Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (287)

Search Parameters:
Keywords = tetrazolium test

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
11 pages, 1067 KiB  
Article
Assessment of the Anti-Biofilm Effect of Cefiderocol Against 28 Clinical Strains of Multidrug-Resistant Gram-Negative Bacilli
by Marta Díaz-Navarro, Emilia Cercenado, Andrés Visedo, Mercedes Marín, Marina Machado, Álvaro Irigoyen-von-Sierakowski, Belén Loeches, Juana Cacho-Calvo, Julio García-Rodríguez, Enea G. Di Domenico, Patricia Muñoz and María Guembe
Antibiotics 2025, 14(8), 738; https://doi.org/10.3390/antibiotics14080738 - 23 Jul 2025
Viewed by 252
Abstract
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of [...] Read more.
Objectives: Cefideroccol (FDC) is a siderophore cephalosporin with potent antibacterial activity against a wide range of Gram-negative multidrug-resistant (MDR) microorganisms. We investigated the anti-biofilm capacity of FDC against clinical strains. Methods: This multicenter study was conducted on 28 selected strains of MDR Gram-negative bacilli isolated from clinical samples of Pseudomonas aeruginosa (n = 5), Acinetobacter baumannii (n = 11), and Klebsiella pneumoniae (n = 12). We first determined the minimum inhibitory concentration (MIC) of each strain using the microdilution method. We also defined the minimum biofilm inhibitory concentration (MBIC) as a ≥50% reduction in tetrazolium salt (XTT) (as recommended in the 2017 Spanish Microbiology Protocols [SEIMC] for the microbiological diagnosis of infections related to the formation of biofilms). We also analyzed the reduction in the following biofilm variables after an 8 mg/mL FDC treatment: the CFU count, the cell viability, the biomass, the metabolic activity, and extracellular α or β polysaccharides. Results: The MIC50 and MBIC50 of FDC were 0.5 mg/L and 64 mg/L, respectively. We observed a mean (SD) fold increase in the susceptibility to FDC between planktonic and sessile cells for P. aeruginosa, A. baumannii, and K. pneumoniae of 9.60 (0.55), 6.27 (2.28), and 6.25 (2.80), respectively. When 8 mg/mL of FDC was tested, we observed that the best median (IQR) percentage reductions were obtained for cell viability and the extracellular matrix (73.1 [12.4–86.5] and 79.5 [37.3–95.5], respectively), particularly for P. aeruginosa. The lowest percentage reduction rates were those obtained for biomass. Conclusions: We demonstrated that the susceptibility to FDC was significantly reduced when strains were in a biofilm state. The best percentage reduction rates for all biofilm-defining variables were observed for P. aeruginosa. Our results need to be validated using a larger collection of clinical samples. Full article
Show Figures

Figure 1

29 pages, 4978 KiB  
Article
HPLC-DAD-ESI/MS and 2D-TLC Analyses of Secondary Metabolites from Selected Poplar Leaves and an Evaluation of Their Antioxidant Potential
by Loretta Pobłocka-Olech, Mirosława Krauze-Baranowska, Sylwia Godlewska and Katarzyna Kimel
Int. J. Mol. Sci. 2025, 26(13), 6189; https://doi.org/10.3390/ijms26136189 - 27 Jun 2025
Viewed by 371
Abstract
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × [...] Read more.
Poplar leaves (Populi folium) are a herbal remedy traditionally used for the treatment of rheumatic diseases and prostate inflammation. The aim of our study was a comprehensive identification of secondary metabolites occurring in the leaves of Populus alba, Populus × candicans, and Populus nigra, in order to search for a source of raw plant material rich in active compounds. Total salicylate (TSC), flavonoid (TFC), and phenolic compound (TPC) contents were determined, and the antioxidant potential was assessed using DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2′-azino-bis(3-ethylbenzothiazoline- 6-sulfonic acid) diammonium salt), and FRAP (ferric reducing antioxidant power) assays as well as 2D-TLC (two-dimensional thin layer chromatography) bioautography using DPPH, riboflavin-light-NBT (nitro blue tetrazolium chloride), and xanthine oxidase inhibition tests. Secondary metabolites present in the analyzed poplar leaves were identified under the developed HPLC-DAD-ESI/MS (high performance liquid chromatography with photodiode array detection and electrospray ionization mass spectrometric detection analysis conditions and using the 2D-TLC method. Among the 80 identified compounds, 13 were shown for the first time in the genus Populus. The most diverse and similar set of flavonoids characterized the leaves of P. × candicans and P. nigra, while numerous salicylic compounds were present in the leaves of P. alba and P. × candicans. All analyzed leaves are a rich source of phenolic compounds. The highest flavonoid content was found in the leaves of P. × candicans and P. nigra, while the leaves of P. alba were characterized by the highest content of salicylates. All examined poplar leaves demonstrated antioxidant potential in all the assays used, which decreased in the following order: P. nigra, P. × candicans, P. alba. Full article
(This article belongs to the Collection 30th Anniversary of IJMS: Updates and Advances in Biochemistry)
Show Figures

Figure 1

15 pages, 4800 KiB  
Article
Evaluation and DFT Analysis of In Vitro Anticancer Activity of Consolida orientalis, Smyrnium rotundifolium, and Euphorbia virgata Plant Extracts in Colorectal Cancer
by Eda Sönmez Gürer, Zuhal Tunçbilek, Cemile Zontul, Ahu Kutlay, Amrendra Kumar and Gaurav Jhaa
Pharmaceuticals 2025, 18(7), 943; https://doi.org/10.3390/ph18070943 - 22 Jun 2025
Viewed by 613
Abstract
Background: Colon cancer is one of the leading causes of cancer-related deaths today. Crucial research continues for the ideal chemotherapy. In this context, natural compounds of plant origin play an important role in the development of new anticancer drugs. Methods: In [...] Read more.
Background: Colon cancer is one of the leading causes of cancer-related deaths today. Crucial research continues for the ideal chemotherapy. In this context, natural compounds of plant origin play an important role in the development of new anticancer drugs. Methods: In this study, the effects of Consolida orientalis ethanol extract (flower parts), Smyrnium rotundifolium ethanol extract (aerial parts), and Euphorbia virgata ethanol extract (aerial parts) samples on HT-29 (human colorectal adenocarcinoma cell line) and healthy CCD-18Co (human normal colon fibroblast cell line) were investigated for the first time in the literature by applying 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) test within the scope of in vitro cytotoxicity analysis. Results: As a result of the study, it was observed that all plant extracts were most effective at 72 h. S. rotundifolium ethanol extract (aerial parts) was found to be the most effective on the HT-29 cell line. Both the higher cell viability of C. orientalis in healthy cells applied to it compared to S. rotundifolium and its effectiveness on colon cancer cell lines make C. orientalis more advantageous. Conclusions: When evaluating the efficacy of extracts on cancer cells, the load on healthy cells should be taken into account. Therefore, C. orientalis ethanol extract (flower parts) was found to have the potential to be a chemotherapeutic agent against colon cancer. Chemical reactivities of the dominant components of bioactive components were analyzed via Conceptual Density Functional Theory-based calculations. The power of the interactions with EGFR kinase of these compounds is checked via Molecular Docking Calculations. It was noted that Chlorogenic acid, which is the most reactive bioactive component, has a stronger binding to the mentioned enzyme. Full article
Show Figures

Figure 1

18 pages, 5278 KiB  
Article
Integrated Electrochemical and Computational Elucidation of Nitro Blue Tetrazolium Chloride as an Efficient Leveler for Copper Microvia Superfilling
by Dong Xing, Xiangfu Wei, Jinge Ye, Mingsong Lin, Shengchang Tang and Hui You
Micromachines 2025, 16(6), 721; https://doi.org/10.3390/mi16060721 - 19 Jun 2025
Viewed by 499
Abstract
Levelers are indispensable additives for achieving void-free, bottom-up superconformal copper filling of microvias. Establishing the molecular-level correlation between leveler structure and performance is therefore essential to the continued advancement of microelectronic copper-plating technology. Herein, nitro blue tetrazolium chloride (NBT) is identified as an [...] Read more.
Levelers are indispensable additives for achieving void-free, bottom-up superconformal copper filling of microvias. Establishing the molecular-level correlation between leveler structure and performance is therefore essential to the continued advancement of microelectronic copper-plating technology. Herein, nitro blue tetrazolium chloride (NBT) is identified as an efficient leveler for copper microvia superfilling. A multiscale strategy—combining electrochemical measurements, X-ray photoelectron spectroscopy (XPS), density functional theory (DFT) calculations, and molecular dynamics (MD) simulations—is employed to elucidate the action mechanism of NBT and pinpoint its electroactive sites. Electrochemical tests show that NBT markedly suppresses copper deposition and, together with polyethylene glycol (PEG), effectively resists competitive adsorption by bis-(3-sulfopropyl) disulfide (SPS), thereby enhancing the microvia superfilling performance of the PEG–SPS–NBT additive system. DFT results reveal that the nitro groups and tetrazolium rings constitute the primary adsorption centers on the copper surface; the nitro groups additionally strengthen intermolecular interactions between NBT and PEG. MD simulations further confirm that NBT anchors onto the Cu(111) surface predominantly through these NO2 groups and the tetrazolium ring, while co-adsorbed PEG enhances the overall adsorption strength of NBT. The electroplating experiment demonstrates that NBT can act as an effective leveler for microvia superfilling. Moreover, XPS analyses further confirm the synergistic co-adsorption of NBT and PEG and verify that the NO2 groups and tetrazolium rings are the dominant adsorption sites of NBT. Collectively, the electroplating, XPS, electrochemical, DFT, and MD findings clarify the structure–activity relationship of NBT and provide rational guidelines for designing next-generation copper-plating levelers. Full article
Show Figures

Figure 1

14 pages, 6531 KiB  
Article
Validation of Management Zones, Variability, and Spatial Distribution of the Physiological Quality of Soybean Seeds
by Maurício Alves de Oliveira Filho, Ana Laura Costa Santos, Ricardo Ferreira Domingues, Gabriela Mariano Melazzo, Brenda Santos Pontes, Rafael Jacinto da Silva, Sandro Manuel Carmelino Hurtado and Hugo César Rodrigues Moreira Catão
Plants 2025, 14(12), 1856; https://doi.org/10.3390/plants14121856 - 16 Jun 2025
Viewed by 560
Abstract
Precision agriculture facilitates improved management by studying the spatial and temporal variability of soil attributes. Soybean (Glycine max (L.) Merrill) seeds may exhibit distinct quality when produced in different management zones. This study aimed to validate management zones during seed production and [...] Read more.
Precision agriculture facilitates improved management by studying the spatial and temporal variability of soil attributes. Soybean (Glycine max (L.) Merrill) seeds may exhibit distinct quality when produced in different management zones. This study aimed to validate management zones during seed production and identify the variability and spatial distribution of soybean seed physiological quality using geostatistical tools. Management zones were defined based on interpolated maps of soil and vegetation attributes using the Smart Map Plugin (SMP) within the QGIS environment. Post-harvest, the variability of physiological seed quality across different management zones was assessed. Germination, accelerated aging, dry weight, emergence, electrical conductivity, and tetrazolium tests were conducted in a completely randomized design. Soil attributes, initial plant stand, and soybean seed productivity validated the management zones. Physiological seed quality varies across the production field, particularly in terms of vigor, thereby enhancing diagnostics through map interpolation. Geostatistics enable determination of the spatial distribution of soybean seed physiological quality in seed production areas, facilitating decision-making regarding harvest zones. Full article
(This article belongs to the Special Issue Precision Agriculture in Crop Production)
Show Figures

Figure 1

10 pages, 3033 KiB  
Article
Glycosidase Isoforms in Honey and the Honey Bee (Apis mellifera L.): Differentiating Bee- and Yeast-Derived Enzymes and Implications for Honey Authentication
by Ratko Pavlović, Sanja Stojanović, Marija Pavlović, Nenad Drulović, Miroslava Vujčić, Biljana Dojnov and Zoran Vujčić
Insects 2025, 16(6), 622; https://doi.org/10.3390/insects16060622 - 12 Jun 2025
Viewed by 661
Abstract
The enzymes in honey can originate not only from bees and the plants from which the bees collect pollen and nectar but also from feed provided by beekeepers. Enzymes that hydrolyze sucrose—present in honey (α-glucosidase) or honey adulterated with invert syrup (β-fructofuranosidase)—can be [...] Read more.
The enzymes in honey can originate not only from bees and the plants from which the bees collect pollen and nectar but also from feed provided by beekeepers. Enzymes that hydrolyze sucrose—present in honey (α-glucosidase) or honey adulterated with invert syrup (β-fructofuranosidase)—can be distinguished using zymography, where enzymatic bands are detected with nitroblue tetrazolium (NBT) after sugar removal via ultrafiltration. This method enables the identification of honey produced in hives that have been improperly fed with invert syrup, leading to the mixture of natural honey and syrup, and offers a practical tool to detect indirect adulteration. The NBT assay, in combination with ultrafiltration, was used to determine the isoelectric point of honey bee α-glucosidases. The pI value of 6.63 for isoforms found in the head, midgut, and natural honey extracts during winter can be attributed to α-glucosidase III. Two additional isoforms with isoelectric points of 5.20 and 5.77 were observed in the midgut extract and may correspond to α-glucosidase I and II. The difference between α-glucosidase and β-fructofuranosidase was confirmed using a substrate specificity test, followed by thin-layer chromatography, where it was confirmed that α-glucosidase from natural honey, bee head, and bee midgut does not hydrolyze raffinose, in contrast to yeast β-fructofuranosidase. Full article
(This article belongs to the Special Issue Current Advances in Pollinator Insects)
Show Figures

Figure 1

10 pages, 610 KiB  
Article
Polysaccharides from Marine Bacteria and Their Anti-SARS-CoV-2 Activity
by Tatyana A. Kuznetsova, Natalia V. Krylova, Maksim S. Kokoulin, Elena V. Persiyanova, Olga S. Maistrovskaya, Pavel. G. Milovankin, Yurii A. Belov and Mikhail Yu. Shchelkanov
Microbiol. Res. 2025, 16(5), 102; https://doi.org/10.3390/microbiolres16050102 - 19 May 2025
Cited by 1 | Viewed by 451
Abstract
This study investigated the anti-SARS-CoV-2 activity of Polysaccharides (PSs) from three species of marine bacteria (Alteromonas nigrifaciens KMM 156, Cobetia amphilecti KMM 3890, and Idiomarina abyssalis KMM 227T). The chemical structure of PSs from marine bacteria is characterized using 1 [...] Read more.
This study investigated the anti-SARS-CoV-2 activity of Polysaccharides (PSs) from three species of marine bacteria (Alteromonas nigrifaciens KMM 156, Cobetia amphilecti KMM 3890, and Idiomarina abyssalis KMM 227T). The chemical structure of PSs from marine bacteria is characterized using 1H and 13C NMR spectroscopy, including 2D NMR experiments. PS from A. nigrifaciens KMM 156 consists of tetrasaccharide repeating units containing two L-rhamnose residues and one residue each of 2-acetamido-2-deoxy-D-glucose and an ether of D-glucose with (R)-lactic acid, 3-O-[(R)-1-carboxyethyl]-D-glucose. PS from C. amphilecti KMM 3890 is constructed from branched trisaccharide repeating units consisting of D-glucose, D-mannose, and sulfated 3-deoxy-D-manno-oct-2-ulosonic acid. A unique PS from deep-sea marine bacterium I. abyssalis KMM 227T consists of branched pentasaccharide repeating units and is characterized by the presence of a rare bacterial polysaccharide component 2-O-sulfate-3-N-(4-hydroxybutanoyl)-3,6-dideoxy-D-glucose. The activity of PSs against SARS-CoV-2 was assessed by inhibition of the virus cytopathogenic effect (CI) in the methylthiazolyl tetrazolium (MTT) test and using a real-time reverse transcription polymerase chain reaction (RT-PCR-RV). Results of the study demonstrate that PSs, which differ in chemical structure, exhibited anti-SARS-CoV-2 activity differences. This is confirmed both in the test of inhibition of the virus CI and in the reduction in the SARS-CoV-2 virus RNA level. PSs from A. nigrifaciens KMM 156 exhibited the strongest anti-SARS-CoV-2 effect, effectively inhibiting the stages of attachment and penetration of SARS-CoV-2 into the cells. Full article
Show Figures

Figure 1

16 pages, 3336 KiB  
Article
Differential Effects of Rutin and Its Aglycone Quercetin on Cytotoxicity and Chemosensitization of HCT 116 Colon Cancer Cells to Anticancer Drugs 5-Fluorouracil and Doxorubicin
by Iva Suman, Alberta Jezidžić, Dorotea Dobrić and Robert Domitrović
Biology 2025, 14(5), 527; https://doi.org/10.3390/biology14050527 - 9 May 2025
Cited by 1 | Viewed by 658
Abstract
Background: Rutin and quercetin are natural flavonoids with a variety of beneficial health effects, including anticancer activity. In the present study, we compared cytotoxicity and chemosensitization of human colon cancer HCT116 cells to anticancer drugs 5-fluorouracil (5-FU) and doxorubicin (DOX) by both compounds. [...] Read more.
Background: Rutin and quercetin are natural flavonoids with a variety of beneficial health effects, including anticancer activity. In the present study, we compared cytotoxicity and chemosensitization of human colon cancer HCT116 cells to anticancer drugs 5-fluorouracil (5-FU) and doxorubicin (DOX) by both compounds. Methods: The 2,3-bis(2-methoxy-4-nitro-5-sulfophenyl)-2H-tetrazolium-5-carboxanilide (XTT) test was used to determine cell viability. Western blot and immunofluorescence techniques were employed in the detection of expression of proteins involved in oxidative stress, apoptosis, and autophagy. Results: Quercetin treatment resulted in reduced cell viability compared to rutin at the same dose, suggesting greater cytotoxicity than rutin against HCT116 cells. Quercetin was also a better chemosensitizer of DOX than rutin, further reducing cell viability. However, rutin was a better chemosensitizer of 5-FU than quercetin. All treatments induced apoptosis, with rutin and DOX inducing intrinsic and 5-FU inducing extrinsic apoptotic cell death. Autophagy was induced in all treatments and played a pro-survival role, with the exception of DOX treatment. Different treatment regimens specifically modulated cancer cell signaling pathways involved in the regulation of oxidative stress, apoptosis, and autophagy. Conclusions: The results of the current study suggest that rutin and quercetin, although structural analogs, act as specific modulators of signaling pathways in cancer cells, differentially affecting cancer cell cytotoxicity and chemosensitization to anticancer drugs, based on the presence of a free hydroxyl group at the C-3 position of the flavonoid backbone at quercetin or rutinose in rutin. Full article
(This article belongs to the Section Cell Biology)
Show Figures

Figure 1

15 pages, 2618 KiB  
Article
Pulsed Blue Light and Phage Therapy: A Novel Synergistic Bactericide
by Amit Rimon, Jonathan Belin, Ortal Yerushalmy, Yonatan Eavri, Anatoly Shapochnikov, Shunit Coppenhagen-Glazer, Ronen Hazan and Lilach Gavish
Antibiotics 2025, 14(5), 481; https://doi.org/10.3390/antibiotics14050481 - 9 May 2025
Viewed by 884
Abstract
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that [...] Read more.
Background: Antibiotic-resistant Pseudomonas aeruginosa (P. aeruginosa) strains are an increasing cause of morbidity and mortality. Pulsed blue light (PBL) enhances porphyrin-induced reactive oxygen species and has been clinically shown to be harmless to the skin at low doses. Bacteriophages, viruses that infect bacteria, offer a promising non-antibiotic bactericidal approach. This study investigates the potential synergism between low-dose PBL and phage therapy against P. aeruginosa in planktonic cultures and preformed biofilms. Methods: We conducted a factorial dose–response in vitro study combining P. aeruginosa-specific phages with PBL (457 nm, 33 kHz) on both PA14 and multidrug-resistant PATZ2 strains. After excluding direct PBL effects on phage titer or activity, we assessed effectiveness on planktonic cultures using growth curve analysis (via growth_curve_outcomes, a newly developed, Python-based tool available on GitHub) , CFU, and PFU. Biofilm efficacy was evaluated using CFU post-sonication, crystal violet staining, and live/dead staining with confocal microscopy. Finally, we assessed reactive oxygen species (ROS) as a potential mechanism using the nitro blue tetrazolium reduction assay. ANOVA or Kruskal–Wallis tests with post hoc Tukey or Conover–Iman tests were used for comparisons (n = 5 biological replicates and technical triplicates). Results: The bacterial growth lag phase was significantly extended for phage alone or PBL alone, with a synergistic effect of up to 144% (p < 0.001 for all), achieving a 9 log CFU/mL reduction at 24 h (p < 0.001). In preformed biofilms, synergistic combinations significantly reduced biofilm biomass and bacterial viability (% Live, median (IQR): Control 80%; Phage 40%; PBL 25%; PBL&Phage 15%, p < 0.001). Mechanistically, PBL triggered transient ROS in planktonic cultures, amplified by phage co-treatment, while a biphasic ROS pattern in biofilms reflected time-dependent synergy. Conclusions: Phage therapy combined with PBL demonstrates a synergistic bactericidal effect against P. aeruginosa in both planktonic cultures and biofilms. Given the strong safety profile of PBL and phages, this approach may lead to a novel, antibiotic-complementary, safe treatment modality for patients suffering from difficult-to-treat antibiotic-resistant infections and biofilm-associated infections. Full article
(This article belongs to the Special Issue Antibiofilm Activity against Multidrug-Resistant Pathogens)
Show Figures

Graphical abstract

12 pages, 2022 KiB  
Article
Impact of Dexamethasone on Three-Dimensional Stem Cell Spheroids: Morphology, Viability, Osteogenic Differentiation
by Heera Lee, Ju-Hwan Kim, Hyun-Jin Lee and Jun-Beom Park
Medicina 2025, 61(5), 871; https://doi.org/10.3390/medicina61050871 - 9 May 2025
Viewed by 455
Abstract
Background and Objectives: Dexamethasone has been widely researched for its ability to promote osteogenic differentiation in mesenchymal stem cells in basic research. This study focused on examining the effects of dexamethasone on both cell viability and osteogenic differentiation in three-dimensional stem cell [...] Read more.
Background and Objectives: Dexamethasone has been widely researched for its ability to promote osteogenic differentiation in mesenchymal stem cells in basic research. This study focused on examining the effects of dexamethasone on both cell viability and osteogenic differentiation in three-dimensional stem cell spheroids. Materials and Methods: These spheroids were created using concave microwells and exposed to dexamethasone at concentrations ranging from 0 μM to 100 μM, including intermediate levels of 0.1 μM, 1 μM, and 10 μM. Microscopic analysis was used to qualitatively assess cellular viability, while a water-soluble tetrazolium salt-based assay provided quantitative viability data. Osteogenic differentiation was evaluated by measuring alkaline phosphatase activity and calcium deposition using Alizarin Red staining. Additionally, the expression levels of genes associated with osteogenesis were measured through quantitative polymerase chain reaction. Results: The spheroids successfully self-assembled within the first 24 h and maintained their structural integrity over a seven-day period. Analysis of cell viability showed no statistically significant differences across the various dexamethasone concentrations tested. Although there was an observed increase in alkaline phosphatase activity and calcium deposition following dexamethasone treatment, these differences were not statistically significant. RUNX2 gene expression was upregulated in the 1 μM, 10 μM, and 100 μM groups, while COL1A1 expression significantly increased at 0.1 μM and 1 μM. Conclusions: These results indicate that dexamethasone supports cell viability and enhances RUNX2 and COL1A1 expression in stem cell spheroids. Full article
(This article belongs to the Section Dentistry and Oral Health)
Show Figures

Figure 1

13 pages, 4571 KiB  
Article
Evaluation of PAMAM Dendrimer-Stabilized Gold Nanoparticles: Two-Stage Procedure Synthesis and Toxicity Assessment in MCF-7 Breast Cancer Cells
by Agnieszka Maria Kołodziejczyk, Magdalena Grala and Łukasz Kołodziejczyk
Molecules 2025, 30(9), 2024; https://doi.org/10.3390/molecules30092024 - 2 May 2025
Viewed by 808
Abstract
Gold nanoparticles stabilized with polyamidoamine dendrimers are one of the potential candidates for use as a contrast agent in computed tomography and a drug delivery agent. This work demonstrates a rapid, two-step synthesis of such complexes, which are size-stable for up to 18 [...] Read more.
Gold nanoparticles stabilized with polyamidoamine dendrimers are one of the potential candidates for use as a contrast agent in computed tomography and a drug delivery agent. This work demonstrates a rapid, two-step synthesis of such complexes, which are size-stable for up to 18 months. The first step of the synthesis involves a short sonication of gold (III) chloride hydrate with polyamidoamine dendrimers of the fourth generation, while the second step uses microwaves to reduce gold (III) chloride hydrate with sodium citrate. The developed synthesis method enables rapid production of spherical and monodisperse gold nanoparticles stabilized with polyamidoamine dendrimers. Physicochemical characterization of the gold nanoparticle-polyamidoamine dendrimers complexes was performed using ultraviolet-visible spectroscopy, dynamic light scattering technique, infrared spectroscopy, atomic force microscopy, and transmission electron microscopy. The toxicity of synthesized complexes on the breast cancer MCF-7 cell line has been studied using the tetrazolium salt reduction test. The produced gold nanoparticles revealed lower toxicity levels on the MCF-7 cell line after 18 months from synthesis compared with newly synthesized colloids. Synthesized gold nanoparticles stabilized with dendrimers and commercially available gold nanoparticles stabilized with sodium citrate show similar toxicity levels on breast cancer cells. Full article
(This article belongs to the Special Issue Nanomaterials for Advanced Biomedical Applications, 2nd Edition)
Show Figures

Figure 1

16 pages, 2585 KiB  
Article
Viability of Cyperus esculentus Seeds and Tubers After Ensiling, Digestion by Cattle, and Manure Storage
by Jeroen Feys, Emiel Welvaert, Mattie De Meester, Joos Latré, Eva Wambacq, Danny Callens, Shana Clercx, Gert Van de Ven, Dirk Reheul and Benny De Cauwer
Agronomy 2025, 15(4), 844; https://doi.org/10.3390/agronomy15040844 - 28 Mar 2025
Viewed by 491
Abstract
Cyperus esculentus is an invasive sedge causing high losses in many crops. Prevention is key in minimizing further spread and damage. Propagules (tubers or seeds) may spread via cattle manure. This study examined the effect of ensiling, digestion, and storage in manure on [...] Read more.
Cyperus esculentus is an invasive sedge causing high losses in many crops. Prevention is key in minimizing further spread and damage. Propagules (tubers or seeds) may spread via cattle manure. This study examined the effect of ensiling, digestion, and storage in manure on the viability of C. esculentus propagules. Propagules were subjected to five durations (0–16 weeks) in silage maize, seven durations (0–48 h) of ruminal digestion, and five durations of storage (0–16 weeks) in manure (slurry or farmyard), or combinations of previous processes. Afterwards, the viabilities were determined by a germination and tetrazolium test. After 6 weeks in a maize silo, the viability of the propagules was reduced by at least 96%. Incubation for 36 h in the rumen, followed by post-ruminal digestion in vitro, reduced seed viability by 30%. However, for the tubers, no effect was observed. The viability of seeds and tubers was reduced by 90% after 11.5 and 13.7 weeks of incubation in slurry, respectively. Compared with seeds, tubers were less tolerant to 12–24 h of animal digestion, followed by 8 weeks of storage in slurry. Keeping a maize silo closed for at least 6 weeks and maintaining slurry storage for at least 16 weeks are excellent measures to eliminate C. esculentus. For farmers, these preventive measures are relatively easy and cheap to implement compared to the requirements of curative control methods. Full article
(This article belongs to the Special Issue Free from Herbicides: Ecological Weed Control)
Show Figures

Figure 1

13 pages, 3316 KiB  
Article
Inhibition of Retinoblastoma Cell Growth by Boswellic Acid Through Activation of the Suppressing Nuclear Factor—κB Activation
by Semih Doğan, Mehmet Cudi Tuncer and İlhan Özdemir
Medicina 2025, 61(3), 480; https://doi.org/10.3390/medicina61030480 - 10 Mar 2025
Cited by 1 | Viewed by 747
Abstract
Background and Objectives: Despite the development of treatment methods and the emergence of alternative new approaches in recent years, the visual prognosis of retinoblastoma contains deficiencies and this situation increases the need for the development of new treatment approaches. The cytotoxic and apoptosis-inducing [...] Read more.
Background and Objectives: Despite the development of treatment methods and the emergence of alternative new approaches in recent years, the visual prognosis of retinoblastoma contains deficiencies and this situation increases the need for the development of new treatment approaches. The cytotoxic and apoptosis-inducing effects of the combination of boswellic acid (BA), which has been determined to have significant potential in preclinical and clinical studies of various diseases, and Cisplatin (Cis), a potent chemotherapy agent, were investigated on the human retinoblastoma cell line (Y79). Materials and Methods: The cytotoxic effect of BA and Cis on Y79 cells was determined by the water soluble tetrazolium-1 (WST-1) test, the apoptotic rate of the cells was determined by annexin V staining, and the gene expressions of Protein53 (p53), Caspase-3 and Nuclear factor kappa B (NF-κB), which play an important role in apoptosis, were determined by RT-qPCR analysis. Interleukin 1-beta (IL1-β), tumor necrosis factor-α (TNF-α) and interferon γ (IFN-γ) levels were analyzed in cell lysates obtained from the experimental groups. Results: The combination of BA and Cis selectively inhibited the growth of Y79 cells and modulated NF-κB signaling, potentially through post-translational regulatory mechanisms. Moreover, it induced apoptosis by increasing p53 and Caspase-3 expressions, confirming its pro-apoptotic effects. Additionally, the combination treatment was associated with a reduction in inflammatory cytokine levels (TNF-α, IL1-β), suggesting a potential regulatory effect on inflammation-related pathways rather than direct inhibition of NF-κB activation. Conclusions: These findings suggest that BA combined with Cis inhibits Y79 retinoblastoma cell growth by inducing apoptosis and modulating NF-κB signaling. While NF-κB mRNA levels increased, reduced inflammatory cytokines and enhanced apoptosis suggest potential post-translational regulation. Further studies are needed to confirm NF-κB protein-level effects and in vivo efficacy. Full article
Show Figures

Figure 1

25 pages, 4398 KiB  
Article
Influence of a Very High-Molecular Weight Fucoidan from Laminaria hyperborea on Age-Related Macular Degeneration-Relevant Pathomechanisms in Ocular Cell Models
by Philipp Dörschmann, Georg Kopplin, Tabea Thalenhorst, Charlotte Seeba, Sadia Fida Ullah, Vaibhav Srivastava, Johann Roider and Alexa Klettner
Mar. Drugs 2025, 23(3), 101; https://doi.org/10.3390/md23030101 - 25 Feb 2025
Viewed by 1084
Abstract
Fucoidans from Laminaria hyperborea (LH) can be antioxidative, antiangiogenic, and anti-inflammatory. In this study, a very high-molecular weight (3700 kDa) fucoidan from LH, FucBB04, was tested regarding its bioactivity in age-related macular degeneration (AMD) models in vitro. Primary retinal pigment epithelium (RPE) [...] Read more.
Fucoidans from Laminaria hyperborea (LH) can be antioxidative, antiangiogenic, and anti-inflammatory. In this study, a very high-molecular weight (3700 kDa) fucoidan from LH, FucBB04, was tested regarding its bioactivity in age-related macular degeneration (AMD) models in vitro. Primary retinal pigment epithelium (RPE) from pig eyes, human uveal melanoma cell line OMM-1, and RPE cell line ARPE-19 were used. Substituents of the extract were determined with chemical analysis. Cell viability was tested with tetrazolium assay (MTT), oxidative stress was induced by H2O2 or erastin, respectively. Secreted vascular endothelial growth factor A (VEGF-A) was assessed with ELISA. Retinal pigment epithelium 65 kDa protein (RPE65) and protectin (CD59) protein expression were tested in Western blot. Cell barrier was assessed by measuring trans-epithelial electrical resistance (TEER), phagocytic ability by a fluorescence assay. Gene expression and secretion of interleukin 6 (IL-6) and interleukin 8 (IL-8) were tested in real-time PCR and ELISA. FucBB04 displayed no oxidative stress protective effects. Its effect on VEGF was inconsistent, with VEGF secretion reduced in primary RPE, but not in ARPE-19. On the other hand, Lipopolysaccharide (LPS) and polyinosinic/polycytidylic acid (PIC)-induced IL-6 or IL-8 secretion was reduced by FucBB04, while complement inhibiting protein CD59 was not affected. In addition, FucBB04 did not influence the gene expression of IL-6 or IL-8. Visual cycle protein RPE65 expression, phagocytic ability, and barrier function were reduced by FucBB04. Very high-molecular weight fucoidan from LH shows bioactivities against AMD-related pathological pathways, but adverse effects on RPE function may limit its suitability as a therapeutic compound. Smaller high-molecular weight fucoidans are recommended for further research. Full article
(This article belongs to the Special Issue Marine Anti-Inflammatory and Antioxidant Agents, 4th Edition)
Show Figures

Figure 1

19 pages, 3402 KiB  
Article
Seed Quality and Seedling Production of Sequoia sempervirens, Sequoiadendron giganteum, and Pseudotsuga menziesii
by Carolina Moraes, Marcio Carlos Navroski, Mariane de Oliveira Pereira, Luciana Magda de Oliveira, Ivan Adelke Miranda, Bruno Nascimento, Alessandro Camargo Angelo, Marcos Felipe Nicoletti, Adelar Mantovani and Daniel Pereira da Silva Filho
Forests 2025, 16(2), 352; https://doi.org/10.3390/f16020352 - 15 Feb 2025
Viewed by 1167
Abstract
Given the ecological significance and potential for afforestation and carbon sequestration of these species, this study contributes to optimizing nursery practices for successful regeneration and conservation efforts. Thus, this research assessed the physical and physiological seed quality and seedling production of Sequoia sempervirens [...] Read more.
Given the ecological significance and potential for afforestation and carbon sequestration of these species, this study contributes to optimizing nursery practices for successful regeneration and conservation efforts. Thus, this research assessed the physical and physiological seed quality and seedling production of Sequoia sempervirens, Sequoiadendron giganteum, and Pseudotsuga menziesii. For seed characteristics the following were tested: (I) Tetrazolium at concentrations: 0.0%, 0.1%, 0.5%, 1.0%; (II) moisture content and thousand-seed weight; (III) in-lab germination; and (IV) the classification of seeds’ viability through the use of a seed blower. Meanwhile, seedling production was tested: (I) five compositions of substrates and (II) doses of a controlled-release fertilizer (14-14-14): 0.0, 2.0, 4.0, 6.0, 8.0 g L−1, for S. giganteum. The seed evaluations revealed no significant effect of tetrazolium concentrations on determining their viability. The water content results classify all species as orthodox. All species’ seeds were classified as small according to the weight of a thousand seeds. A maximum of 41% germination was observed for both S. sempervirens and S. giganteum, this value was 56% for P. menziesii, attributed to non-viability and emptiness. The seed blower increased germination by more than 20% for S. giganteum and almost 40% for P. menziesii. Seedling production was affected by the substrates, and a dosage of 4.0 g L−1 of the controlled-release fertilizer is recommended for S. giganteum. Full article
(This article belongs to the Section Forest Ecophysiology and Biology)
Show Figures

Figure 1

Back to TopTop