens. 2025, 17(14), 2435; https://doi.org/10.3390/rs17142435 - 14 Jul 2025
Viewed by 272
Abstract
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. [...] Read more.
The Mw7.0 earthquake that occurred on 23 January 2024, in Wushi County, Xinjiang, China, was centered on the Maidan fault, located at the rear edge of the Kalpin reverse-thrust system in the southwestern Tianshan Mountains, at a depth of 13 km. This event caused significant surface deformation and triggered a series of secondary geologic hazards. In this study, data from two satellites, Sentinel-1A and LuTan-1, were combined to obtain the coseismic deformation field of the earthquake. The two-step inversion method was applied to determine the geometrical parameters and slip characteristics of the mainshock fault. The results indicate that the seismicity is primarily driven by reverse faulting, with a contribution from sinistral strike–slip faulting, and the maximum dip–slip displacement is 4.2 m. Additionally, an aftershock of magnitude 5.7 occurring on January 30 was identified in the LT-1 data. This aftershock was controlled by a reverse fault dipping opposite to the mainshock fault, and its maximum slip is 0.65 m. Analysis of the Coulomb stress triggering effect suggests that the Wushi earthquake may have induced the aftershock. Full article
Show Figures

Figure 1

17 pages, 3534 KiB  
Article
Lift–Thrust Integrated Ducted-Grid Fusion Configuration Design for a Ducted Fan Tail-Sitter UAV
by Lei Liu and Baigang Mi
Appl. Sci. 2025, 15(14), 7687; https://doi.org/10.3390/app15147687 - 9 Jul 2025
Viewed by 240
Abstract
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced [...] Read more.
A new lift enhancement scheme is designed for the cruise flight process of a tail-sitter UAV (Unmanned Aerial Vehicle), proposing a fusion configuration with embedded grid channels on the duct wall. The low pressure zone at the lip of the duct is induced to expand through the grid channels, forming a significant force component difference with the non-grid side, thereby generating significant lift effects for the propeller of the ducted fan during level flight. Taking a ducted fan system as an example, a design method for embedding grids into the ducted wall is established. By using the sliding mesh technique to simulate propeller rotation, the effects of annular distribution angle, grid channel width, circumferential and flow direction grid quantity on its aerodynamic performance are evaluated. The results indicate that the ducted fan embedded in the grid can generate a lift about 22.16% of total thrust without significantly affecting thrust and power characteristics. The increase in circumferential distribution angle increases within a reasonable range and benefits the lift of the propeller. However, the larger the grid width, the more it affects the lip and tail of the duct. Ultimately, the overall effect actually deteriorates the performance. The number of circumferential grids has a relatively small impact. As the number of flow grids increases, the aerodynamic characteristics of the entire fusion configuration significantly improves, due to its favorable induction of airflow at the lip and tail of the duct, as well as blocking the dissipation of blade-tip vortices. Full article
(This article belongs to the Special Issue Multidisciplinary Collaborative Design of Aircraft)
Show Figures

Figure 1

22 pages, 11772 KiB  
Article
Effect of Slide Valve Gap Surface Roughness on Particle Transport Properties
by Jin Zhang, Ranheng Du, Pengpeng Dong, Kuohang Zhang, Shengrong Wang, Ying Li and Kuo Zhang
Aerospace 2025, 12(7), 608; https://doi.org/10.3390/aerospace12070608 - 5 Jul 2025
Viewed by 216
Abstract
Fuel electro-hydraulic servo valves are core components in the fuel control system of aero-engines, and their performance directly affects thrust regulation and power output precision. Due to the combustibility of the working medium in fuel systems and the lack of effective circulation filtration, [...] Read more.
Fuel electro-hydraulic servo valves are core components in the fuel control system of aero-engines, and their performance directly affects thrust regulation and power output precision. Due to the combustibility of the working medium in fuel systems and the lack of effective circulation filtration, the retention of micron-sized particles within the valve gap can lead to valve spool jamming, which is a critical reliability issue. This study, based on fractal theory and the liquid–solid two-phase flow model, proposes a parametric model for non-ideal surface valve gaps and analyzes the dynamics of particles subjected to drag, lift, and buoyant forces on rough surfaces. By numerically analyzing flow field models with different roughness levels and comparing them with an ideal smooth gap model, the migration characteristics of particles were studied. To verify the accuracy of the model, an upscaled experimental setup was built based on similarity theory, and PIV experiments were conducted for validation. Experimental results show that the particle release position and valve surface roughness significantly affect particle migration time. The weight of the release position on particle migration time is 63%, while the impact of valve surface roughness is 37%. In models with different roughness levels, the particle migration time increases more rapidly for roughness values greater than Ra0.4, while for values less than Ra0.4, the increase in migration time is slower. Furthermore, the study reveals that particle migration trajectories are independent of flow velocity, with velocity only affecting particle migration time. This research provides theoretical support for enhancing the reliability of fuel electro-hydraulic servo valves and offers a new perspective for the design of highly reliable hydraulic components. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

24 pages, 3003 KiB  
Article
Fault Geometry and Slip Distribution of the 2023 Jishishan Earthquake Based on Sentinel-1A and ALOS-2 Data
by Kaifeng Ma, Yang Liu, Qingfeng Hu, Jiuyuan Yang and Limei Wang
Remote Sens. 2025, 17(13), 2310; https://doi.org/10.3390/rs17132310 - 5 Jul 2025
Viewed by 409
Abstract
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical [...] Read more.
On 18 December 2023, a Mw 6.2 earthquake occurred in close proximity to Jishishan County, located on the northeastern edge of the Qinghai–Tibet Plateau. The event struck the structural intersection of the Haiyuan fault, Lajishan fault, and West Qinling fault, providing empirical evidence for investigating the crustal compression mechanisms associated with the northeastward expansion of the Qinghai–Tibet Plateau. In this study, we successfully acquired a high-resolution coseismic deformation field of the earthquake by employing interferometric synthetic aperture radar (InSAR) technology. This was accomplished through the analysis of image data obtained from both the ascending and descending orbits of the Sentinel-1A satellite, as well as from the ascending orbit of the ALOS-2 satellite. Our findings indicate that the coseismic deformation is predominantly localized around the Lajishan fault zone, without leading to the development of a surface rupture zone. The maximum deformations recorded from the Sentinel-1A ascending and descending datasets are 7.5 cm and 7.7 cm, respectively, while the maximum deformation observed from the ALOS-2 ascending data reaches 10 cm. Geodetic inversion confirms that the seismogenic structure is a northeast-dipping thrust fault. The geometric parameters indicate a strike of 313° and a dip angle of 50°. The slip distribution model reveals that the rupture depth predominantly ranges between 5.7 and 15 km, with a maximum displacement of 0.47 m occurring at a depth of 9.6 km. By integrating the coseismic slip distribution and aftershock relocation, this study comprehensively elucidates the stress coupling mechanism between the mainshock and its subsequent aftershock sequence. Quantitative analysis indicates that aftershocks are primarily located within the stress enhancement zone, with an increase in stress ranging from 0.12 to 0.30 bar. It is crucial to highlight that the structural units, including the western segment of the northern margin fault of West Qinling, the eastern segment of the Daotanghe fault, the eastern segment of the Linxia fault, and both the northern and southern segment of Lajishan fault, exhibit characteristics indicative of continuous stress loading. This observation suggests a potential risk for fractures in these areas. Full article
Show Figures

Figure 1

14 pages, 1805 KiB  
Proceeding Paper
Helicopter Rotor Aerodynamic Characteristics in Ground Effect: Numerical Study
by Gabriel Georgiev
Eng. Proc. 2025, 100(1), 13; https://doi.org/10.3390/engproc2025100013 - 4 Jul 2025
Viewed by 235
Abstract
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients [...] Read more.
This article represents a full estimation of helicopter rotor aerodynamic characteristics in ground effect conditions through the application of a coupled empirical blade element–momentum theory algorithm. The main focus of this research includes the evaluation of the required weighted power coefficients CPσ for a hovering state in close proximity to obstacles and their relation to the weighted thrust force coefficients’ values CTσ, varying the relative distance from the helicopter rotational plane to the ground surface HR and the rotor’s collective pitch angle (θ). The represented numerical and experimental results show that an increase in the collective pitch angles (θ) leads to a rise in the generated weighted thrust force coefficients CTσ and in the weighted power coefficients CPσ for every individual fixed normalized distance from the ground surface HR. Moreover, a decline in the relative distance from the ground HR requires less power to keep the rotation going in hover. The dependencies indicate that the ground effect zone covers a distance of up to 2R from the rotational plane to the ground surface. Full article
Show Figures

Figure 1

23 pages, 3869 KiB  
Article
Fault Diagnosis Method for Pumped Storage Units Based on VMD-BILSTM
by Hui Li, Qinglin Li, Hua Li and Liang Bai
Symmetry 2025, 17(7), 1067; https://doi.org/10.3390/sym17071067 - 4 Jul 2025
Viewed by 271
Abstract
The construction of pumped storage power stations (PSPSs) is undergoing rapid expansion globally. Detecting operational faults and defects in pumped storage units is critical, as effective diagnostic methods can not only identify fault types quickly and accurately but also significantly reduce maintenance costs. [...] Read more.
The construction of pumped storage power stations (PSPSs) is undergoing rapid expansion globally. Detecting operational faults and defects in pumped storage units is critical, as effective diagnostic methods can not only identify fault types quickly and accurately but also significantly reduce maintenance costs. This study leverages the symmetry characteristics in the vibration signals of pumped storage units to enhance fault diagnosis accuracy. To address the challenges of selecting the key parameters (e.g., decomposition level and penalty factor) of the variational mode decomposition (VMD) algorithm during vibration signal analysis, this paper proposes an algorithm for an improved subtraction-average-based optimizer (ISABO). By incorporating piecewise linear mapping, the ISABO enhances parameter initialization and, combined with a balanced pool method, mitigates the algorithm’s tendency to converge to local optima. This improvement enables more effective vibration signal denoising and feature extraction. Furthermore, to optimize hyperparameter selection in the bidirectional long short-term memory (BILSTM) network—such as the number of hidden layer units, maximum training epochs, and learning rate—we introduce an ISABO-BILSTM classification model. This approach ensures robust fault diagnosis by fine-tuning the neural network’s critical parameters. The proposed method is validated using vibration data from an operational PSPS. Experimental results demonstrate that the ISABO-BILSTM model achieves an overall fault recognition accuracy of 97.96%, with the following breakdown: normal operation: 96.29%, thrust block loosening: 98.60%, rotor-stator rubbing: 97.34%, and rotor misalignment: 99.59%. These results confirm that the proposed framework significantly improves fault identification accuracy, offering a novel and reliable approach for PSPS unit diagnostics. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

21 pages, 6027 KiB  
Article
Static Characteristic Analysis of Multi-Layer Foil Thrust Bearing: Considering Parameter Effects
by Yulong Jiang, Qianjing Zhu, Zhongwen Huang and Dongyan Gao
Lubricants 2025, 13(7), 285; https://doi.org/10.3390/lubricants13070285 - 25 Jun 2025
Viewed by 468
Abstract
A modified static characteristic model for the multi-layer foil thrust bearing (MLFTB) is established. In this model, the finite difference method and the thick plate element are implemented, the compressible Reynolds equation is linearized by the Newton–Raphson method, and the evolution law of [...] Read more.
A modified static characteristic model for the multi-layer foil thrust bearing (MLFTB) is established. In this model, the finite difference method and the thick plate element are implemented, the compressible Reynolds equation is linearized by the Newton–Raphson method, and the evolution law of the static characteristics with the geometric and operational parameters is derived by iterative solution. The results indicate that the bearing capacity could be generally decreased by around 3.15% when considering the slip boundary condition, which should not be neglected. Also, when under the rigorous wedge effect, the pressure peak near the mini clearance exhibits an obvious double peak shape. The bearing capacity can be slightly enhanced by an increase in the tilt angle of the thrust disk. In comparison to data in the literature, the current model shows satisfactory precision for the multi-layer foil thrust bearing. It aims to provide effective predictive means and theoretical reference for MLFTB. Full article
Show Figures

Figure 1

Back to TopTop