Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (103)

Search Parameters:
Keywords = tetrasaccharide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 3196 KB  
Article
Resin Glycosides with α-Glucosidase and Protein Tyrosine Phosphatase 1B Inhibitory Activities from the Seeds of Cuscuta japonica
by Su-Peng Guo, Ye He, Xin Lan, Tian-Zi Qi, Jin-Ping Gu, Jia Guo, Xin-Yu Wang, Min Yang, Wen-Li Wang, Guang-Tong Chen and Bo-Yi Fan
Biomolecules 2025, 15(10), 1465; https://doi.org/10.3390/biom15101465 - 16 Oct 2025
Cited by 1 | Viewed by 659
Abstract
In the present study, seven previously undescribed resin glycosides, designated cusponins I-VII (17), together with one known analog (8), were isolated from the seeds of Cuscuta japonica, a traditional medicine used in China. Structural elucidation revealed [...] Read more.
In the present study, seven previously undescribed resin glycosides, designated cusponins I-VII (17), together with one known analog (8), were isolated from the seeds of Cuscuta japonica, a traditional medicine used in China. Structural elucidation revealed them to be glycosidic acid methyl esters, generated through on-column methyl esterification of naturally occurring resin glycosides catalyzed by NH2-functionalized silica gel. All isolates were characterized as either pentasaccharides or tetrasaccharides, incorporating D-glucose, L-rhamnose, or D-fucose units as the sugar residues. Notably, compounds 1 and 37 contained the uncommon aglycone, 11S-hydroxypentadecanoic acid. Bioactivity assessments demonstrated that compounds 14, 6 and 8 suppressed α-glucosidase activity, with IC50 values between 8.02 and 71.39 μM. In addition, compounds 3 and 5 exhibited inhibitory effects on protein tyrosine phosphatase 1B (PTP1B), with IC50 values of 14.19 ± 1.29 μM and 62.31 ± 8.61 μM, respectively, marking the first report of PTP1B inhibitory activity among resin glycosides. Enzyme kinetic analyses indicated that compound 2 acted as an uncompetitive α-glucosidase inhibitor (Kis = 3.02 μM), whereas compound 3 inhibited PTP1B via a mixed-type mechanism (Kᵢ = 24.82 μM; Kis = 64.24 μM). Molecular docking combined with molecular dynamics simulations suggested that compounds 2 and 3 interacted with α-glucosidase-pNPG and PTP1B, respectively, forming stable complexes with favorable binding free energies. Collectively, this study reported eight resin glycosides from C. japonica, seven of them newly identified, with compounds 2 and 3 highlighted as promising scaffolds for antidiabetic drug discovery. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

20 pages, 2545 KB  
Article
Impacts of Tween-20, Glycerol, and Trehalose on Hyaluronidase Activity: Insights from Microscale Thermophoresis and Capillary Electrophoresis
by Rouba Nasreddine, Josipa Cecić Vidoš, Alexandra Launay and Reine Nehmé
Molecules 2025, 30(19), 4008; https://doi.org/10.3390/molecules30194008 - 7 Oct 2025
Cited by 1 | Viewed by 1296
Abstract
Additives such as surfactants (Tween-20) and cryoprotectants (glycerol and trehalose) are often used in enzymatic assays to improve the quality and long-term stabilization of proteins. However, these additives can affect the enzymatic activity and the enzyme’s affinity for active compounds, such as inhibitors, [...] Read more.
Additives such as surfactants (Tween-20) and cryoprotectants (glycerol and trehalose) are often used in enzymatic assays to improve the quality and long-term stabilization of proteins. However, these additives can affect the enzymatic activity and the enzyme’s affinity for active compounds, such as inhibitors, and must be considered during assay design since a slight shift in enzyme behavior may compromise the reliability of the results. In this study, the effects of Tween-20, glycerol, and trehalose on hyaluronidase (Hyal) were systematically evaluated by assessing their influence both directly—through microscale thermophoresis (MST) signals of the labeled enzyme (Hyal*)—and indirectly, by monitoring the formation of the final product of the degradation of hyaluronic acid, tetrasaccharide (Tet), using capillary electrophoresis (CE/UV). Hyal was labeled for the first time with ATTO-647 NHS ester, a commercial dye compatible with MST. Efficient labeling was achieved in a phosphate-based buffer without loss of catalytic activity. Tween-20 showed no impact on MST signals nor on enzymatic performance when used between 0.005 and 0.05% (v/v). Glycerol also did not interfere with MST measurements; however, it significantly reduced catalytic activity at concentrations above 2% (v/v). Trehalose affected Hyal* fluorescence in a concentration-dependent manner and enhanced catalytic activity even at 0.02% (v/v). Full article
(This article belongs to the Special Issue Peptide and Protein-Based Materials: Technology and Applications)
Show Figures

Figure 1

14 pages, 2297 KB  
Article
Orally Delivered Hyaluronic Acid Tetrasaccharide Improves Skin Barrier Function in UVB-Irradiated Mice: A Bioactive Approach for Cosmetic and Nutritional Applications
by Madoka Kage, Masaki Okawara, Takehiro Asami and Yoshihiro Tokudome
Appl. Sci. 2025, 15(18), 10182; https://doi.org/10.3390/app151810182 - 18 Sep 2025
Viewed by 1425
Abstract
Hyaluronic acid (HA), which is present in various foods, has been the subject of various claims about its ability to relieve dry skin. In this study, the intestinal absorption of hyaluronic acid tetrasaccharide (HA4) and its ability to protect the skin from UV [...] Read more.
Hyaluronic acid (HA), which is present in various foods, has been the subject of various claims about its ability to relieve dry skin. In this study, the intestinal absorption of hyaluronic acid tetrasaccharide (HA4) and its ability to protect the skin from UV after oral administration were compared with those of high-molecular-weight HA. Intestinal absorption was evaluated by the Caco-2 cell monolayer mem-brane permeability assay. HA4 permeated the Caco-2 monolayer, reaching 2.67 µg/cm2 after 120 min, whereas HA did not. HA or HA4 was orally administered to UVB-irradiated mice, and the effects were evaluated using transepidermal water loss (TEWL), water content of the stratum corneum (SC), and epidermal thickness. HA4 permeated the Caco-2 monolayer. On day 26, TEWL significantly increased by 17.5 ± 3.1 g/m2/h in the Control group but only 8.0 ± 1.7 g/m2/h in the HA4 group compared to the Normal group, but no significant difference was observed. Water content of SC decreased by 25.7 ± 1.5 arbitrary units (a.u.) in the Control group; the decrease was attenuated in the HA4 group (17.5 ± 0.7 a.u.) (p < 0.05 vs. Control). On day 28, epidermal thickness reached 69.5 ± 10.8 µm in the Control group and was significantly lower in the HA4 group (43.5 ± 5.1 µm) (p < 0.01 vs. Control). These findings indicate that orally administered HA4 is efficiently absorbed and significantly attenuates UVB-induced skin barrier impairment, suggesting its promise as a functional food ingredient for improving dry skin. Full article
Show Figures

Figure 1

59 pages, 12945 KB  
Review
The Role of Glycans in Human Immunity—A Sweet Code
by Igor Tvaroška
Molecules 2025, 30(13), 2678; https://doi.org/10.3390/molecules30132678 - 20 Jun 2025
Cited by 1 | Viewed by 5268
Abstract
Glycans on the surface of all immune cells are the product of diverse post-translational modifications (glycosylation) that affect almost all proteins and possess enormous structural heterogeneity. Their bioinformational content is decoded by glycan-binding proteins (lectins, GBPs), such as C-type lectins, including selectins, galectins, [...] Read more.
Glycans on the surface of all immune cells are the product of diverse post-translational modifications (glycosylation) that affect almost all proteins and possess enormous structural heterogeneity. Their bioinformational content is decoded by glycan-binding proteins (lectins, GBPs), such as C-type lectins, including selectins, galectins, and Siglecs. Glycans located on the surface of immune cells are involved in many immunological processes through interactions with GBPs. Lectins recognize changes in the glycan epitopes; distinguish among host (self), microbial (non-self), and tumor (modified self) antigens; and consequently regulate immune responses. Understanding GBP–glycan interactions accelerates the development of glycan-targeted therapeutics in severe diseases, including inflammatory and autoimmune diseases and cancer. This review will discuss N- and O-glycosylations and glycosyltransferases involved in the biosynthesis of carbohydrate epitopes and address how interactions between glycan epitopes and GBPs are crucial in immune responses. The pivotal role of the glycan antigen tetrasaccharide sialyl Lewis x in mediating immune and tumor cell trafficking into the extravascular site will be discussed. Next, the role of glycans in modulating bacterial, fungal, viral, and parasitic infections and cancer will be surveyed. Finally, the role of glycosylation in antibodies and carbohydrate vaccines will be analyzed. Full article
(This article belongs to the Collection Advances in Glycosciences)
Show Figures

Figure 1

16 pages, 1568 KB  
Article
Exploring the Catalytic Mechanisms of a Newly Identified Salt-Activated Alginate Lyase from Pseudoalteromonas carrageenovora ASY5
by Xiaoyan Zhuang, Chao Jiao, Zewang Guo, Qiong Xiao, Jun Chen, Fuquan Chen, Qiuming Yang, Yi Ru, Huifen Weng, Siyuan Wang, Anfeng Xiao and Yonghui Zhang
Mar. Drugs 2025, 23(6), 254; https://doi.org/10.3390/md23060254 - 15 Jun 2025
Cited by 1 | Viewed by 1157
Abstract
Alginate lyases are critical enzymes in hydrolyzing alginate into alginate oligosaccharides (AOS), which are bioactive compounds known for their antioxidant properties and ability to lower serum glucose and lipid concentrations. However, elucidating catalytic mechanisms and discovering enzymes with enhanced catalytic efficiency remain long-term [...] Read more.
Alginate lyases are critical enzymes in hydrolyzing alginate into alginate oligosaccharides (AOS), which are bioactive compounds known for their antioxidant properties and ability to lower serum glucose and lipid concentrations. However, elucidating catalytic mechanisms and discovering enzymes with enhanced catalytic efficiency remain long-term challenges. Here, we report AlgL2491, a novel bifunctional and cold-adapted alginate lyase from Pseudoalteromonas carrageenovora ASY5, belonging to the polysaccharide lyase family 18. This enzyme uniquely cleaves both polyguluronic (polyG) and polymannuronic (polyM), predominantly releasing disaccharides, trisaccharides, and tetrasaccharides after 12 h of hydrolysis. The enzyme achieves peak catalytic efficiency at 35 °C and pH 7.5, with activity increasing 5.5-fold in 0.5 M of NaCl. Molecular dynamics simulations demonstrate that salt ions enhance structural stability by minimizing conformational fluctuations and strengthening interdomain interactions, providing mechanistic insights into its salt-activated behavior. The alginate oligosaccharides (AOS) exhibit excellent free radical-scavenging activities of 86.79 ± 0.31%, 83.42 ± 0.18%, and 71.28 ± 2.27% toward hydroxyl, ABTS, and DPPH radicals, with IC50 values of 8.8, 6.74, and 9.71 mg/mL, respectively. These findings not only reveal the salt-activation mechanism of AlgL2491 and highlight the potential value of its hydrolysate in antioxidant activity but also provide a sustainable industrial solution in industrial-scale AOS production directly from marine biomass, eliminating the need for energy-intensive desalination of alginate, which may inform future biocatalyst design for marine polysaccharide valorization. Full article
(This article belongs to the Section Marine Biotechnology Related to Drug Discovery or Production)
Show Figures

Figure 1

13 pages, 386 KB  
Article
An Assessment of Dietary Intake, Feeding Practices, Growth, and Swallowing Function in Young Children with Late-Onset Pompe Disease: A Framework for Developing Nutrition Guidelines
by Surekha Pendyal, Rebecca L. Koch, Harrison N. Jones and Priya S. Kishnani
Nutrients 2025, 17(11), 1909; https://doi.org/10.3390/nu17111909 - 1 Jun 2025
Viewed by 1757
Abstract
Newborn screening (NBS) is leading to the diagnosis of a large number of children with late-onset Pompe disease (LOPD), yet many remain asymptomatic until later years. A high-protein, low-carbohydrate diet is recommended for adults with LOPD. Nutrition guidelines are not available for young [...] Read more.
Newborn screening (NBS) is leading to the diagnosis of a large number of children with late-onset Pompe disease (LOPD), yet many remain asymptomatic until later years. A high-protein, low-carbohydrate diet is recommended for adults with LOPD. Nutrition guidelines are not available for young children. Methods: 37 children with LOPD aged 1–6 years participated. Early diet history, feeding practices, and 24 h dietary intake were collected via questionnaire. Anthropometric measurements, blood creatine kinase (CK), blood urea nitrogen (BUN)/creatinine ratio, and urine glucose tetrasaccharide (Glc4) were collected at clinic visits. A subset of 19 children received a clinical feeding assessment (CFA). Results: All patients derived their nutrition orally. Breastfeeding was successfully initiated in 73% of infants. Body weight ranged between 3 and 99% and height ranged from 4 to 97%. A tendency to be overweight and obese was noted in older children with LOPD. A total of 24% of the children who had CFA were diagnosed with dysphagia that was typically mild in severity and rarely affected their ability to eat a normal diet. Limiting added sugar and processed foods was the most widely used dietary practice followed by encouraging protein. Protein intake was three–four times higher than the recommended dietary intake (RDA). A high BUN/creatinine ratio was observed in some children, which may indicate incompatibility with protein intake and need for individualizing the diet. Conclusions: The results of this study provide a framework for developing future nutrition guidelines for children with LOPD by performing an individualized assessment of dietary intake, growth, feeding/swallowing, and laboratory parameters. Full article
(This article belongs to the Special Issue Nutrition in Children's Growth and Development)
Show Figures

Figure 1

10 pages, 610 KB  
Article
Polysaccharides from Marine Bacteria and Their Anti-SARS-CoV-2 Activity
by Tatyana A. Kuznetsova, Natalia V. Krylova, Maksim S. Kokoulin, Elena V. Persiyanova, Olga S. Maistrovskaya, Pavel. G. Milovankin, Yurii A. Belov and Mikhail Yu. Shchelkanov
Microbiol. Res. 2025, 16(5), 102; https://doi.org/10.3390/microbiolres16050102 - 19 May 2025
Cited by 1 | Viewed by 890
Abstract
This study investigated the anti-SARS-CoV-2 activity of Polysaccharides (PSs) from three species of marine bacteria (Alteromonas nigrifaciens KMM 156, Cobetia amphilecti KMM 3890, and Idiomarina abyssalis KMM 227T). The chemical structure of PSs from marine bacteria is characterized using 1 [...] Read more.
This study investigated the anti-SARS-CoV-2 activity of Polysaccharides (PSs) from three species of marine bacteria (Alteromonas nigrifaciens KMM 156, Cobetia amphilecti KMM 3890, and Idiomarina abyssalis KMM 227T). The chemical structure of PSs from marine bacteria is characterized using 1H and 13C NMR spectroscopy, including 2D NMR experiments. PS from A. nigrifaciens KMM 156 consists of tetrasaccharide repeating units containing two L-rhamnose residues and one residue each of 2-acetamido-2-deoxy-D-glucose and an ether of D-glucose with (R)-lactic acid, 3-O-[(R)-1-carboxyethyl]-D-glucose. PS from C. amphilecti KMM 3890 is constructed from branched trisaccharide repeating units consisting of D-glucose, D-mannose, and sulfated 3-deoxy-D-manno-oct-2-ulosonic acid. A unique PS from deep-sea marine bacterium I. abyssalis KMM 227T consists of branched pentasaccharide repeating units and is characterized by the presence of a rare bacterial polysaccharide component 2-O-sulfate-3-N-(4-hydroxybutanoyl)-3,6-dideoxy-D-glucose. The activity of PSs against SARS-CoV-2 was assessed by inhibition of the virus cytopathogenic effect (CI) in the methylthiazolyl tetrazolium (MTT) test and using a real-time reverse transcription polymerase chain reaction (RT-PCR-RV). Results of the study demonstrate that PSs, which differ in chemical structure, exhibited anti-SARS-CoV-2 activity differences. This is confirmed both in the test of inhibition of the virus CI and in the reduction in the SARS-CoV-2 virus RNA level. PSs from A. nigrifaciens KMM 156 exhibited the strongest anti-SARS-CoV-2 effect, effectively inhibiting the stages of attachment and penetration of SARS-CoV-2 into the cells. Full article
Show Figures

Figure 1

13 pages, 3295 KB  
Article
Structure of K102 Capsular Polysaccharide from Acinetobacter baumannii KZ-1102 and Its Cleavage by Phage Cato Depolymerase
by Anastasia A. Kasimova, Nikolay P. Arbatsky, Ekaterina A. Gornostal, Mikhail M. Shneider, Eugene A. Sheck, Alexander S. Shashkov, Andrey A. Shelenkov, Yulia V. Mikhailova, Ilya S. Azizov, Mikhail V. Edelstein, Andrey V. Perepelov, Anna M. Shpirt, Konstantin A. Miroshnikov, Anastasia V. Popova and Yuriy A. Knirel
Int. J. Mol. Sci. 2025, 26(10), 4727; https://doi.org/10.3390/ijms26104727 - 15 May 2025
Cited by 2 | Viewed by 1435
Abstract
Acinetobacter baumannii is a significant nosocomial pathogen characterized by the ability to produce a wide variety of capsular polysaccharides (CPSs). The structures of a K102-type CPS isolated from A. baumannii KZ-1102 and its Smith degradation product were determined by sugar analysis, 1D and [...] Read more.
Acinetobacter baumannii is a significant nosocomial pathogen characterized by the ability to produce a wide variety of capsular polysaccharides (CPSs). The structures of a K102-type CPS isolated from A. baumannii KZ-1102 and its Smith degradation product were determined by sugar analysis, 1D and 2D 1H NMR spectroscopy, and 13C NMR spectroscopy. The K102 CPS biosynthesis gene cluster (KL102) contains genes for common sugar synthesis, K unit processing, capsule export, glycosyl transfer, initiating sugar phosphate transfer, and genes that encode d-GlcpNAc/d-GalpNAc dehydrogenase and phosphoglycerol transferase. The CPS is composed of a pentasaccharide repeating unit (K unit) consisting of a tetrasaccharide backbone including one α-d-Galp, three α-d-GlcpNAc residues, and one residue of a β-d-Glcp as a side chain. The tailspike depolymerase of the specific Obolenskvirus phage Cato was found to cleave the α-d-GlcpNAc-(1→6)-α-d-GlcpNAc linkage in the K102 CPS to give the monomer and dimer of the K repeating unit, which were characterized by high-resolution electrospray ionization mass spectrometry as well as 1H and 13C NMR spectroscopy. Full article
(This article belongs to the Collection State-of-the-Art Macromolecules in Russia)
Show Figures

Figure 1

21 pages, 5986 KB  
Article
FAM20B Gain-of-Function Blocks the Synthesis of Glycosaminoglycan Chains of Proteoglycans and Inhibits Proliferation and Migration of Glioblastoma Cells
by Lydia Barré, Irfan Shaukat and Mohamed Ouzzine
Cells 2025, 14(10), 712; https://doi.org/10.3390/cells14100712 - 14 May 2025
Cited by 1 | Viewed by 950
Abstract
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PGs) are essential regulators of many biological processes including cell differentiation, signalization, and proliferation. PGs interact mainly via their glycosaminoglycan (GAG) chains, with a large number of ligands including growth factors, enzymes, and extracellular matrix [...] Read more.
Heparan sulfate (HS) and chondroitin sulfate (CS) proteoglycans (PGs) are essential regulators of many biological processes including cell differentiation, signalization, and proliferation. PGs interact mainly via their glycosaminoglycan (GAG) chains, with a large number of ligands including growth factors, enzymes, and extracellular matrix components, thereby modulating their biological activities. HSPGs and CSPGs share a common tetrasaccharide linker region, which undergoes modifications, particularly the phosphorylation of the xylose residue by the kinase FAM20B. Here, we demonstrated that FAM20B gain-of-function decreased, in a dose dependent manner, the synthesis of both CS- and HS-attached PGs. In addition, we showed that blockage of GAG chain synthesis by FAM20B was suppressed by the mutation of aspartic acid residues D289 and D309 of the catalytic domain. Interestingly, we bring evidence that, in contrast to FAM20B, expression of the 2-phosphoxylose phosphatase XYLP increases, in a dose dependent manner, GAG chain synthesis and rescues the blockage of GAG chains synthesis induced by FAM20B. In line with previous reports, we found that FAM20B loss-of-function reduced GAG chain synthesis. Finally, we found that FAM20B inhibited proliferation and migration of glioblastoma cells, thus revealing the critical role of GAG chains of PGs in glioblastoma cell tumorigenesis. This study revealed that both gain- and loss-of-function of FAM20B led to decreased GAG chain synthesis, therefore suggesting that a balance between phosphorylation and dephosphorylation of the xylose by FAM20B and XYLP, respectively, is probably an essential factor for the regulation of the rate of PG synthesis. Full article
Show Figures

Figure 1

21 pages, 6813 KB  
Article
The First Report on the Structure of Polysaccharide Surface Antigens of the Clinical Klebsiella oxytoca 0.062 Strain and the Contribution in the Serological Cross-Reactions
by Agata Palusiak and Anna Turska-Szewczuk
Int. J. Mol. Sci. 2025, 26(7), 3177; https://doi.org/10.3390/ijms26073177 - 29 Mar 2025
Viewed by 1652
Abstract
Klebsiella oxytoca bacilli co-form the human intestinal microbiota, but in favorable conditions, they may also affect immunocompromised individuals, causing urinary tract infections, bacteremia, or antibiotic-associated hemorrhagic colitis. The growing numbers of clinical outbreaks of K. oxytoca infections make these bacteria an emerging [...] Read more.
Klebsiella oxytoca bacilli co-form the human intestinal microbiota, but in favorable conditions, they may also affect immunocompromised individuals, causing urinary tract infections, bacteremia, or antibiotic-associated hemorrhagic colitis. The growing numbers of clinical outbreaks of K. oxytoca infections make these bacteria an emerging pathogen, which is still masked by the predominant K. pneumoniae isolates. Thus, it is very important to advance knowledge on K. oxytoca pathogenicity. This work aims to characterize a urine isolate, K. oxytoca 0.062, from central Poland, which appears to present a multidrug-resistant and extended-spectrum β-lactamases-positive phenotype. The structural experiments include sugar and methylation analyses, mass spectrometry, and 1H and 13C Nuclear Magnetic Resonance (NMR) spectroscopy. Additionally, 1H,1H ROESY, and 1H,13C HMBC experiments were carried out on the high-molecular-weight O polysaccharide fraction of K. oxytoca lipopolysaccharides (LPSs). These analyses led to the detection of two polysaccharide antigens: one neutral, containing a linear trisaccharide unit called mannan, and one acidic, which is built up of a branched tetrasaccharide unit containing two mannopyranose (α-Manp) residues, one galactopyranose (β-Galp) residue, and one galacturonic acid (α-GalpA) residue. The GalpA residue seems to be a potential minor epitope, recognized by the selected Proteus antisera in the serological studies. Full article
Show Figures

Graphical abstract

15 pages, 4338 KB  
Article
Multi-Functional Alginate Lyase AlgVR7 from Vibrio rumoiensis: Structural Insights and Catalytic Mechanisms
by Zhe Huang, Shuai Liang, Wulong Jiang, Li Wang, Yuan Wang, Hua Wang, Lianshun Wang, Yuting Cong, Yanan Lu and Guojun Yang
Mar. Drugs 2025, 23(3), 124; https://doi.org/10.3390/md23030124 - 13 Mar 2025
Cited by 3 | Viewed by 1482
Abstract
In this study, we identified AlgVR7, a novel bifunctional alginate lyase from Vibrio rumoiensis and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for AlgVR7 catalysis, and it is derived [...] Read more.
In this study, we identified AlgVR7, a novel bifunctional alginate lyase from Vibrio rumoiensis and characterized its biochemical properties and substrate specificity. Sequence alignment analysis inferred the key residues K267, H162, N86, E189, and T244 for AlgVR7 catalysis, and it is derived from the PL7 family; exhibited high activity towards sodium alginate, polyM (PM), and polyG (PG); and can also degrade polygalacturonic acid (PGA) efficiently, with the highest affinity and catalytic efficiency for the MG block of the substrate. The optimal temperature and pH for AlgVR7 were determined to be 40 °C and pH 8, respectively. The enzyme activity of AlgVR7 was maximum at 40 °C, 40% of the enzyme activity was retained after incubation at 60 °C for 60 min, and enzyme activity was still present after 60 min incubation. AlgVR7 activity was stimulated by 100 Mm NaCl, indicating a halophilic nature and suitability for marine environments. Degradation products analyzed using ESI-MS revealed that the enzyme primarily produced trisaccharides and tetrasaccharides. At 40 °C and pH 8.0, its Km values for sodium alginate, PM, and PG were 16.67 μmol, 13.12 μmol, and 22.86 μmol, respectively. Structural analysis and molecular docking studies unveiled the key catalytic residues involved in substrate recognition and interaction. Glu167 was identified as a critical residue for the PL7_5 subfamily, uniquely playing an essential role in alginate decomposition. Overall, AlgVR7 exhibits great potential as a powerful bifunctional enzyme for the efficient preparation of alginate oligosaccharides, with promising applications in biotechnology and industrial fields. Full article
(This article belongs to the Special Issue Advances of Marine-Derived Enzymes)
Show Figures

Figure 1

29 pages, 1891 KB  
Article
Synthesis of Fluorinated Glycotope Mimetics Derived from Streptococcus pneumoniae Serotype 8 CPS
by Daniel Gast, Sebastian Neidig, Maximilian Reindl and Anja Hoffmann-Röder
Int. J. Mol. Sci. 2025, 26(4), 1535; https://doi.org/10.3390/ijms26041535 - 12 Feb 2025
Viewed by 2107
Abstract
Fluorination of carbohydrates is a promising strategy to produce glycomimetics with improved pharmacological properties, such as increased metabolic stability, bioavailability and protein-binding affinity. Fluoroglycans are not only of interest as inhibitors and chemical probes but are increasingly being used to develop potential synthetic [...] Read more.
Fluorination of carbohydrates is a promising strategy to produce glycomimetics with improved pharmacological properties, such as increased metabolic stability, bioavailability and protein-binding affinity. Fluoroglycans are not only of interest as inhibitors and chemical probes but are increasingly being used to develop potential synthetic vaccine candidates for cancer, HIV and bacterial infections. Despite their attractiveness, the synthesis of fluorinated oligosaccharides is still challenging, emphasizing the need for efficient protocols that allow for the site-specific incorporation of fluorine atoms (especially at late stages of the synthesis). This is particularly true for the development of fully synthetic vaccine candidates, whose (modified) carbohydrate antigen structures (glycotopes) per se comprise multistep synthesis routes. Based on a known minimal protective epitope from the capsular polysaccharide of S. pneumoniae serotype 8, a panel of six novel F-glycotope mimetics was synthesized, equipped with amine linkers for subsequent conjugation to immunogens. Next to the stepwise assembly via fluorinated building blocks, the corresponding 6F-substituted derivatives could be obtained by microwave-assisted, nucleophilic late-stage fluorination of tri- and tetrasaccharidic precursors in high yields. The described synthetic strategy allowed for preparation of the targeted fluorinated oligosaccharides in sufficient quantities for future immunological studies. Full article
Show Figures

Graphical abstract

16 pages, 1916 KB  
Article
Targeting Transcriptional Regulators Affecting Acarbose Biosynthesis in Actinoplanes sp. SE50/110 Using CRISPRi Silencing
by Saskia Dymek, Lucas Jacob, Alfred Pühler and Jörn Kalinowski
Microorganisms 2025, 13(1), 1; https://doi.org/10.3390/microorganisms13010001 - 24 Dec 2024
Viewed by 2087
Abstract
Acarbose, a pseudo-tetrasaccharide produced by Actinoplanes sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation. Gene silencing using CRISPRi allows for [...] Read more.
Acarbose, a pseudo-tetrasaccharide produced by Actinoplanes sp. SE50/110, is an α-glucosidase inhibitor and is used as a medication to treat type 2 diabetes. While the biosynthesis of acarbose has been elucidated, little is known about its regulation. Gene silencing using CRISPRi allows for the identification of potential regulators influencing acarbose formation. For this purpose, two types of CRISPRi vectors were established for application in Actinoplanes sp. SE50/110. The pCRISPomyces2i vector allows for reversible silencing, while the integrative pSETT4i vector provides a rapid screening approach for many targets due to its shorter conjugation time into Actinoplanes sp. These vectors were validated by silencing the known acarbose biosynthesis genes acbB and acbV, as well as their regulator, CadC. The reduction in product formation and the diminished relative transcript abundance of the respective genes served as evidence of successful silencing. The vectors were used to create a CRISPRi-based strain library, silencing 50 transcriptional regulators, to investigate their potential influence in acarbose biosynthesis. These transcriptional regulatory genes were selected from previous experiments involving protein–DNA interaction studies or due to their expression profiles. Eleven genes affecting the yield of acarbose were identified. The CRISPRi-mediated knockdown of seven of these genes significantly reduced acarbose biosynthesis, whereas the knockdown of four genes enhanced acarbose production. Full article
(This article belongs to the Special Issue Microbial Metabolic Engineering Technology)
Show Figures

Figure 1

20 pages, 7887 KB  
Article
Degradation of Natural Undaria pinnatifida into Unsaturated Guluronic Acid Oligosaccharides by a Single Alginate Lyase
by Hui Wang, Jiaqi Wen, Nuraliya Ablimit, Kun Deng, Wenzhuo Wang and Wei Jiang
Mar. Drugs 2024, 22(10), 453; https://doi.org/10.3390/md22100453 - 2 Oct 2024
Cited by 4 | Viewed by 2455
Abstract
Here, we report on a bifunctional alginate lyase (Vnalg7) expressed in Pichia pastoris, which can degrade natural Undaria pinnatifida into unsaturated guluronic acid di- and trisaccharide without pretreatment. The enzyme activity of Vnalg7 (3620.00 U/mL-culture) was 15.81-fold higher than that of the [...] Read more.
Here, we report on a bifunctional alginate lyase (Vnalg7) expressed in Pichia pastoris, which can degrade natural Undaria pinnatifida into unsaturated guluronic acid di- and trisaccharide without pretreatment. The enzyme activity of Vnalg7 (3620.00 U/mL-culture) was 15.81-fold higher than that of the original alg (228.90 U/mL-culture), following engineering modification. The degradation rate reached 52.75%, and reducing sugar reached 30.30 mg/mL after combining Vnalg7 (200.00 U/mL-culture) and 14% (w/v) U. pinnatifida for 6 h. Analysis of the action mode indicated that Vnalg7 could degrade many substrates to produce a variety of unsaturated alginate oligosaccharides (AOSs), and the minimal substrate was tetrasaccharide. Site-directed mutagenesis showed that Glu238, Glu241, Glu312, Arg236, His307, Lys414, and Tyr418 are essential catalytic sites, while Glu334, Glu344, and Asp311 play auxiliary roles. Mechanism analysis revealed the enzymatic degradation pattern of Vnalg7, which mainly recognizes and attacks the third glycosidic linkage from the reducing end of oligosaccharide substrate. Our findings provide a novel alginate lyase tool and a sustainable and commercial production strategy for value-added biomolecules using seaweeds. Full article
Show Figures

Figure 1

17 pages, 6491 KB  
Article
Identification and Characterization of a Highly Active Hyaluronan Lyase from Enterobacter asburiae
by Linjing Zhang, Jiayu Jiang, Wei Liu, Lianlong Wang, Zhiyuan Yao, Heng Li, Jinsong Gong, Chuanli Kang, Lei Liu, Zhenghong Xu and Jinsong Shi
Mar. Drugs 2024, 22(9), 399; https://doi.org/10.3390/md22090399 - 31 Aug 2024
Cited by 3 | Viewed by 2322
Abstract
Hyaluronic acid (HA) is a well-known functional marine polysaccharide. The utilization and derivative development of HA are of great interest. Hyaluronan lyase has wide application prospects in the production of HA oligosaccharides and lower molecular weight HA. In this study, a strain of [...] Read more.
Hyaluronic acid (HA) is a well-known functional marine polysaccharide. The utilization and derivative development of HA are of great interest. Hyaluronan lyase has wide application prospects in the production of HA oligosaccharides and lower molecular weight HA. In this study, a strain of Enterobacter asburiae CGJ001 with high hyaluronan lyase activity was screened from industrial wastewater. This strain exhibited an impressive enzyme activity of 40,576 U/mL after being incubated for 14 h. Whole genome sequencing analysis revealed that E. asburiae CGJ001 contained a cluster of genes involved in HA degradation, transport, and metabolism. A newly identified enzyme responsible for glycosaminoglycan degradation was designated as HylEP0006. A strain of E. coli BL21(DE3)/pET-22b(+)-hylEP0006 was successfully constructed. HylEP0006 exhibited optimal degradation at 40 °C and pH 7.0, showing a high activity of 950,168.3 U/mg. HylEP0006 showed specific activity against HA. The minimum degradation fragment of HylEP0006 was hyaluronan tetrasaccharides, and HylEP0006 could efficiently degrade HA into unsaturated disaccharides (HA2), with HA2 as the final product. These characteristics indicate that HylEP0006 has a potential application prospect for the extraction and utilization of hyaluronic acid. Full article
Show Figures

Figure 1

Back to TopTop